Statistical Testing of Random Number Generators

Juan Soto

soto@nist.gov

301/975-4641

NIST

Outline

- Statistical Hypotheses Testing
- The NIST Statistical Test Suite
- Repeated Trial Assessment
- Current Work Items
- Summary

Statistical Test Suites

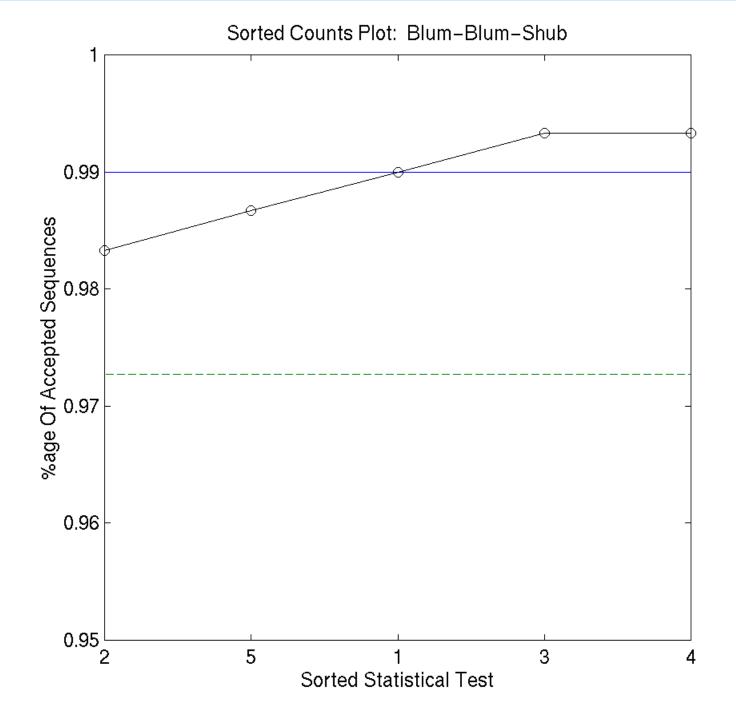
Author	Source
Knuth	The Art of Computer
	Programming Volume 2
Marsaglia	DIEHARD
Gustafson, et. al.	Crypt-X
Menezes, et. al.	Handbook of Applied
	Cryptography
Rukhin, et. al.	NIST Statistical Test Suite (STS)

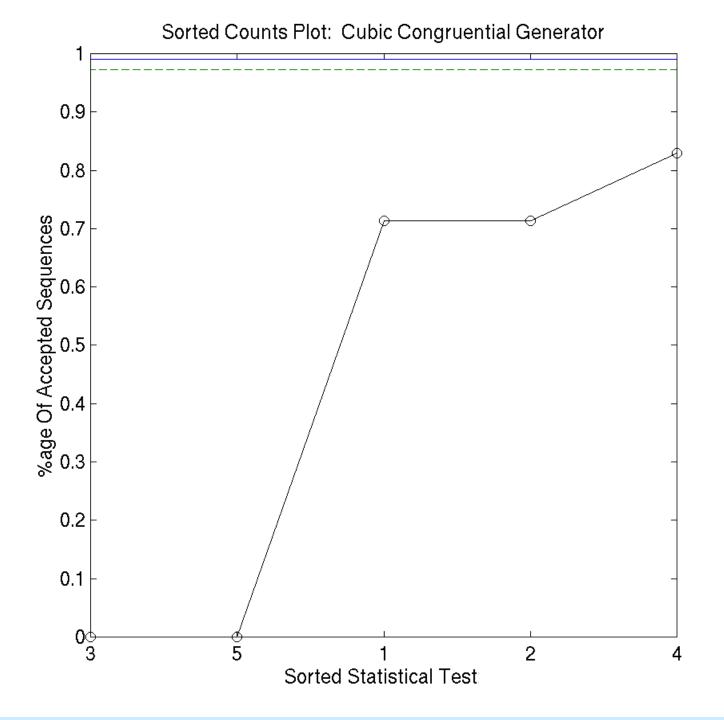
Statistical Hypotheses Testing: Evaluation Approaches

- Threshold Values
 - A binary sequence fails a test if the test statistic falls below a pre-specified threshold value.
 - e.g., Sequence Complexity Test (Crypt-XS)
- Probability Values (P-values)
 - A binary sequence fails a test if the test statistic falls below a preset significance level.
 - e.g., Each statistical test in the NIST STS

The NIST Statistical Test Suite

- NIST Framework
 - Given a finite length binary sequence, S, compute a test statistic and its corresponding P-value.
- Application of the Statistical Tests
 - 50-60 P-values per binary sequence.
 - Very small P-values indicate failure of a test.

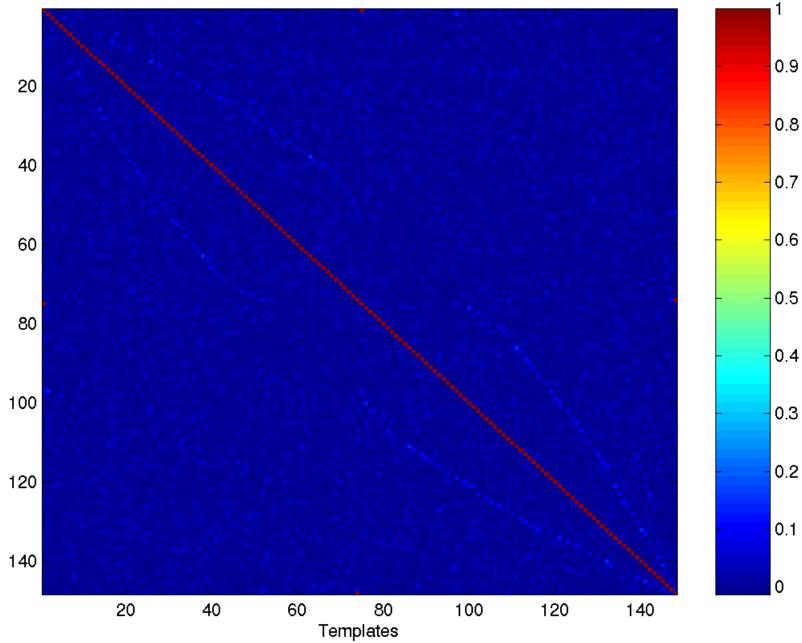

The NIST Statistical Test Suite


Strings Viewed As <u>Random Walks</u>	Look Patte	• -	Complexity/ Compression	
Frequency	Runs	Long Runs	Rank	
Block Frequency	Aperiodic Templates	Universal Statistical	Spectral	
Cumulative Sum	Periodic Templates	Serial	Lempel-Ziv Complexity	
Random Excursions (Variant)	Approxim	ate Entropy	Linear Complexity	

Repeated Trial Assessment

- Numerical Experiments
 - Samples of 300 binary sequences (10⁶ bits/sequence).
 - Apply 5 statistical tests
 - 1 = Frequency, 2 = Cusum, 3 = Runs, 4 = Spectral, 5 = ApEn.
- Analysis of Empirical Results
 - 1500 P-values per sample.
 - In theory, P-values should be uniformly distributed.
 - % of Passing Sequences:

$$0.99 - 3\sqrt{\frac{0.01*0.99}{300}} \approx 0.9727$$


Alternate Decision Rule

	S	F	Proportion	π	$\Sigma \pi$
$\pi = \binom{n}{x} p^{x} q^{n-x}$	300	0	1.0000	0.049041	0.049041
	299	1	0.9967	0.148609	0.197650
	298	2	0.9933	0.224414	0.422064
$\alpha = 0.01$	297	3	0.9900	0.225170	0.647234
<i>n</i> = 300	296	4	0.9867	0.168877	0.816111
	295	5	0.9833	0.100985	0.917096
p = 0.99	294	6	0.9800	0.050153	0.967249
q = 0.01	293	7	0.9767	0.021277	0.988526
$x \in [0, 300]$	292	8	0.9733	0.007871	0.996397
	291	9	0.9700	0.002580	0.998977
	290	10	0.9667	0.000758	0.999735

Current Work Items

- Peer review process is underway
- Independence of the statistical tests
- Development of new statistical tests
 - Long Sequences Ising Model Based Tests
 - Modification for Short Sequences

Aperiodic Templates Test Correlation Matrix

Summary

- New metrics to investigate the randomness of cryptographic RNGs.
- Illustrated numerical experiments conducted utilizing the NIST STS.
- Addressed the analysis of empirical results.

Questions? Comments?