

The RNG Team

- Statistics Department, UMBC
 - Andrew Rukhin
- Computer Security Division, NIST
 - Miles Smid, Elaine Barker, Jim Nechvatal,
 Jim Dray, San Vo, and Juan Soto
- Statistical Engineering Division, NIST
 - Stefan Leigh, Mark Vangel, David Banks, Mark Levenson, Allen Heckert

Outline

- Introduction
- Overview of the NIST test suite
- Empirical Testing
- Future work
- Summary

Introduction

Random Number Generation

Von Neumann is often quoted as having stated:
 "Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin."

Testing RNGs

– He also stated, "...that in his experience it was more trouble to test random sequences than to manufacture them."

NIST Goals

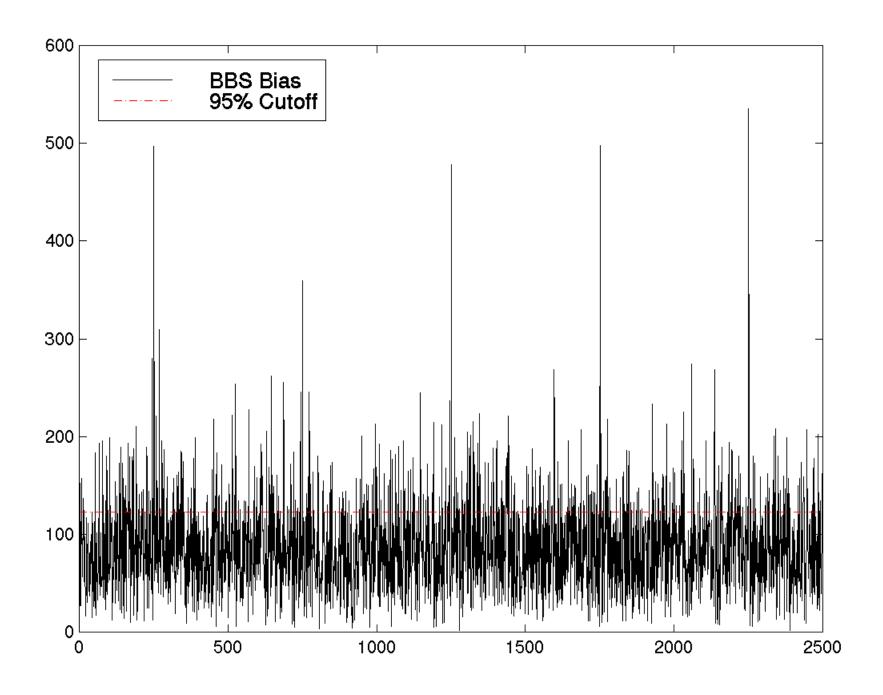
- A set of statistical tests suitable in the assessment of the randomness of (P)RNGs.
- Provide supporting documentation.
- Inclusion of the tests in the Cryptographic Module Validation Program?
- Development of a **Special Publication**?

Work In Progress

- The development of several documents:
 - "A Statistical Test Suite for the Validation of Cryptographic RNGs" including test strategy and test interpretation.
 - "The NIST Statistical Test Suite User's Guide Version 1.0"
- A reference implementation in ANSI C.

Example: A Finite Length Binary Sequence

• Templates
$$00s = 5$$
 $01s = 20$ $10s = 7$


• **Runs** = 41
$$0, 1, 0, 1, 0, 11, 0, 111, 0, 1, ...$$

• Cycles =
$$5$$
 01, 01, 01, 10, 111010.....010

• Words =
$$18$$
 0, 1, 01, 011, 0111, 010, ...

• Linear Complexity
$$<$$
 27, $1+D^3+D^8+D^{10}+D^{17}+D^{19}+D^{22}+D^{23}+D^{24}+D^{25}+D^{26}>$

- Frequency (Monobits) Test
 - Assess the distribution of 0s and 1s.
- Block Frequency Test
 - Assess the distribution of m-bit blocks.
- Spectral (DFT) Test
 - Assess the spectral frequency of a bitstring.

• Runs Test

– Assess the expected total number of runs.

Long Runs Test

 Assess the distribution of runs of ones; runs should not exceed log₂ n.

• Marsaglia's Rank Test

 Assess the distribution of the rank for 32x32 binary matrices.

Rank of Binary Matrices

$$rank \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = 4 \qquad rank \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = 3$$

$$rank \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = 3$$

The Rank of 32x32 Binary Matrices

28.88 % of binary matrices have rank = 32

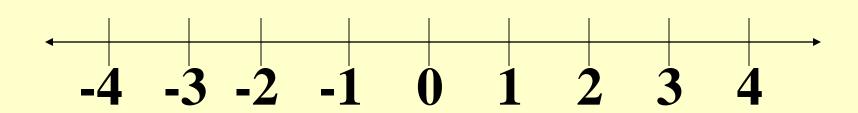
57.76 % of binary matrices have rank = 31

13.36 % of binary matrices have rank \leq 30

• NonOverlapping Template Matching Test

Assess the frequency of m-bit nonperiodic patterns.

Cumulative Sums Test


 Assess that the sum of partial sequences isn't too large or too small; indicative of too many 0s or 1s.

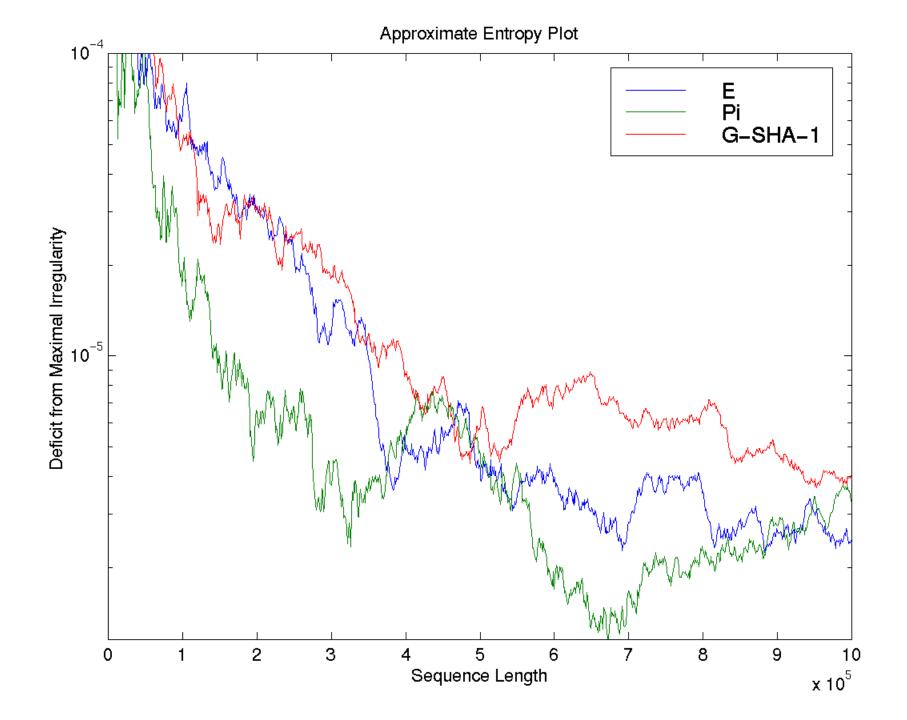
• Random Excursions Test

 Assess the distribution of states within a cycle of a random walk.

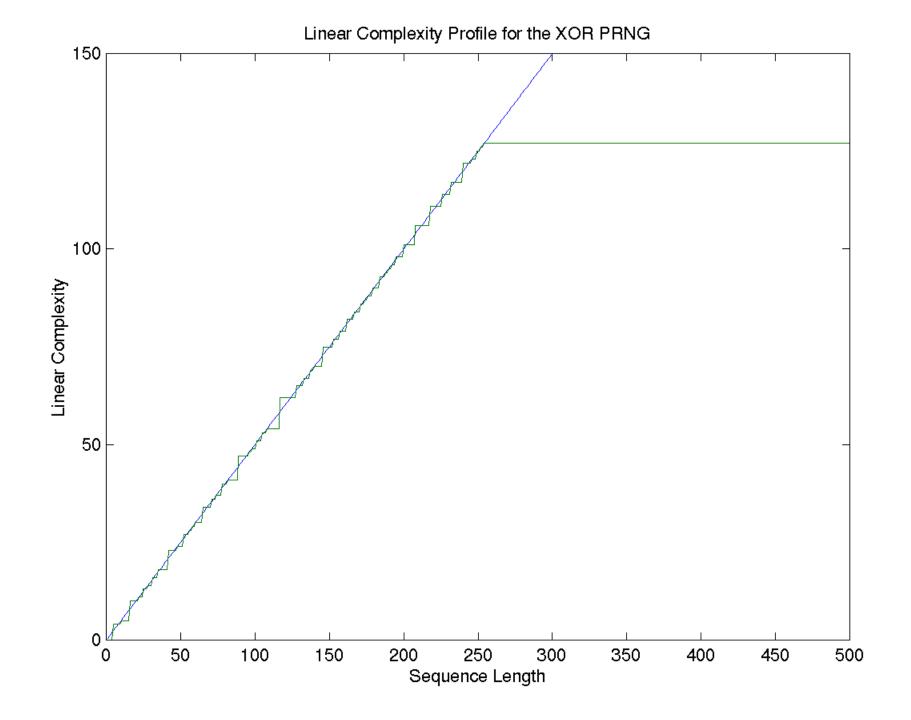
Random Walk (1D)

Bitstring	0	0	1	0	1	1
Transformed	-1	-1	1	-1	1	1
Summation	-1	-2	-1	-2	-1	0

• Overlapping Template Matching Test


– Assess the frequency of *m-bit* periodic templates.

• Serial Test


– Assess the distribution of all 2^m *m-bit* blocks.

• Approximate Entropy Test

– Assess the entropy (regularity) of a bitstring; compares the frequency of all m-bit patterns against all (m+1)-bit patterns.

- Maurer's Universal Statistical Test
 - Assess the compressibility of a bitstring.
- Lempel-Ziv Complexity Test
 - Assess the compressibility of a bitstring.
- Linear Complexity Test
 - Assess the linear complexity of a bitstring; the shortest LFSR that can generate the bitstring.

Empirical Testing

Good PRNGs

- ANSI X9.17, G-SHA-1, G-DES
- Blum-Blum-Shub

• Block Cipher Algorithms (AES)

- Correlation, CBC Mode
- Key (Plaintext) Avalanche
- Special Key (Plaintext) Inputs

Poor PRNGs

XOR PRNG

 Fails the linear complexity test, rank test and several other tests. Failure due to the simplicity of the scheme.

HPC Key Avalanche

 Fails the monobits test, approximate entropy test and several others. Failure due to the existence of equivalent keys.

Our Efforts

- Tests developed for cryptographic use.
- Full scientific documentation provided (each algorithm based on rigorous math).
- Sixteen statistical tests fully developed to date; over 200 if one considers alternate input parameters.

Future Work

- Peer Review Process
- Testing Hardware RNG data
- Development of Additional Statistical Tests
 - Moving Averages & Generalized OPSO test
 - Block Cipher tests
- Inclusion of Assessment Tools
 - Graphical Utilities & Goodness-of-Fit tests

Summary

- Statistical tests are very important in ensuring good quality (P)RNGs.
- Statistical tests are necessary but not sufficient to recommend a (P)RNG.
- A statistical test suite must be diverse.
- In the last two years, **NIST** has developed over 200 tests.