Empirical Statistical Testing Of Cryptographic PRNGs

Juan Soto

National Institute Of Standards & Technology soto@nist.gov

Existing Packages

- Stanford University, Donald Knuth
 - Classical Tests
- Florida State University, George Marsaglia
 DIEHARD
- *Queensland University of Technology*, Helen Gustafson, Edward Dawson, William Caelli and Lauren Nielsen
 - Crypt-X
- University of Montreal, Pierre L'Ecuyer
 - TestU01 (?)

Project Goals

- The development of a computer package suitable in the assessment of binary stream randomness.
- Applicable to binary streams produced by both hardware and software based PRNGs.
- Warning:
 - No set of statistical tests can certify a generator as appropriate for usage in a particular application.
 - Statistical testing cannot serve as a substitute for cryptanalysis.

Research Team

• The NIST RNG TWG – Computer Security Division • Miles Smid, James Nechvatal, James Dray, San Vo, Juan Soto - Statistical Engineering Division • Andrew Rukhin, David Banks, Stefan Leigh, Mark Vangel, Mark Levenson

NIST Test Suite Strengths

- Diverse research team.
- Full scientific documentation provided (each algorithm based on rigorous math).
- More advanced statistical tests.
- Uniform reporting standard (p-value).

Pseudorandom Number Generators

- ANSI X9.17 PRNG (ANSI X9.17)
- FIPS 186 One Way Function Using DES (G-DES)
- FIPS 186 One Way Function Using SHA-1 (G-SHA)
- Blum-Blum-Shub (BBS)
- Micali-Schnorr (MS)
- **Polynomial Congruential (LCG,QCG,CCG)**
- Modular Exponentiation (MODEXP)
- Exclusive OR (XOR)

NIST Statistical Test Suite

- Frequency
- Block Frequency
- Cusum
- Runs
- Longest Run Of Ones
- Marsaglia's Rank^{*}
- Spectral (DFT)

- Template Matchings
- Maurer's Universal*
- Approximate Entropy
- Random Excursions
- Moving Averages
- Lempel Ziv Complexity
- Linear Complexity*

Evaluation Approaches

• Analytical

- Probability Theory
- Information Theory
- Complexity Theory
- Graphical
 - Approximate Entropy
 - Spectral Graph
 - Cycle Structure

Evaluation Procedure

• Null Hypothesis.

– Binary stream is random.

• Compute the test statistic.

– Testing is carried out at the bit level.

• Compute its P-value.

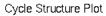
Probability of observing a test statistic at least as extreme as the value actually observed.

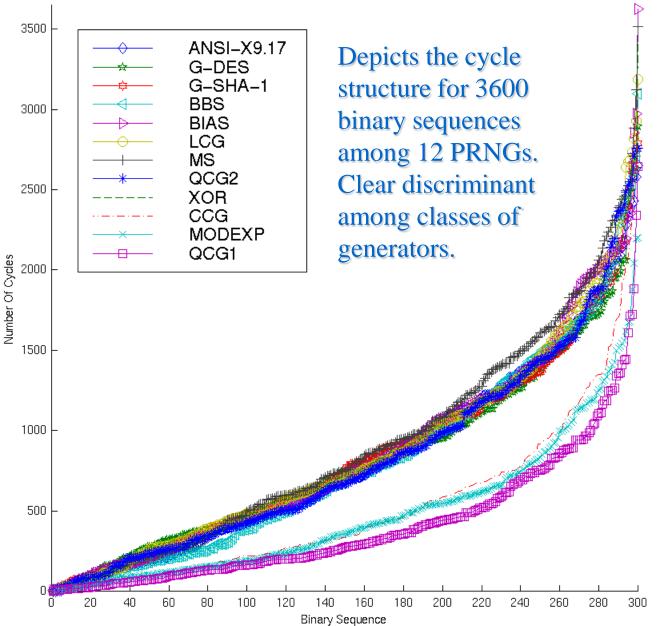
• Compare the P-value to α.

- Success whenever P-value $\geq \alpha$. Failure otherwise.
- α is chosen *conservatively* in (0.001, 0.01].

Numerical Experiments

Experiment Parameters


- 1,000,000 bits/sequence.
- 300 binary sequences/generator.
- **PRNGs for which:**
 - flaws were not detected
 - ANSI X9.17, G-DES, G-SHA, BBS, MS, LCG, QCG2
 - flaws were detected
 - QCG1, CCG, XOR, MODEXP
 - Statistically significant results detected at the 0.01 level.


Pass Rates at 1% Significance Level

Statistical Test	G-SHA-1	G-DES	X9.17	BBS	MS	QCG II
Frequency	99.67%	99.00%	100.00%	99.00%	99.33%	99.00%
Block Frequency	99.33%	99.33%	98.67%	100.00%	99.00%	97.67%
Cusum Forward	99.00%	98.00%	97.67%	97.67%	98.00%	98.00%
Cusum Reverse	99.33%	97.67%	98.33%	98.33%	98.00%	98.33%
Runs	98.67%	98.33%	99.67%	99.33%	99.33%	99.67%
Longest Run Of Ones	98.67%	99.67%	99.67%	99.33%	99.67%	99.33%
Marsaglia's Rank	98.67%	98.67%	97.67%	100.00%	97.00%	99.33%
Spectral (DFT)	99.67%	99.33%	99.67%	99.33%	99.33%	100.00%
Nonoverlapping Template	99.00%	99.33%	99.00%	98.33%	99.00%	99.33%
Overlapping Template	98.33%	99.33%	98.00%	99.00%	99.67%	99.00%
Maurer's Universal	98.67%	98.67%	98.67%	99.00%	98.00%	99.00%
Approximate Entropy	99.00%	98.33%	99.33%	98.67%	100.00%	99.00%
Random Excursions	99.48%	97.37%	99.48%	100.00%	97.50%	98.91%
Lempel-Ziv Complexity	99.33%	99.67%	99.67%	99.33%	98.33%	99.67%
Linear Complexity	98.67%	98.33%	99.33%	98.67%	99.00%	99.00%

Pass Rates at 1% Significance Level

Statistical Test	XOR	CCG	MODEXP	QCG I	LCG	BIAS
Frequency	99.33%	71.33%	65.00%	58.67%	98.33%	99.33%
Block Frequency	90.33%	100.00%	99.33%	99.33%	98.67%	100.00%
Cusum Forward	97.67%	62.67%	58.33%	51.67%	97.67%	98.00%
Cusum Reverse	99.33%	64.00%	59.00%	51.00%	97.33%	98.33%
Runs	99.33%	0.00%	99.33%	97.67%	98.33%	98.67%
Longest Run Of Ones	99.67%	99.00%	99.67%	100.00%	98.67%	99.67%
Marsaglia's Rank	86.33%	98.33%	98.67%	98.67%	99.67%	98.67%
Spectral (DFT)	100.00%	83.00%	100.00%	100.00%	99.33%	0.00%
Nonoverlapping Template	83.67%	100.00%	98.00%	98.33%	99.00%	99.00%
Overlapping Template	94.67%	99.67%	99.00%	99.67%	98.67%	99.00%
Maurer's Universal	68.33%	99.00%	99.00%	98.67%	98.67%	95.00%
Approximate Entropy	87.67%	0.00%	95.00%	94.33%	99.67%	99.33%
Random Excursions	98.97%	99.12%	98.26%	100.00%	98.98%	98.95%
Lempel-Ziv Complexity	99.00%	98.67%	98.67%	99.33%	99.67%	98.33%
Linear Complexity	0.00%	98.33%	99.67%	99.00%	98.00%	99.67%

Status

- Spring 1998:
 - Release documentation & reference implementation for peer review.
- Summer 1999:
 - Release the statistical test suite and associated documents to the public.

FOR MORE INFO...

http://www.nist.gov/div893/staff/soto/sts.html

Closing Remarks

• Benefits Of Statistical Testing

- Helps to distinguish between bad PRNGs and good PRNGs.
- Helps to ensure that the implementation of good PRNGs is in fact producing random looking binary sequences.
- Helps to evaluate other cryptographic primitives, such as encryption algorithms.

References

- "A computer package for measuring strength of encryption algorithms," H. Gustafson, E. Dawson, L. Nielsen, and W. Caelli, Computers & Security, 13 (1994), pages 687-697.
- Handbook of Applied Cryptography, A. Menezes, P. van Oorschot, S. Vanstone, 1997.
- The Art of Computer Programming, Seminumerical Algorithms, Vol. 2, Third Edition, D. Knuth, 1998.