## Pitney Bowes, Inc.

# X4i Hardware Security Module (HSM)

FIPS 140-2 Non-Proprietary Security Policy

**Document Version 1.3** 

© Copyright 2021 Pitney Bowes, Inc. 27 Waterview Drive Shelton, CT 06484

May be reproduced only in its original entirety [without revision].

## **TABLE OF CONTENTS**

| 1.  | Cryptographic Module Specification                  | 3  |
|-----|-----------------------------------------------------|----|
| 1.  | .1 Overview                                         | 3  |
| 1.  | .2 Security Level                                   | 4  |
| 1.  | .3 Modes of Operation                               | 4  |
| 2.  | Module Ports and Interfaces                         | 5  |
| 3.  | Roles, Services, and Authentication                 | 5  |
| 3.  | .1 Roles                                            | 5  |
|     | 3.1.1 Initialization                                | 6  |
| 3.  | .2 Services                                         | 6  |
|     | 3.2.1 Service Access to Security Functions and CSPs | 8  |
| 3.  | .3 Non-Approved Mode Roles and Services             | 11 |
| 3.  | .4 Security Rules                                   | 11 |
| 4.  | Physical Security                                   | 12 |
| 5.  | Mitigation of Other Attacks                         | 12 |
| 6.  | Operational Environment                             | 12 |
| 7.  | Cryptographic Key Management                        | 13 |
| 7.  | .1 FIPS Approved Algorithms                         | 13 |
| 7.  | .2 FIPS Allowed Algorithms                          | 15 |
| 7.  | .3 FIPS Non-Approved Algorithms                     | 15 |
| 7.  | .4 CSPs and Keys                                    | 16 |
|     | 7.4.1 Critical Security Parameters                  | 16 |
|     | 7.4.2 Public Security Parameters Keys               | 18 |
|     | 7.4.3 Zeroization                                   | 19 |
| 8.  | Self-Tests                                          | 19 |
| 8.  | .1 Power on Self-Tests                              | 19 |
| 8.  | .2 Conditional Tests                                | 20 |
| App | endix A: References                                 | 21 |
| App | endix B: Abbreviations and Definitions              | 22 |

## **TABLE OF TABLES**

| Table 1 - X4i Hardware Security Module (HSM) Component Versions                   | 3  |
|-----------------------------------------------------------------------------------|----|
| Table 2 - Module Security Level                                                   |    |
| Table 3 - Roles and Authentication                                                |    |
| Table 4 - Strength of Authentication                                              | 6  |
| Table 5 – Services Available in FIPS Approved Mode                                | 8  |
| Table 6 - FIPS Approved Algorithms                                                |    |
| Table 7 – FIPS Non-Approved Algorithms                                            | 15 |
| Table 8 – Secret Keys, Private Keys, Cryptographic Key Components, and Other CSPs | 16 |
| Table 9 - Public Security Parameters                                              | 18 |
| Table 10 - References                                                             | 21 |
| Table 11 – Abbreviations and Definitions                                          | 22 |

#### 1. CRYPTOGRAPHIC MODULE SPECIFICATION

#### 1.1 OVERVIEW

This document describes the Security Policy for the X4i Hardware Security Module (HSM) (the X4i HSM). The X4i HSM is a single-chip cryptographic module designed by Pitney Bowes, Inc. (PB) to conform with FIPS 140-2 Level 3 + EFP requirements.

| Item                            | Version     |
|---------------------------------|-------------|
| Hardware Components:            |             |
| MAX32590 Secure Microcontroller | Revision B4 |
| Firmware Components:            |             |
| PB Bootloader                   | 00.00.0016  |
| HSM Application                 | 21.04.0008  |
| Device Abstraction Layer (DAL)  | 01.02.002F  |

Table 1 - X4i Hardware Security Module (HSM) Component Versions

The HSM Application and DAL are compiled into a single firmware and integrity tested together. This single firmware is referred to as the HSM Application hereafter.

The X4i HSM provides cryptographic services to a host device, including authentication, privacy, and key protection.

The X4i HSM is defined as a single chip cryptographic module.

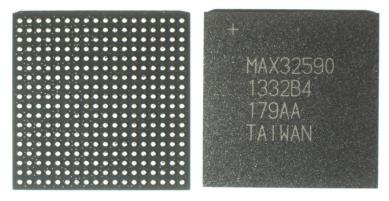



Figure 1 - MAX32590 (Back and Front)

The X4i HSM's cryptographic boundary is defined as the IC package that comprises the Maxim Integrated MAX32590 DeepCover Secure Microcontroller (refer to Figure 1). PB executable code is stored in external memory and copied to internal SRAM to be executed. On each power up, the firmware components listed in Table 1 are copied to internal SRAM and then authenticated via digital signatures.

The PB Bootloader is authenticated by verification of the "CRK" key using RSA 2048 with SHA-256 (Cert. #C477). Once the PB Bootloader has been loaded and authenticated, the PB Bootloader copies HSM Application (i.e., the combined Device Abstraction Layer (DAL) and HSM Application) to SRAM and authenticates it by verification of the "SWAK" Key using ECDSA P-256 with SHA-256 (Cert. #C476).

#### 1.2 SECURITY LEVEL

The module meets the overall requirements of FIPS 140-2 Security Level 3 +EFP

**Table 2 - Module Security Level** 

| FIPS Area           | FIPS Security Requirement           | Level  |
|---------------------|-------------------------------------|--------|
| 1                   | Cryptographic Module Specification  | 3      |
| 2                   | Module Ports and Interfaces         | 3      |
| 3                   | Roles, Services, and Authentication | 3      |
| 4                   | Finite State Model                  | 3      |
| 5                   | Physical Security                   | 3 +EFP |
| 6                   | Operational Environment             | N/A    |
| 7                   | Cryptographic Key Management        | 3      |
| 8                   | EMI/EMC                             | 3      |
| 9                   | Self-Tests                          | 3      |
| 10 Design Assurance |                                     | 3      |
| 11                  | Mitigation of Other Attacks         | 3      |

#### 1.3 Modes of Operation

The module supports both an Approved mode and a non-Approved mode of operation. The module provides an explicit mode of operation indicator: the FIPS mode status flag is returned in every response from the module. The FIPS mode flag is set to zero for an Approved mode of operation or to one for non-Approved mode of operation.

#### 2. MODULE PORTS AND INTERFACES

The MAX32590 is supplied in a 324-pin BGA package where all power input, data input, data output, control input, and status output interfaces are supported.

|                     |        |        | Ball Grid Array Pin Horizontal from "x" |                    |       |    |       |       |       |   |                      |       |    |     |      |    |       |        |       |
|---------------------|--------|--------|-----------------------------------------|--------------------|-------|----|-------|-------|-------|---|----------------------|-------|----|-----|------|----|-------|--------|-------|
|                     |        | 1      | 2                                       | 3                  | 4     | 5  | 6     | 7     | 8     | 9 | 10                   | 11    | 12 | 13  | 14   | 15 | 16    | 17     | 18    |
|                     | A      | -      | -                                       | -                  | -     | -  | -     | 0     | -     | - | -                    | -     | -  | -   | -    | -  | -     | -      | -     |
|                     | В      | -      | -                                       | -                  | -     | -  | -     | I     | -     | - | -                    | -     | -  | -   | -    | -  | -     | -      | -     |
| ×                   | С      | -      | -                                       | P                  | -     | -  | -     | -     | -     | - | -                    | -     | -  | -   | -    | -  | -     | -      | -     |
| *                   | D      | -      | -                                       | P                  | -     | -  | -     | -     | -     | - | -                    | -     | -  | -   | -    | -  | -     | -      | -     |
| m C                 | E      | -      | -                                       | -                  | -     | -  | -     | -     | -     | - | -                    | -     | -  | -   | -    | -  | -     | -      | -     |
| Vertical from       | F      | -      | -                                       | -                  | -     | -  | P     | P     | P     | P | P                    | P     | P  | IO  | IO   | -  | -     | -      | -     |
| cal                 | G      | -      | -                                       | -                  | -     | S  | P     | -     | -     | - | -                    | -     | P  | С   | -    | -  | -     | -      | -     |
| rti                 | H      | -      | -                                       | -                  | -     | P  | P     | -     | -     | - | -                    | -     | P  | S   | -    | -  | -     | -      | -     |
| Ve                  | J      | -      | -                                       | -                  | -     | С  | P     | -     | -     | - | -                    | -     | P  | С   | -    | -  | -     | -      | -     |
| 'n                  | K      | -      | -                                       | -                  | -     | С  | P     | -     | -     | - | -                    | -     | P  | С   | -    | -  | -     | -      | -     |
| V.                  | L      | -      | -                                       | -                  | -     | -  | P     | -     | -     | - | -                    | -     | P  | -   | -    | -  | -     | -      | -     |
| ra                  | M      | -      | -                                       | -                  | S     | -  | P     | -     | -     | - | -                    | -     | P  | -   | -    | -  | -     | -      | -     |
| IA                  | N      | -      | -                                       | -                  | -     | -  | P     | P     | P     | P | P                    | P     | P  | -   | S    | -  | -     | S      | S     |
| ŗi                  | P      | -      | -                                       | -                  | 0     | -  | 0     | 0     | 0     | 0 | 0                    | 0     | -  | 0   | 0    | 0  | 0     | 0      | 0     |
| 9 11                | R      | -      | -                                       | -                  | -     | -  | -     | -     | -     | - | IO                   | IO    | 10 | IO  | 0    | 0  | 0     | 0      | 0     |
| Ball Grid Array Pin | T      | -      | -                                       | -                  | -     | -  | -     | -     | -     | - | IO                   | IO    | IO | IO  | -    | 0  | 0     | 0      | 0     |
|                     | U      | -      | -                                       | -                  | -     | -  | -     | -     | -     | - | IO                   | IO    | IO | IO  | -    | -  | 0     | 0      | 0     |
|                     | V      | -      | -                                       | -                  | -     | -  | -     | -     | -     | - | IO                   | IO    | IO | IO  | -    | -  | 0     | 0      | 0     |
| Ī                   | I = Da | ıta İn | . (                                     | $D = \overline{D}$ | ata 0 | ut | S = 1 | Statu | s Out | ( | <i>C</i> = <i>Co</i> | ntrol | In | P = | Powe | er | - = L | Disabl | led _ |

Figure 2 - X4i HSM Interface Mapping

## 3. ROLES, SERVICES, AND AUTHENTICATION

#### 3.1 Roles

The module supports two authenticated roles that are either categorized as Crypto-Officer (CO) Administrator, or CO/User role. Additionally, the module has a single unauthenticated role. The CO Admin role is implicitly selected and authenticated via digital signature. The CO/User identities are implicitly selected by a unique ID and possession of the respective HMAC key used for authentication.

| Role                                    | Authentication Method                                                                          | Authentication Type |
|-----------------------------------------|------------------------------------------------------------------------------------------------|---------------------|
| Crypto-Officer Administrator (CO Admin) | Digital Signature (ECDSA P-256) authenticated by PAK                                           | Identity-based      |
| Crypto-Officer/User<br>(CO/User)        | Uniquely Assigned ID in conjunction with HMAC key (128 bits – 256 bits) used with HMAC-SHA-256 | Identity-based      |
| Unauthenticated                         | None                                                                                           | None                |

Table 3 - Roles and Authentication

Table 4 - Strength of Authentication

| Authentication Mechanism          | Probability of False Acceptance<br>(Single Attempt)                                                                                                                                                                                                                                                                                  | Probability of False Acceptance<br>(One Minute)                                                                                                                                                                                                                           |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital Signature                 | The probability of a random access or false acceptance occurring is 1 in 2^128 for ECDSA P-256, which is less than 1 in 1,000,000.                                                                                                                                                                                                   | The module can execute at most 17.85 ECDSA verifications per second. Therefore, the probability of a successful random attempt in a one-minute period is 17.85 in 2^128 for ECDSA, which is far less than 1 in 100,000.                                                   |
| Uniquely Assigned ID and HMAC key | A 128-bit to 256-bit HMAC key (PSWD) is used for authentication. (Per SP 800-63B, HMAC keys are used to sign a 64-bit challenge nonce, which is authenticated by the module.) Given the strength of the HMAC key, the probability of a random access or false acceptance occurring is 1 in 2^128, which is less than 1 in 1,000,000. | Password verification relies on HMAC authentication. The module can execute at most 3,000 HMAC authentication attempts per second. Therefore, the probability of a successful random attempt in a one-minute period is 3000 in 2^128 which is far less than 1 in 100,000. |

#### 3.1.1 Initialization

During manufacturing, the PB Bootloader (verified by CRK key) and HSM application (verified by the SWAK key) are loaded at secure vendor facilities. The system is initialized. Initialization includes loading the entropy input, which is not persistently stored. The entropy input is 512 total bits and contains 419 bits of entropy. The entropy is generated by a FIPS module validated with an entropy rate of 82%. Per IG 7.14, there is no assurance of the minimum strength of generated keys. The DRBG seed, KEK (Key Encryption Key) and KAK (Key Authentication Key) are generated. The mode of operation is locked to Approved mode unless changed via a HSM LoadParameter command before additional keys are loaded or generated. Signed public keys, the Device Authentication Keys (DAK) and Device Privacy Key (DPK) are loaded and verified 1. The module is now configured.

#### 3.2 SERVICES

#### **Crypto-Officer Administrator (CO Admin):**

The services allocated to this role are as follows:

- **Load Parameters**: Load a set of parameters into the HSM.
- <u>Firmware Update</u><sup>2</sup>: Secure firmware update process using the Software Download Utility (SDU) within the Device Abstraction Layer (DAL). The PB Bootloader verifies the ECDSA P-256 (Cert. #C476) signature on the combined HSM Application and DAL firmware.

#### Crypto-Officer/User (CO/User):

The same services are allocated to these roles. These services are as follows:

- **Decrypt**: Decrypt data.
- **Decrypt Compare**: Decrypt encrypted data and compare to expected result.

<sup>&</sup>lt;sup>1</sup> The DAK and DPK are generated for modules configured as a Key Root Authority (KRA) HSMs

<sup>&</sup>lt;sup>2</sup> Any firmware loaded into this module that is not shown on the module certificate, is out of the scope of this validation and requires a separate FIPS 140-2 validation

- **Decrypt Encrypt**: Decrypt encrypted data and re-encrypt with another key.
- **Delay Echo**: Respond with input message after delay.
- **Delete Key**: Remove a key from the HSM.
- **Delete Key Parameter**: Remove a key parameter from the HSM.
- **Derive Key Agreement**: Establish a key to be used to exchange secure information with the HSM (AES 128/192/256 KW or HMAC-SHA-256).
- Encrypt data.
- **Encrypt Nonce**: Generate a nonce (if not passed in) and then encrypt the nonce.
- **Export Kev**: Securely export a key for storage / use in another location.
- **Generate**: Generate a public/private key pair or a secret key. The message specifies the cryptographic algorithm and the parameters for use in the generation of the key(s).
- **Generate Password Block**: Generate a HMAC-SHA-256 password for a specific HSM.
- **Generate Password Token**: Generate a token used to login to a specific HSM.
- **Generate PSD RSA Record**: Generate an RSA public/private key pair for a Postal Security Device (PSD).
- **Generate RSA Primes**: Generate a pair of prime numbers used for RSA key generation.
- **Get Counters**: Output a copy of the current values of the internal counters.
- **<u>Ioin Kev</u>**: Assemble a key that has been previously split.
- **Load Key**: Load an encrypted or public key for later use. The command specifies the storage type:
  - Volatile: Store in RAM, can be replaced if space is needed.
  - O Sticky: Store in RAM, can NOT be replaced until it is deleted by the host.
  - Static: Store in NVM
- **Load Key Parameters** Load a set of key parameters for later use, stored in NVM.
- **Load Parameters**: Load a set of parameters into the HSM.
- **Load Password Block**: Loads a HMAC-SHA-256 password.
- **Set Counter**: Set an internal counter to a specific value.
- Sign: Apply a cryptographic signature to a set of data.
- **Split**: Divide a key into 2 or more parts.
- **<u>Update Counters</u>**: Update specific internal counters
- **Verify**: Verify a cryptographic signature on a set of data.

#### **Unauthenticated Services:**

Miscellaneous functions that do not require the HSM authentication of the entity. Unauthenticated Services (listed below) are available to all roles, both authenticated and unauthenticated.

• **Get Challenge**: Get 8-byte pseudo-random number used as a challenge in a future command.

- **Get HW Status**: Get the hardware specific status data of the HSM.
- **Get Key List**: Return a list of all active keys stored in the HSM.
- **Get Key Parameters**: Retrieve list of key parameters loaded into HSM.
- **Get Kev Table**: Retrieves data of key and key parameters stored in key table.
- **Get Parameters**: Retrieve parameter values from the HSM. The Host can request individual parameter IDs or all of the stored parameters in the HSM.
- **Get Random**: Get a pseudo-random number from the HSM.
- **Get Status**: Get HSM status information.
- **Get Versions:** Get the versions of the components in the HSM
- **Login**: Crypto-Officer login with ID and authentication token
- **Perform Diagnostic Test**: Perform one or more diagnostic tests.
- **Perform Full Diagnostics:** Run power up tests and perform other maintenance activities.
- **Read Log**: Get Log Data. The number of available entries, the size of each entry, and the data contained in each entry will depend on the log that is being requested.
- **Reboot**: Reboot the device.
- Reinit: Reinitialize HSM by erasing all NVM data except for HW Mfg Data and 'persistent' data (total device cycles, reinit count) and then invalidates the HSM Application. This command zeroizes the unique HSM Key Encryption Key (KEK), which results in the loss of all other private and secret keys. Used to 'clean' the HSM so it can be re-configured.

#### 3.2.1 Service Access to Security Functions and CSPs

Critical Security Parameter (CSP) and Public Security Parameter (PSP) access by services is classified as Read (R), Write (W), or Zeroize (Z) in the table below.

Table 5 - Services Available in FIPS Approved Mode

| Role(s) with<br>Service Access | Service           | Security Functions Used | CSP Access        | PSP Access   |
|--------------------------------|-------------------|-------------------------|-------------------|--------------|
| CO Admin                       | Load Parameters   | ECDSA P-256 SigVer      | None              | PAK: R       |
|                                | Firmware Update   | ECDSA P-256 SigVer      | None              | SWAK: R      |
| CO/User                        | All services with | HMAC-SHA-256            | KAK: R            | -            |
|                                | CSP access        | AES 256 KW              | KEK: R            |              |
|                                | Decrypt           | HMAC-SHA-256 or         | Session Key: R or | None         |
|                                |                   | AES 128/192/256 or      | PK: R or          |              |
|                                |                   | RSA 2048                | DPK: R            |              |
|                                | Decrypt Compare   | HMAC-SHA-256 or         | Session Key: R or | None         |
|                                |                   | AES 128/192/256 or      | PK: R or          |              |
|                                |                   | RSA 2048                | DPK: R            |              |
|                                | Decrypt Encrypt   | HMAC-SHA-256 or         | Session Key: R or | PK Public: R |
|                                |                   | AES 128/192/256 or      | PK: R or          |              |
|                                |                   | RSA 2048                | DPK: R            |              |

| Role(s) with<br>Service Access | Service                    | Security Functions Used                                                                              | CSP Access                                                                                                          | PSP Access                                                                                                      |
|--------------------------------|----------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                | Delay Echo                 | No additional                                                                                        | No additional                                                                                                       | None                                                                                                            |
|                                | Delete Key                 | No additional                                                                                        | All static keys except DAK,<br>KEK, KEK', KAK: Z                                                                    | All static public<br>keys: Z                                                                                    |
|                                | Delete Key<br>Parameter    | No additional                                                                                        | No additional                                                                                                       | None                                                                                                            |
|                                | Derive Key<br>Agreement    | DRBG KAS-SSC KDA HMAC-SHA-256 or AES 128/192/256 (KW only)                                           | DRBG Working State: R, W<br>ECC-CDH Key: W, R, Z<br>Shared Secret: W, R, Z<br>Session Key: W, R                     | ECC-CDH Peer<br>Public Key: W, R<br>ECC-CDH Public<br>Key: W, R                                                 |
|                                | Encrypt                    | HMAC-SHA-256 or<br>AES 128/192/256 or<br>RSA 2048                                                    | Session Key: R or<br>PK: R or<br>DPK: R                                                                             | PK Public: R                                                                                                    |
|                                | Encrypt Nonce              | DRBG<br>HMAC-SHA-256 or<br>AES 128/192/256 or<br>RSA 2048                                            | DRBG Working State: R, W<br>Session Key: R or<br>PK: R or<br>DPK: R                                                 | PK Public: R                                                                                                    |
|                                | Export Key                 | HMAC-SHA-256<br>AES 128/192/256 (KW only)                                                            | All static keys except KEK,<br>KEK', KAK: R                                                                         | All static public<br>keys: R                                                                                    |
|                                | Generate                   | DRBG ECDSA P-224/P-256 KeyGen or RSA 2048 Key Gen or AES 128/192/256 Key Gen or HMAC-SHA-256 Key Gen | DRBG Working State: R, W AK: W or PK: W or DAK: W³ or DPK: W or CRK Private: W or SWAK Private: W or PAK Private: W | AK Public: W or<br>PK Public: W or<br>CRK Public: W <sup>4</sup><br>or<br>SWAK Public: W<br>or<br>PAK Public: W |
|                                | Generate<br>Password Block | DRBG<br>HMAC-SHA-256 Key Gen<br>HMAC-SHA-256<br>AES 128/192/256 (KW only)                            | DRBG Working State: R, W<br>All static keys except KEK,<br>KEK', KAK: R                                             | All static public<br>keys: R                                                                                    |
|                                | Generate<br>Password Token | HMAC-SHA-256                                                                                         | PSDW: R                                                                                                             | None                                                                                                            |
|                                | Generate PSD RSA<br>Record | DRBG<br>RSA 2048 SigGen<br>HMAC-SHA-256<br>AES 128/192/256 (KW only)                                 | DRBG Working State: R, W<br>DPAG Private: W<br>Session Key: R                                                       | DPAG Public: W                                                                                                  |

<sup>-</sup>

 $<sup>^{\</sup>rm 3}$  DAK, DPK, CRK, SWAK, and PAK keys are only generated in modules configured as KRA HSMs

 $<sup>^{\</sup>rm 4}$  CRK, SWAK, and PAK keys are only generated in modules configured as KRA HSMs

| Role(s) with<br>Service Access | Service         | Security Functions Used     | CSP Access                                               | PSP Access           |
|--------------------------------|-----------------|-----------------------------|----------------------------------------------------------|----------------------|
|                                | Generate RSA    | DRBG                        | DRBG Working State: R, W                                 | None                 |
|                                | Primes          | RSA 2048 SigGen             | RSA Primes: W                                            |                      |
|                                |                 | HMAC-SHA-256                | Session Key: R                                           |                      |
|                                |                 | AES 128/192/256 (KW only)   |                                                          |                      |
|                                | Get Counters    | HMAC-SHA-256                | AK: R                                                    | AK Public: R         |
|                                |                 | ECDSA P-224/P-256 SigGen    |                                                          |                      |
|                                |                 | or                          |                                                          |                      |
|                                |                 | RSA 2048 SigGen             |                                                          |                      |
|                                | Join Key        | AES 256 KW                  | PK: W                                                    | AK: R                |
|                                |                 | ECDSA P-256 SigVer          |                                                          |                      |
|                                | Load Key        | HMAC-SHA-256 or             | Session Key: R or                                        | AK Public: R         |
|                                |                 | AES 128/192/256             | PK: R or                                                 | All static public    |
|                                |                 | ECDSA P-224/P-256 SigVer    | DPK: R                                                   | keys: W <sup>6</sup> |
|                                |                 |                             | All static keys except KEK,<br>KEK', KAK: W <sup>5</sup> |                      |
|                                |                 |                             | RSA primes: W                                            |                      |
|                                | Load Key        | HMAC-SHA-256 or             | Session Key: R or                                        | AK Public: R         |
|                                | Parameters      | AES 128/192/256             | PK: R or                                                 |                      |
|                                |                 | ECDSA P-224/P-256<br>SigVer | DPK: R                                                   |                      |
|                                | Load Parameters | ECDSA P-256 SigVer          | No additional                                            | PAK: R               |
|                                | Load Password   | HMAC-SHA-256                | PSWD: W                                                  | AK: R                |
|                                | Block           | AES 128/192/256             |                                                          | PK:R                 |
|                                |                 |                             |                                                          | DAK: R               |
|                                |                 |                             |                                                          | PAK :R               |
|                                | Set Counter     | No additional               | No additional                                            | None                 |
|                                | Sign            | DRBG                        | DRBG Working State: R, W                                 | None                 |
|                                |                 | ECDSA P-224/P-256 SigGen    | AK: R or                                                 |                      |
|                                |                 | or                          | CRK Private: R or                                        |                      |
|                                |                 | RSA 2048 SigGen or          | SWAK: R or                                               |                      |
|                                |                 | HMAC-SHA-256                | PAK: R                                                   |                      |
|                                | Split           | DRBG                        | DRBG Working State: R, W                                 | None                 |
|                                |                 | ECDSA P-256 SigGen          | AK: R                                                    |                      |
|                                |                 |                             | PK: W                                                    |                      |
|                                | Update Counters | No additional               | No additional                                            | None                 |
|                                | Verify          | ECDSA P-224/P-256 SigVer    | AK: R                                                    | AK Public: R or      |
|                                |                 | or                          |                                                          | CRK Public: R or     |
|                                |                 | RSA 2048 SigVer or          |                                                          | SWAK Public: R       |
|                                |                 | HMAC-SHA-256                |                                                          | or                   |
|                                |                 |                             |                                                          | PAK Public: R        |
| Unauthenticated                | Get Challenge   | None                        | DRBG Working State: R, W                                 | None                 |
| User                           | Get HW Status   | None                        | None                                                     | None                 |

<sup>-</sup>

 $<sup>^{\</sup>rm 5}$  DAK, DPK, CRK, SWAK, and PAK keys are only loaded in Manufacturing

 $<sup>^{\</sup>rm 6}$  CRK, SWAK, and PAK keys are only loaded in Manufacturing

| Role(s) with<br>Service Access | Service                     | Security Functions Used | CSP Access               | PSP Access |
|--------------------------------|-----------------------------|-------------------------|--------------------------|------------|
|                                | Get Key List                | None                    | None                     | None       |
|                                | Get Key<br>Parameters       | None                    | None                     | None       |
|                                | Get Key Table               | None                    | None                     | None       |
|                                | Get Parameters              | None                    | None                     | None       |
|                                | Get Random                  | DRBG                    | DRBG Working State: R, W | None       |
|                                | Get Status                  | None                    | None                     | None       |
|                                | Get Versions                | None                    | None                     | None       |
|                                | Login                       | HMAC-SHA-256            | PSWD: R                  | None       |
|                                | Perform<br>Diagnostic Test  | None                    | None                     | None       |
|                                | Perform Full<br>Diagnostics | None                    | None                     | None       |
|                                | Read Log                    | None                    | None                     | None       |
|                                | Reboot                      | None                    | None                     | None       |
|                                | Reinit                      | None                    | KEK: Z                   | None       |

#### 3.3 Non-Approved Mode Roles and Services

The non-Approved Mode of the module implements the same roles and services as the Approved Mode of operations, but this mode also allows the use of the algorithms specified in Section 7.3 FIPS Non-Approved Algorithms. Additionally, non-Approved mode includes the following services:

#### Crypto-Officer/User (CO/User):

- **Decrypt Conv Encrypt**: Decrypts, converts legacy records and re-encrypts.
- **Derive Key**: Establish a Triple DES key to be used to exchange information between a PSD and a Post.
- **Get Entropy**: Retrieves data from the hardware TRNG.

#### 3.4 SECURITY RULES

This section documents the security rules enforced by the cryptographic module to implement the security requirements of a FIPS 140-2 Level 3 Module.

- The module shall not process more than one request at a time (i.e., single threaded). While processing a transaction, prior to returning a response, the module will ignore all other inputs to the module. No output is performed until the transaction is completed, and the only output is the transaction response.
- The module shall validate identities using digital signatures or unique IDs and Message Authentication Codes (MACs) using unique HMAC keys for each identity
- All keys generated in the module shall have at least 112 bits of cryptographic security strength for an Approved mode of operation.
- The module shall not provide a bypass state where plaintext information is passed through the module.

- The module shall not support a maintenance mode.
- The module shall not output any secret or private key in plaintext form.
- The module shall not accept any secret or private key in plaintext form outside of manufacturing.
- There shall be no manual entry of keys into the system.
- There shall be no entry or output of split shared keys from the module except when it is configured as a Key Root Authority (KRA).
- Keys shall be established via an Approved method or entered into the system through FIPS Approved processes.
- Once a module has been zeroized, it must be returned to the factory for software loading and parameterizing prior to being usable by a customer.

#### 4. PHYSICAL SECURITY

The X4i HSM utilizes the Maxim Semi-Conductor MAX32590 micro-controller, a single chip cryptographic module that protects key material from unauthorized disclosure, modification or substitution. The module is conformant to FIPS 140-2 Level 3 physical security requirements and is protected by an encapsulant. The hardness of the module encapsulant was tested at room temperature and over the module's documented operating temperature range from -40°C to +85°C.

In addition to Level 3 physical security features, the module includes real time environmental monitoring (temperature, battery, voltage), and tamper detection and response. Triggering the environmental failure protection mechanisms or damaging the active shield (tamper detection) that protects the entire module results in a tamper event. A tamper event halts the processor and automatically zeroizes the master key encryption key (KEK).

The operator should periodically inspect the module for evidence of tampering.

#### 5. MITIGATION OF OTHER ATTACKS

The module has been designed to mitigate specific attacks outside the scope of FIPS 140-2, Level 3. It incorporates environmental failure protection mechanisms inherent to a Level 4 module. The module is designed to defend against out of bound voltage and temperature extremes. Additionally, the module provides a tamper detection and response mechanism.

#### 6. OPERATIONAL ENVIRONMENT

The FIPS 140-2 Area 6 (Operational Environment) requirements for the module are not applicable because the device does not contain a modifiable operational environment.

### 7. CRYPTOGRAPHIC KEY MANAGEMENT

## 7.1 FIPS APPROVED ALGORITHMS

The following FIPS Approved cryptographic algorithms listed in Table 6 are supported by the module.

**Table 6 - FIPS Approved Algorithms** 

| CAVP<br>Certs      | Algorithm | Standards              | Modes/<br>Methods | Key Lengths, Curves,<br>or Moduli                               | Use                                                                                                                                                                                                                                                                                                                                   |
|--------------------|-----------|------------------------|-------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>5954</u>        | AES       | FIPS 197<br>SP 800-38A | CBC, ECB, KW      | 256, 192, 128                                                   | Data encryption and decryption                                                                                                                                                                                                                                                                                                        |
|                    |           | SP 800-38F             |                   |                                                                 | Cryptographic key<br>wrapping and unwrapping<br>(KTS key establishment<br>providing 256 bits of<br>encryption)                                                                                                                                                                                                                        |
| Vendor<br>Affirmed | CKG       | SP 800-133r2           |                   |                                                                 | Symmetric key generation<br>and asymmetric seed<br>generation from the<br>unmodified output of the<br>DRBG                                                                                                                                                                                                                            |
| <u>C472</u>        | DRBG      | SP 800-90A             | HASH_DRBG         |                                                                 | Deterministic Random Bit<br>Generator with 256-bit<br>security strength. DRBG<br>does not support reseed.                                                                                                                                                                                                                             |
|                    |           |                        |                   |                                                                 | The entropy input pre-<br>loaded into the module in<br>manufacturing. The<br>entropy input is 512 total<br>bits and contains 419 bits<br>of entropy. The entropy is<br>generated by a FIPS<br>module validated with an<br>entropy rate of 82%. Per<br>IG 7.14, there is no<br>assurance of the minimum<br>strength of generated keys. |
| <u>C476</u>        | ECDSA     | FIPS 186-4             | KeyGen<br>SigGen  | P-224 <sup>7</sup><br>P-256<br>P-224, SHA-256<br>P-256, SHA-256 | Generation of cryptographic key pairs, and digital signature generation and verification.                                                                                                                                                                                                                                             |
|                    |           |                        | SigVer            | P-224, SHA-256<br>P-256, SHA-256                                |                                                                                                                                                                                                                                                                                                                                       |

<sup>&</sup>lt;sup>7</sup> The following ECDSA functionality is included in the algorithm certificate, but is not used in Approved mode: SigGen Component; SigVer (P-192, SHA-1)

| CAVP<br>Certs                                 | Algorithm | Standards    | Modes/<br>Methods                               | Key Lengths, Curves,<br>or Moduli | Use                                                                                                                                                            |
|-----------------------------------------------|-----------|--------------|-------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>C464</u>                                   | НМАС      | FIPS 198-1   | HMAC-SHA-<br>256 <sup>8</sup>                   | 256 bits                          | Used to generate Message<br>Authentication Codes<br>(MACs). Truncated MACs<br>(at least 128 bits) are used<br>for some applications.                           |
| A1869                                         | KAS-SSC   | SP 800-56Ar3 | ECC                                             | P-256                             | Key Agreement Protocol<br>used to establish a session<br>key (Ephemeral Unified<br>Model C (2e, 0s, ECC<br>CDH)). Provides 128 bits of<br>encryption strength. |
| A1869                                         | KDA       | SP 800-56Cr1 | One-Step KDF                                    | SHA-256                           | Key Derivation Function<br>used with KAS-SSC to<br>establish a session key                                                                                     |
| KTS (AES Cert. #5954)                         |           | SP 800-38F   | AES KW                                          | 128, 192, 256                     | Protects exported keys. Key establishment methodology provides between 128 and 256 bits of encryption strength.                                                |
| KTS (AES Cert. #5954<br>and HMAC Cert. #C464) |           | SP 800-38F   | AES CBC 256<br>HMAC-SHA-256                     | 256                               | Protects CSPs stored in<br>Non-Volatile Memory<br>(NVM) external to the<br>module (using KEK and<br>KAK keys)                                                  |
|                                               |           |              |                                                 |                                   | Provides 256 bits of encryption strength.                                                                                                                      |
| <u>C477</u>                                   | RSA       | FIPS 186-4   | KeyGen                                          | 20489                             | Generation of cryptographic key pairs,                                                                                                                         |
|                                               |           |              | SigGen<br>(ANSI X9.31,<br>PKCS 1.5,<br>PKCSPSS) | 2048, SHA-256                     | digital signature generation and verification, and data encryption and decryption.                                                                             |
|                                               |           |              | SigVer<br>(ANSI X9.31,<br>PKCS 1.5,<br>PKCSPSS) | 2048, SHA-256                     |                                                                                                                                                                |
| <u>C295</u>                                   | SHS       | FIPS 180-4   | SHA-224<br>SHA-256 <sup>10</sup>                |                                   | SHS provides the hashing algorithm necessary for ECDSA and RSA digital signature generation/verification and for the key derivation function                   |

\_

<sup>&</sup>lt;sup>8</sup> HMAC-SHA-1 is included in the algorithm certificate, but is not used in Approved mode

<sup>&</sup>lt;sup>9</sup> The following RSA functionality is included in the algorithm certificate, but is not used in Approved mode: SigVer ANSI X9.31 (1024, SHA-1 and SHA-256); SigVer PKCS 1.5 (1024, SHA-1 and SHA-256); SigVer PKCSPSS (1024, SHA-1 and SHA-256) and (2048, SHA-1)

<sup>&</sup>lt;sup>10</sup> SHA-1 is included in the algorithm certificate, but is not used in Approved mode

#### 7.2 FIPS ALLOWED ALGORITHMS

The module does not support any non-Approved but Allowed security functions.

#### 7.3 FIPS Non-Approved Algorithms

The following cryptographic algorithms listed in Table 7 are used solely in a non-Approved mode of operation (this includes specified CAVP-validated algorithms). There exists no mechanism to allow the use of these algorithms in an Approved mode of operation.

**Table 7 - FIPS Non-Approved Algorithms** 

| Algorithm                      | Key Lengths, Curves, or Moduli                                                                                                      | Use                                                                                                                                   |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| KAS (non-compliant)            | 1024                                                                                                                                | FFC KAS used to establish a Triple DES session key                                                                                    |
| DSA (non-compliant)            | KeyGen:<br>(1024, 160)<br>SigGen:<br>(1024, 160, SHA-1)<br>SigVer:<br>(1024, 160, SHA-1)                                            | Used to generate key pairs and generate/verify digital signatures. Legacy verification validated by CAVP DSA Cert. #C475.             |
| ECDSA (non-compliant)          | KeyGen: P-160 P-192 SigGen: P-160, SHA-1 P-192, SHA-1 SigVer: P-160, SHA-1 P-192, SHA-1                                             | Used to generate key pairs and generate/verify digital signatures. Legacy verification of P-192, SHA-1 validated by CAVP Cert. #C476. |
| HMAC (non-compliant)           | HMAC-SHA-1                                                                                                                          | Validated by CAVP Cert. #C464                                                                                                         |
| NDRNG (non-compliant)          |                                                                                                                                     | Used to seed the DRBG in a non-Approved mode of operation                                                                             |
| RSA (non-compliant)            | KeyGen:<br>1024<br>SigGen ANSI X9.31, PKCS 1.5, PKCSPSS:<br>(1024, SHA-1)<br>SigVer ANSI X9.31, PKCS 1.5, PKCSPSS:<br>(1024, SHA-1) | Used to generate keys and digital signatures.<br>Legacy verification validated by CAVP Cert.<br>#C477                                 |
| SHS (non-compliant)            | SHA-1                                                                                                                               | Hashing for digital signatures and key derivation. Validated by CAVP Cert. #C295                                                      |
| Triple-DES (non-compliant)     | 2 key and 3 key encrypt/decrypt                                                                                                     | Data encryption and decryption. Validated by CAVP TDES Cert. #2900.                                                                   |
| Triple-DES MAC (non-compliant) | 128-bit, 192-bit                                                                                                                    | Used to generate Message Authentication Codes (MACs).                                                                                 |

#### 7.4 CSPS AND KEYS

#### 7.4.1 CRITICAL SECURITY PARAMETERS

All CSPs except the KEK are stored in battery-backed memory encrypted by the KEK, or in Non-Volatile Memory (NVM) external to the module encrypted by the KEK and additionally protected by the KAK. Therefore, zeroizing the KEK destroys access to all CSPs. All CSPs that are input or output are wrapped in conformance to SP 800-38F by an AES KW key (128-256 bits).

Table 8 - Secret Keys, Private Keys, Cryptographic Key Components, and Other CSPs

| CSP/Key                                             | Security Function                             | Use                                                                    | Establishment                                                                               | Entry/Output                                    | Storage               | Destruction                                          |
|-----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|------------------------------------------------------|
| KEK<br>(256-bit)<br>(Key Encryption<br>Key)         | AES KW 256 (Cert.<br>#5954)                   | Protect all keys<br>stored internally or<br>in NVM                     | Generated Internally by FIPS approved DRBG (during manufacturing)                           | Entry: N/A<br>Output: N/A                       | Plaintext             | Zeroization,<br>Tamper or<br>removal of all<br>power |
| KEK'<br>(256-bit)<br>(Backup Key<br>Encryption Key) | AES KW 256 (Cert.<br>#5954)                   | Backup KEK                                                             | Generated Internally by FIPS approved DRBG (during manufacturing)                           | Entry: N/A<br>Output: N/A                       | Encrypted<br>with KEK | Zeroization,<br>Tamper or<br>removal of all<br>power |
| KAK<br>(256-bit)<br>(Key<br>Authentication<br>Key)  | HMAC-SHA-256<br>(Cert. #C464)                 | Protect keys<br>externally stored in<br>NVM                            | Generated Internally by FIPS approved DRBG (during manufacturing)                           | Entry: N/A<br>Output: N/A                       | Encrypted<br>with KEK | Zeroization,<br>Tamper or<br>removal of all<br>power |
| DAK<br>(Device<br>Authentication<br>Keys)           | HMAC-SHA-256<br>(Cert. #C464)                 | Additional integrity<br>and authentication<br>check for loaded<br>keys | Generated Internally by FIPS approved DRBG (KRA HSM only) Entered in manufacturing          | Entry: N/A<br>Output:<br>Encrypted by<br>AES KW | Encrypted<br>with KEK | Zeroization,<br>Tamper or<br>removal of all<br>power |
| DPK<br>(Device Privacy<br>Key)                      | AES CBC 256 or<br>AES KW 256 (Cert.<br>#5954) | Keys used to<br>encrypt data or keys                                   | Generated Internally by DRBG from entropy input pre-loaded into the module in manufacturing | Entry: N/A<br>Output:<br>Encrypted by<br>AES KW | Encrypted<br>with KEK | Zeroization,<br>Tamper or<br>removal of all<br>power |
| DRBG Seed<br>(1024-bit)                             | DRBG Seed<br>Material                         | Seeding the DRBG                                                       | Loaded during manufacturing only.                                                           | Entry: N/A<br>Output: N/A                       | Encrypted<br>with KEK | Zeroization,<br>Tamper or<br>removal of all<br>power |
| DRBG Working<br>State<br>(1024-bit)                 | DRBG (Cert.<br>#C472)                         | Internal working<br>state of the DRBG                                  | Generated<br>Internally by<br>FIPS approved<br>DRBG                                         | Entry: N/A<br>Output: N/A                       | Encrypted<br>with KEK | Zeroization,<br>Tamper or<br>removal of all<br>power |
| AK<br>(Authentication                               | HMAC-SHA-256<br>(Cert. #C464)                 | Used to provide<br>Authentication                                      | Generated<br>Internally by                                                                  | Entry:<br>Encrypted by                          | Encrypted<br>with KEK | Zeroization,<br>Tamper or                            |

| CSP/Key                               | Security Function                                                    | Use                                                              | Establishment                                                                 | Entry/Output                                            | Storage                                                  | Destruction                                          |
|---------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|
| Key)                                  | ECDSA P-224 or P-<br>256 (Cert. #C476)                               | Used to provide<br>Authentication                                | FIPS approved<br>DRBG                                                         | AES KW Output:                                          | Encrypted<br>with KEK                                    | removal of all<br>power                              |
|                                       | RSA 2048 (Cert.<br>#C477)                                            | Used to provide<br>Authentication                                | Or loaded as<br>needed                                                        | Encrypted by<br>AES KW                                  | Encrypted<br>with KEK                                    |                                                      |
| PK<br>(Privacy Key)                   | AES CBC 128, 192,<br>256 or<br>AES KW 128, 192,<br>256 (Cert. #5954) | Keys used to<br>encrypt data or keys                             | Generated<br>Internally by<br>FIPS approved<br>DRBG                           | Entry: Encrypted by AES KW Output:                      | Encrypted<br>with KEK                                    | Zeroization,<br>Tamper or<br>removal of all<br>power |
|                                       | RSA 2048 (Cert.<br>#C477)                                            | Keys used to<br>decrypt data                                     | Or loaded as<br>needed                                                        | Encrypted by<br>AES KW                                  | Encrypted<br>with KEK                                    |                                                      |
| DPAG Private<br>(DPAG Private<br>Key) | RSA 2048 (Cert.<br>#C477)                                            | RSA Keys generated<br>for PSDs                                   | Generated Internally by FIPS approved DRBG Or loaded as needed                | Entry: Encrypted by AES KW  Output: Encrypted by AES KW | Encrypted<br>with KEK                                    | Zeroization,<br>Tamper or<br>removal of all<br>power |
| ECC-CDH Key<br>(256-bit)              | KAS-SSC (Cert.<br>#A1869)                                            | Ephemeral ECC-<br>CDH private key<br>used in KAS-SSC             | Generated<br>Internally by<br>FIPS approved<br>DRBG                           | Entry: N/A<br>Output: N/A                               | Destroyed<br>immediately<br>after session<br>established | Zeroization,<br>Tamper or<br>removal of all<br>power |
| Shared Secret<br>(256-bit)            | KDA (Cert.<br>#A1869)                                                | Used to derive<br>session keys                                   | KAS-SSC per SP<br>800-56Ar3                                                   | Entry: N/A<br>Output: N/A                               | Destroyed<br>immediately<br>after session<br>established | Zeroization,<br>Tamper or<br>removal of all<br>power |
| Session Key<br>(256-bit)              | AES KW 128, 292,<br>256 (Cert. #5954)                                | Encrypt data or<br>wrap keys<br>transported to<br>infrastructure | KAS-SSC per SP<br>800-56Ar3 +<br>KDF per SP 800-<br>56Cr1                     | Entry: N/A<br>Output: N/A                               | Encrypted<br>with KEK                                    | Zeroization,<br>Tamper or<br>removal of all<br>power |
|                                       | HMAC-SHA-256<br>(Cert. #C464)                                        | Provide message<br>Authentication                                |                                                                               |                                                         |                                                          |                                                      |
| CRK Private                           | Customer Root Key<br>(RSA PSS 2048)                                  | Signs the PB<br>Bootloader<br>firmware                           | Generated Internally by FIPS approved DRBG (KRA HSM only) Or loaded as needed | Entry: Encrypted by AES KW  Output: Encrypted by AES KW | Encrypted<br>with KEK                                    | Zeroization,<br>Tamper or<br>removal of all<br>power |
| SWAK Private                          | Software<br>Authentication Key<br>(ECDSA P-256)                      | Signs the HSM<br>firmware                                        | Generated Internally by FIPS approved DRBG (KRA HSM only) Or loaded as needed | Entry: Encrypted by AES KW  Output: Encrypted by AES KW | Encrypted<br>with KEK                                    | Zeroization,<br>Tamper or<br>removal of all<br>power |

| CSP/Key                                     | Security Function                                | Use                                              | Establishment                                                                 | Entry/Output                                                          | Storage               | Destruction                                          |
|---------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------|------------------------------------------------------|
| PAK Private                                 | Parameter<br>Authentication Key<br>(ECDSA P-256) | Signs the HSM<br>parameters                      | Generated Internally by FIPS approved DRBG (KRA HSM only) Or loaded as needed | Entry:<br>Encrypted by<br>AES KW<br>Output:<br>Encrypted by<br>AES KW | Encrypted<br>with KEK | Zeroization,<br>Tamper or<br>removal of all<br>power |
| PSWD<br>(Password<br>Authentication<br>Key) | HMAC-SHA-256<br>(Cert. #C464)                    | Used to provide<br>Login<br>Authentication       | Loaded as<br>needed                                                           | Entry:<br>Encrypted by<br>AES KW<br>Output: N/A                       | Encrypted<br>with KEK | Zeroization,<br>Tamper or<br>removal of all<br>power |
| RSA Primes                                  | Primes for RSA PSS<br>2048                       | Primes used to<br>speed up RSA key<br>generation | Generated Internally by FIPS approved DRBG Or loaded as needed                | Entry: Encrypted by AES KW  Output: Encrypted by AES KW               | Encrypted<br>with KEK | Zeroization,<br>Tamper or<br>removal of all<br>power |

## 7.4.2 Public Security Parameters Keys

**Table 9 - Public Security Parameters** 

| Public Key                                     | Description                                                     | Use                                                                | Establishment                                                  | Entry/Output                                   | Storage   |
|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|-----------|
| CRK                                            | Customer Root Key<br>(RSA PSS 2048)                             | Validates the PB Bootloader firmware integrity on power-<br>on     | Loaded in<br>Manufacturing                                     | Entry: N/A<br>Output: Plaintext                | Plaintext |
| SWAK                                           | Software<br>Authentication Key<br>(ECDSA P-256)                 | Validates the HSM<br>Application firmware<br>integrity on power-on | Loaded in<br>Manufacturing                                     | Entry: N/A<br>Output: Plaintext                | Plaintext |
| PAK                                            | Parameter<br>Authentication Key<br>(ECDSA P-256)                | Validated loaded Parameters                                        | Loaded in<br>Manufacturing                                     | Entry: N/A<br>Output: Plaintext                | Plaintext |
| ECC-CDH Peer<br>Public Key                     | ECC-CDH KAS Public counterpart received during the DH handshake | ECDH public counterpart received as part of the EC DH exchange.    | Externally<br>(Loaded during<br>KAS-SSC)                       | Entry: Authenticated<br>per 56A<br>Output: N/A | Plaintext |
| ECC-CDH Public<br>Key                          | ECC-CDH KAS Public key generated during the DH handshake        | ECDH public key transmitted as part of the EC DH exchange          | Generated<br>Internally                                        | Entry: N/A<br>Output: Plaintext                | Plaintext |
| AK Public<br>(Public<br>Authentication<br>Key) | ECDSA P-224 or P-<br>256 Public Key<br>RSA 2048 Public<br>Key   | Used to provide Authentication  Used to provide Authentication     | Generated Internally by FIPS approved DRBG Or loaded as needed | Entry: Plaintext<br>Output: Plaintext          | Plaintext |

| Public Key                           | Description            | Use                               | Establishment                                                  | Entry/Output                          | Storage   |
|--------------------------------------|------------------------|-----------------------------------|----------------------------------------------------------------|---------------------------------------|-----------|
| PK Public<br>(Public Privacy<br>Key) | RSA 2048 Public<br>Key | Keys used to encrypt data         | Generated Internally by FIPS approved DRBG Or loaded as needed | Entry: Plaintext<br>Output: Plaintext | Plaintext |
| DPAG Public<br>(DPAG Public Key)     | RSA 2048 Public<br>Key | Used to provide<br>Authentication | Generated Internally by FIPS approved DRBG Or loaded as needed | Entry: Plaintext<br>Output: Plaintext | Plaintext |

#### 7.4.3 ZEROIZATION

The module is a single-chip, cryptographic module that incorporates an Active Shield that provides a tamper detection and response mechanism. When this mechanism is triggered, the module immediately zeroizes the KEK, which renders all encrypted keys non-operational. The module transitions to a hard error state in which it must be returned to manufacturing.

Zeroization of the module can also be performed by the operator via the *Reinit* service.

#### 8. SELF-TESTS

The module supports the following self-tests.

Power on self-tests (POSTs) can be run on demand by an unauthenticated operator by either power-cycling the module or via the *Reboot* service. Additionally, they may be executed via *Perform Diagnostic Test* or *Perform Full Diagnostics* services.

Upon the failure of any of the self-tests the module transitions to an error state. All data output via the data output interface is inhibited while in the error state. No cryptographic operations can be performed while in the error state. To transition from the error state the module must be power-cycled.

#### 8.1 Power on Self-Tests

#### **Firmware Integrity Tests:**

The module conducts the following digital signature verifications on power-up.

- PB Bootloader
  - o RSA 2048 (Cert. #C477) Digital Signature Verification
- HSM Application
  - o ECDSA P-256 (Cert. #C476) Digital Signature Verification

#### **Algorithm Tests:**

The module conducts the following Known Answer Tests (KATs) and Pairwise Consistency Tests (PWCT) on power-up.

- o AES (Cert. #5954)
  - o AES-256 ECB Encrypt KAT
  - AES-256 ECB Decrypt KAT
  - o AES-256 KW Encrypt KAT
  - AES-256 KW Decrypt KAT
- o DRBG (Cert. #C472) 11
  - o Instantiate KAT
  - Generate KAT
- ECDSA (Cert. #C476)
  - o P-256 Signature Generation and Verification PWCT
- HMAC (Cert. #C464) and SHS (Cert. #C295)
  - o HMAC-SHA-256 KAT
- KAS-ECC-SSC (Cert. #A1869, C(2e, 0s, ECC CDH))
  - O KAS-SSC KAT: Primitive "Z" Computation KAT, conformant with IG D.8, Scenario X1
- KDA (Cert. #A1869)
  - o KDA KAT per IG D.8, Scenario X1
- RSA (Cert. #C477)
  - o 2048 Signature Generation KAT
  - o 2048 Signature Verification KAT

#### **Critical Function Tests:**

- o RTC Test
- o BRAM Pattern Test

#### 8.2 CONDITIONAL TESTS

The module conducts the following conditional tests.

- o PWCT upon cryptographic key pair generation:
  - o ECDSA P-224 or P-256 PWCT
  - o RSA 2048 PWCT
  - o KAS-SSC (Cert. #A1869, C(2e, 0s, ECC CDH))
    - o ECC Full Public Key Validation (PKV) per SP 800-56Arev 3: 5.6.2.3.3
  - Software/Firmware Load Test:
    - o ECDSA P-256 Signature Verification (Cert. #C476)

<sup>&</sup>lt;sup>11</sup> Per IG 9.8, the SP 800-90A-compliant DRBG does not perform the test described in AS.09.42 and AS.09.43

## **APPENDIX A: REFERENCES**

**Table 10 - References** 

| Reference Title                                                                                                                       | Publishing<br>Entity | Publication<br>Date |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|
| Digital Signature Standard (DSA) – FIPS PUB 186-4                                                                                     | NIST                 | July 2013           |
| Advanced Encryption Standard (AES) – FIPS PUB 197                                                                                     | NIST                 | November 2001       |
| The Keyed-Hash Message Authentication Code (HMAC) – FIPS PUB 198-1                                                                    | NIST                 | July 2008           |
| Secure Hash Standard – FIPS PUB 180-4                                                                                                 | NIST                 | March 2012          |
| Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography - Special Publication 800-56A Revision 3 | NIST                 | April 2018          |
| Recommendation for Key-Derivation Methods in Key-Establishment<br>Schemes - Special Publication 800-56C Revision 1                    | NIST                 | April 2018          |
| Recommendation for Cryptographic Key Generation Special Publication 800-133 Revision 2                                                | NIST                 | June 2020           |
| Recommendation for Block Cipher Modes of Operation, Methods and Techniques – Special Publication 800-38A                              | NIST                 | December 2001       |
| Recommendation for Random Number Generation Using Deterministic<br>Random Bit Generators – Special Publication 800-90A                | NIST                 | January 2012        |
| FIPS PUB 140-2, Security Requirements for Cryptographic Modules                                                                       | NIST                 | May 2001            |
| Derived Test Requirements for FIPS PUB 140-2, Security Requirements for Cryptographic Modules                                         | NIST                 | January 2011        |
| FIPS PUB 140-2, Annex A – Approved Security Functions for FIPS PUB 140-2                                                              | NIST                 | January 2018        |
| FIPS PUB 140-2, Annex B – Approved Protection Profiles for FIPS PUB 140-2                                                             | NIST                 | December 2016       |
| FIPS PUB 140-2, Annex C – Approved Random Number Generators for FIPS PUB 140-2                                                        | NIST                 | January 2016        |
| FIPS PUB 140-2, Annex D – Approved Key Establishment Techniques for FIPS PUB 140-2                                                    | NIST                 | May 2018            |
| Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program                                            | NIST                 | December 2019       |

## **APPENDIX B: ABBREVIATIONS AND DEFINITIONS**

**Table 11 - Abbreviations and Definitions** 

| Term    | Definition                                          |
|---------|-----------------------------------------------------|
| AES     | Advanced Encryption Standard                        |
| BRAM    | Battery Backed RAM                                  |
| CAVP    | Cryptographic Algorithm Validation Program          |
| CBC     | Cipher Block Chaining                               |
| СО      | Crypto Officer                                      |
| CSP     | Critical Security Parameters                        |
| CVL     | Component Validation List                           |
| DAL     | Device Abstraction Layer                            |
| DH      | Diffie-Hellman                                      |
| DRBG    | Deterministic Random Bit Generator                  |
| DSA     | Digital Signature Algorithm                         |
| ECB     | Electronic Code Book                                |
| ECC CDH | Elliptic Curve Cryptography Cofactor Diffie-Hellman |
| EC-DH   | Elliptic Curve Diffie-Hellman                       |
| ECDSA   | Elliptic Curve Digital Signature Algorithm          |
| EFP     | Environmental Failure Protection                    |
| EMC     | Electromagnetic Compatibility                       |
| EMI     | Electromagnetic Interference                        |
| FIPS    | Federal Information Processing Standards            |
| HMAC    | Hashed Message Authentication Code                  |
| HSM     | Hardware Security Module                            |
| KAS     | Key Agreement Scheme                                |
| KRA     | Key Root Authority                                  |
| NDRNG   | Non-Deterministic Random Number Generator           |
| NVM     | Non-Volatile Memory                                 |
| PB      | Pitney Bowes                                        |
| POST    | Power-on Self-test                                  |
| PSD     | Postal Security Device                              |
| PSS     | Probabilistic Signature Scheme                      |
| PVD     | Postage Value Download                              |
| RAM     | Random Access Memory                                |

| Term | Definition                |
|------|---------------------------|
| ROM  | Read-Only Memory          |
| RSA  | Rivest Shamir Adleman     |
| RTC  | Real Time Clock           |
| SDU  | Software Download Utility |
| SHA  | Secure Hash Algorithm     |
| SSC  | Shared Secret Computation |
| SRAM | Static RAM                |