
1

SUMMARY OF ANSI X9.42
Agreement of Symmetric Keys Using Discrete Logarithm Cryptography

1. Scope

This standard specifies schemes for the agreement of symmetric keys using the Diffie-
Hellman and MQV algorithms. These methods may be used by different parties to
establish common shared secret information such as cryptographic keys. The shared
secret information may be used with symmetrically-keyed algorithms to provide
confidentiality, authentication, and data integrity services, or used as a key-encrypting
key with other key management protocols. The key agreement schemes specified in
ANSI X9.42 may be used as subroutines to build key establishment protocols.

2. Contents

The asymmetric key establishment schemes in ANSI X9.42 are used by an entity U (the
initiator) who wishes to establish a symmetric key with another entity V (the responder).
Each entity has at least one key pair. If U and V simultaneously execute a scheme with
corresponding keying material as input, then at the end of the execution of the scheme, U
and V will share keying data. The keying data can then be used to supply cryptographic
material (e.g., keys and IVs) for symmetric algorithms.

ANSI X9.42 specifies eight asymmetric key establishment schemes. Six schemes using
Diffie-Hellman and two schemes using MQV are provided in the document. A variety of
schemes are specified in order to provide a wide variety of services for various
environments.

The standard also contains specifications for:
• Domain parameter generation and validation
• Key pair generation and public key validation
• A Diffie-Hellman algorithm
• Two MQV algorithms
• Two forms of a Key Derivation function
• A MAC calculation and an ANSI X9.42 validation

In addition, for each key agreement scheme specified in the standard, a security
assessment is provided.

2

3. Basic Algorithms and Functions

3.1 Keying Material

The keying material needed to perform key agreement as specified by ANSI X9.42
includes a set of domain parameters and one or more key pairs.

The domain parameters include:

• p A prime defining the Galois Field GF(p), which is used as a modulus in
the operations of GF(p), where 2(L-1) < p < 2L , for L ≥ 1024, and L is a
multiple of 256.

• q A prime factor of p-1 such that p = jq+1 and q > 2m-1. GF(p)* has a cyclic
subgroup of order q.

• g A generator of the q-order cyclic subgroup of GF(p)*, that is, an element
of order q in the multiplicative group of GF(p).

The domain parameters may be distributed, for example, in a public key certificate. Two
classes of domain parameters may exist: static domain parameters or ephemeral domain
parameters. Static domain parameters may be used with either static or ephemeral keys.
Static domain parameters are designated with a subscript of s (i.e., ps, qs, gs). Ephemeral
domain parameters are used with ephemeral keys and are designated with a subscript of e
(i.e., pe, qe, ge).

A key pair consists of a private key and a public key. Two classes of key pairs may be
used in a scheme:

• static key pairs (xs, ys), where xs is the private key and ys is the public key, and
• ephemeral key pairs (re, te), where re is the private key and te is the public key.

Static key pairs are longer-lived; the public key from a static key pair (ys) may be
included in a public key certificate. Ephemeral keys are shorter lived (e.g., for the
duration of a message or a communication session).

3.2 Domain parameter Generation and Validation

ANSI X9.42 provides primitives for both domain parameter generation and validation.
Domain parameter validation may be used to verify that the domain parameters satisfy
certain basic criteria (e.g., whether g is a generator of order 2 ≤ g ≤ (p-2) and that gq = 1
mod p). Domain parameter validation could be performed by a Certificate Authority
(CA) or some other trusted party.

3

3.3 Key Pair Generation and Public Key Validation

ANSI X9.42 provides primitives for key pair generation and public key validation. Both
static keys and ephemeral keys may be generated using the same primitives.

Methods for implicit and explicit public key validation are provided. Implicit public key
validation requires that the validator know the private key and can, therefore, compute
the public key. Alternatively, implicit key authentication is provided if p and q are related
in a defined way. For explicit public key validation , an entity verifies that a public key
appears to satisfy certain basic criteria (e.g., by verifying that 2 ≤ y ≤ p-2 and that yq = 1
mod p). A static public key could be validated, for example, by a CA, a trusted party or a
responder in a key establishment protocol. An ephemeral public key might be validated
by the responder in a key establishment protocol.

3.4 Diffie-Hellman Algorithm

The Diffie-Hellman algorithm is used to compute a shared secret value for six of the
schemes in the standard. In Section 5.1, the schemes are defined for an initiator (U) and a
responder (V). However, both parties perform similar computations. The description in
this section is expressed for parties A and B, where party A is the local party, and party B
is the other party (i.e., when the initiator (U) is performing the calculations, A=U and
B=V; when the responder (V) is performing the calculations, A=V and B=U).

Input:
• a set of domain parameters (p, q, g)
• a private key xA Note: this could be rA if an

ephemeral private key is used
in the calculation

• a public key yB Note: this could be tB if an
ephemeral private key is used
in the calculation

Compute:

pmodyZ AX
B=

Output: Z, the shared value

3.5 MQV Algorithms

The MQV algorithm is used to derive a shared secret value. There are two forms of the
algorithm: an interactive form, and a store-and-forward form. The two schemes are again
defined for an initiator (U) and a responder (V).

4

3.5.1 Interactive Form

Interactive communications are required when using this form of the MQV algorithm.
The same calculations are performed by both parties in a communication. Therefore, the
concept of party A as the local party and party B as the other party is used here (i.e.,
when the initiator (U) is performing the calculations, A=U and B=V; when the responder
(V) is performing the calculations, A=V and B=U).

Input:
• a set of domain parameters (p, q, g)
• the local party’s static private key – xA

• the local party’s ephemeral key pair – (rA, tA)
• the other party’s static and ephemeral public keys – yB and tB

Compute:
w = ||q||/2
tA’ = tA(mod 2w) + 2w

SA = (rA + tA’xA) mod q
tB’ = tB(mod 2w) + 2w

pmod)))y(t((Z AB S't
BB=

Output: Z, the shared value.

3.5.2 Store-and-Forward Form

This form of the MQV algorithm does not require interactive communications. The
initiator (U) and responder (V) in a key agreement process perform slightly different
calculations.

3.5.2.1 The Initiator’s Process

Input:
• a set of domain parameters (p, q, g)
• the initiator’s static private key – xU

• the initiator’s ephemeral key pair – (rU, tU)
• the responder’s static public key – yV

Compute:
w = ||q||/2
tU’ = tU(mod 2w) + 2w

SU = (rU + tU’xU) mod q
yV’ = yV(mod 2w) + 2w

pmod)))y(y(Z UV S'y
VV=

5

Output: Z, the shared value

3.5.2.2 The Responder’s Process

Input:
• a set of domain parameters (p, q, g)
• the responder’s static key pair – (xV, yV)
• the initiator’s static and ephemeral public keys – yU and tU

Compute:
w = ||q||/2
yV’ = yV(mod 2w) + 2w

SV = (xV + yV’xV) mod q
tU’ = tU(mod 2w) + 2w

pmod)))y(t(Z VU S't
UU=

Output: Z, the shared value

3.6 Key Derivation Functions

In the ANSI X9.42 key agreement schemes, keying data is derived from a shared secret
value. Two key derivation functions are defined: one based on ASN.1 DER encoding,
and the other based on the concatenation of fixed length fields. Both of the key derivation
functions are constructed from an ANSI-approved cryptographic hash function (e.g.,
SHA-1). Multiple keys may be produced from either 1) a single invocation of the
function, or 2) multiple invocations of the function using the same shared value for each
invocation, but different supplementary information.

3.6.1 Key Derivation Function Based on ASN.1

Input:
• A shared secret value ZZ
• The length of the keying data to be determined – keylen
• Other information – OtherInfo, containing an algorithm ID, counter, optional

information for each party, and optional supplementary public and private
information

Compute:
d = keylen/hashlen Note: hashlen is the length of the

output of the chosen hash function
counter = 1

6

For i = 1 to d
Hashi = H(ZZ||OtherInfo)
counter = counter + 1
Increment i

KeyingData = leftmost keylen bits of Hash1||Hash2||…||Hashd

Output: KeyingData

3.6.2 Key Derivation Function Based on Concatenation

Input:
• A shared secret value ZZ
• The length of the keying data to be determined – keylen
• Other information – OtherInfo, data shared by the two parties

Compute:
d = keylen/hashlen Note: hashlen is the length of the

output of the chosen hash function
counter = 1
For i = 1 to d

Hashi = H(ZZ||counter||OtherInfo)
counter = counter + 1
Increment i

KeyingData = leftmost keylen bits of Hash1||Hash2||…||Hashd

Output: KeyingData

3.7 MAC Computation and ANSI X9.42 Validation

A MAC may optionally be computed using a key derived from a shared secret value and
one of the key derivation methods defined in Section 3.6 using an ANSI-approved MAC
function (e.g., HMAC).

Input:
• A MAC key – MacKey
• The data to be MACed – MacData

Compute:
MacValue = MAC(MacKey, MacData)

Output: MacValue

7

The MAC may be used for implementation validation with MacData specified as the
string “ANSI X9.42 Testing Message” plus a nonce, where MacData is encoded in
ASN.1.

4. Security Attributes

The key agreement schemes defined in ANSI X9.42 offer one or more of the follow
security attributes:

• Implicit Key Authentication (IKA) – establishes the identity of the other party;
provided by a static key that is bound to the other party’s identity.

• Explicit Key Authentication (EKA) – knowledge that the other party did indeed
calculate the shared key; may be provided by doing key confirmation in a scheme
that provides implicit key authentication.

• Forward Secrecy (FS) – the assurance provided to an entity that the session key
established with another entity will not be compromised by the compromise of
either entity's static private key in the future; provided by the use of an ephemeral
public key.

• Entity Authentication (EA) – consists of identification and “liveness”, whereas
EKA is concerned with identification and key possession. If explicit confirmation
is deemed adequate to demonstrate liveness, then it is possible for schemes that
achieve EKA to also support EA. Whether or not the two are synonymous
depends upon the interpretations of “entity” and “liveness”, and on the timespan
for the protocol that realizes the key agreement scheme. Therefore, the EA
attribute does not follow automatically from EKA. ANSI X9.42 does not address
entity authentication more specifically because EKA is neither always necessary
nor always sufficient to achieve EA.

• Known-Key Security (K-KS) – assurance that a particular session key will not be
compromised as a result of the compromise of other keys; provided by using an
ephemeral key to compute the key(s) for only one session.

• Unknown Key-share Resilience (U-KS) – assurance provided to one party (A)
that if party A and party B share a session key, then party B does not mistakenly
believe the session key is shared with an entity other than party A.

• Key-Compromise Impersonation Resilience (K-CI) – assurance provided to a
party (A) that, even if an adversary somehow obtains party A’s static private key,
the adversary cannot successfully impersonate another party to party A.

5. Key Agreement Schemes

Multiple key agreement schemes using Diffie-Hellman and MQV techniques are
specified in ANSI X9.42. The key agreement schemes and their security attributes
discussed in this section. Let party U be the initiator and party V be the responder in
each key agreement scheme.

8

5.1 Key Agreement using Diffie-Hellman

5.1.1 dhStatic

Both parties have only static keys. Using the same set of static-key domain parameters
(ps, qs, gs), Party U and Party V generate individual static private/public key pairs,
denoted (xU, yU) and (xV, yV), respectively.

This scheme corresponds to the Static Unified Model scheme in ANSI X9.63. The
scheme provides Implicit Key Authentication to both parties, and Unknown-Keyshare
Resilience to both parties if knowledge of the private key (also known as proof of
possession) was checked during the certification of the static public keys. Any type of
communication may be used.

Party U Party V
Static Data 1. Domain parameters (ps, qs, gs)

2. Static private key xU

3. Static public key yU

1. Domain parameters (ps, qs, gs)
2. Static private key xV

3. Static public key yV

Ephemeral Data N/A N/A
Input (ps, qs, gs), xU, yV (ps, qs, gs), xV, yU

sVs pmodxyZ U= pmodxyZ sUs
V=

Shared secret value ZZ = Zs ZZ = Zs

Derive KeyingData Invoke the Key Derivation
function using ZZ, keylen, and
OtherInfo.

Invoke the Key Derivation function
using ZZ, keylen, and OtherInfo.

5.1.2 dhEphem

Both parties have only ephemeral keys. Using the same set of ephemeral-key domain
parameters (pe, qe, ge), Party U and Party V generate individual ephemeral private/public
key pairs, denoted (rU, tU) and (rV, tV) respectively.

This scheme corresponds to the Ephemeral Unified Model scheme in ANSI X9.63. The
scheme provides Known-Key Security and Forward Secrecy to both parties if explicit
authentication is supplied for all session keys. Interactive communications are required,
i.e., both parties must actively participate in the key agreement process.

Party U Party V

9

Static Data N/A N/A
Ephemeral Data 1. Domain parameters (pe, qe, ge)

2. Ephemeral private key rU

3. Ephemeral public key tU

1. Domain parameters (pe, qe, ge)
2. Ephemeral private key rV

3. Ephemeral public key tV

Input (pe, qe, ge), rU, tV (pe, qe, ge), rV, tU

pmodrtZ eVe U= eUe pmodrtZ V=
Shared secret value ZZ = Ze ZZ = Ze

Derive KeyingData Invoke the Key Derivation
function using ZZ, keylen, and
OtherInfo.

Invoke the Key Derivation function
using ZZ, keylen, and OtherInfo.

5.1.3 dhOneFlow

Party U has only ephemeral keys, and Party V has only static keys. Party U’s ephemeral
private/public key pair is denoted (rU, tU). Party V’s static private/public key pair is
denoted (xV, yV). Both of these key pairs have been generated using the same static
domain parameters (ps, qs, gs).

This scheme corresponds to the One Pass Diffie-Hellman scheme of ANSI X9.63. The
scheme provides Implicit Key Authentication to the initiator (U). Although there is no
static key for the initiator to lose, some measure of Key Compromise Impersonation
resilience is afforded to the initiator since this scheme enables the initiator to identify the
recipient; the compromise of any other initiator long-term secrets does not leave the
initiator vulnerable to an impersonating recipient. Interactive or store-and-forward
communications (only 1 party actively participates) may be used.

Party U Party V
Static Data N/A 1. Domain parameters (ps, qs, gs)

2. Static private key xV

3. Static public key yV

Ephemeral Data 1. Domain parameters (ps, qs, gs)
2. Ephemeral private key rU

3. Ephemeral public key tU

N/A

Input (ps, qs, gs), rU, yV (ps, qs, gs), xV, tU

sV pmodryZ U= sU pmodxtZ V=

Shared secret value ZZ = Z ZZ = Z
Derive KeyingData Invoke the Key Derivation function

using ZZ, keylen, and OtherInfo.
Invoke Key the Derivation function
using ZZ, keylen, and OtherInfo.

5.1.4 dhHybrid1

10

Both Parties U and V have two pairs of private/public keys that are generated using the
same set of static-key domain parameters (ps, qs, gs). One key pair is static, and the other
key pair is ephemeral. Party U and Party V generate individual static private/public key
pairs, denoted (xU,yU) and (xV,yV), respectively, and individual ephemeral private/public
key pairs, denoted (rU,tU) and (rV,tV), respectively.

There is no corresponding scheme in ANSI X9.63. This scheme provides Implicit Key
Authentication to both parties, Known-Key Security and Forward Secrecy to both parties
if explicit authentication is supplied to all session keys, and Unknown-Keyshare
Resilience to both parties when knowledge of the private key (also known as proof of
possession) is checked during the certification of the static public key. Interactive
communications are required to use this scheme.

Party U Party V
Static Data 1. Domain parameters (ps, qs, gs)

2. Static private key xU

3. Static public key yU

1. Domain parameters (ps, qs, gs)
2. Static private key xV

3. Static public key yV

Ephemeral Data 1. Domain parameters (ps, qs, gs)
2. Ephemeral private key rU

3. Ephemeral public key tU

1. Domain parameters (ps, qs, gs)
2. Ephemeral private key rV

3. Ephemeral public key tV

Input (ps, qs, gs), xU, yV, rU, tV (ps, qs, gs), xV, yU, rV, tU

sVs pmodxyZ U= sUs pmodxyZ V=

sVe pmodrtZ U= sUe pmodrtZ V=
Shared secret value ZZ = Ze|| Zs ZZ = Ze|| Zs

Derive KeyingData Invoke the Key Derivation function
using ZZ, keylen, and OtherInfo.

Invoke the Key Derivation function
using ZZ, keylen, and OtherInfo.

5.1.5 dhHybrid2

Both Parties U and V have two pairs of private/public keys, each consisting of a static
and an ephemeral key pair. The static key pair is generated using a set of static-key
domain parameters (ps, qs, gs). The ephemeral key pair is generated using a set of
ephemeral-key domain parameters (pe, qe, ge).

This scheme corresponds to the Full Unified Model scheme of ANSI X9.63. The scheme
provides Implicit Key Agreement to both parties, Known-Key Security and Forward
Secrecy to both parties if explicit authentication of all session keys is performed, and
Unknown Keyshare Resilience to both parties if knowledge of the private key was
checked during the certification of the static public keys. Interactive communications are
required for this scheme.

Party U Party V

11

Static Data 1. Domain parameters (ps, qs, gs)
2. Static private key xU

3. Static public key yU

1. Domain parameters (ps, qs, gs)
2. Static private key xV

3. Static public key yV

Ephemeral Data 1. Domain parameters (pe, qe, ge)
2. Ephemeral private key rU

3. Ephemeral public key tU

1. Domain parameters (pe, qe, ge)
2. Ephemeral private key rV

3. Ephemeral public key tV

Input (ps, qs, gs), xU, yV

 (pe, qe, ge), rU, tV

(ps, qs, gs), xV, yU

(pe, qe, ge), rV, tU

sVs pmodxyZ U= sUs pmodxyZ V=

eVe pmodrtZ U= eUe pmodrtZ V=
Shared secret value ZZ = Ze|| Zs ZZ = Ze|| Zs

Derive KeyingData Invoke the Key Derivation
function using ZZ, keylen, and
OtherInfo.

Invoke the Key Derivation function
using ZZ, keylen, and OtherInfo.

5.1.6 dhHybridOneFlow

Party U has both a static and an ephemeral key pair, and Party V has one static key pair.
Party U’s static private/public key pair is denoted (xU, yU), and Party U’s ephemeral
private/public key pair is denoted (rU, tU). Party V’s static key pair is denoted (xV, yV). All
of these key pairs have been generated using the same domain parameters (ps, qs, gs).

This scheme corresponds to the One Pass Unified Model scheme of ANSI X9.63. The
scheme provides Implicit Key Authentication to both parties, Known-Key Security and
Key-Compromise Impersonation Resilience to the initiator, Forward Secrecy to the
initiator, and Unknown Key-Share Resilience to both parties when knowledge of the
private key is checked during the certification of the static public keys. Interactive or
store-and-forward communications may be used.

Party U Party V
Static Data 1. Domain parameters (ps, qs, gs)

2. Static private key xU

3. Static public key yU

1. Domain parameters (ps, qs, gs)
2. Static private key xV

3. Static public key yV

Ephemeral Data 1. Domain parameters (ps, qs, gs)
2. Ephemeral private key rU

3. Ephemeral public key tU

N/A

Input (ps, qs, gs), xU, rU, yV (ps, qs, gs), xV, yU, tU

sVs pmodxyZ U= sUs pmodxyZ V=

sVe pmodryZ U= sUe pmodxtZ V=
 Shared secret value ZZ = Ze|| Zs ZZ = Ze|| Zs

Derive KeyingData Invoke the Key Derivation
function using ZZ, keylen, and

Invoke the Key Derivation function

12

OtherInfo. using ZZ, keylen, and OtherInfo.

5.2 Key Agreement using MQV

In the key agreement schemes using the MQV algorithm, a single set of domain
parameters is used for both static key pairs and ephemeral key pairs. Therefore, the
subscripts will be omitted for the domain parameters.

5.2.1 MQV2

MQV2 uses the interactive form of the MQV algorithm. Both Parties U and V have two
pairs of private/public keys using the same set of domain parameters (ps, qs, gs). One key
pair is static and the other key pair is ephemeral. Using the same set of domain
parameters (ps, qs, gs), Party U and Party V generate individual static private/public key
pairs, denoted (xU, yU) and (xV, yV), respectively, and individual ephemeral private/public
key pairs, denoted (rU, tU) and (rV, tV), respectively.

This scheme corresponds to the Full MQV scheme in ANSI X9.63. The scheme provides
Implicit Key Agreement, Known-Key Security and Key Compromise Impersonation
resilience to both parties, and Forward Secrecy to both parties if explicit authentication is
supplied for all session keys. Interactive communications are required.

Party U Party V
Static Data 1. Domain parameters (ps, qs, gs)

2. Static private key xU

3. Static public key yU

1. Domain parameters (ps, qs, gs)
2. Static private key xV

3. Static public key yV

Ephemeral Data 1. Domain parameters (ps, qs, gs)
2. Ephemeral private key rU

3. Ephemeral public key tU

1. Domain parameters (ps, qs, gs)
2. Ephemeral private key rV

3. Ephemeral public key tV

Input (ps, qs, gs), xU, yV, rU, tU, tV. (ps, qs, gs), xV, yU, rV, tV, tU.

w = ||q||/2 w = ||q||/2
tU’= (tU mod 2w) + 2w tV’ = (tV mod 2w) + 2w

SU = (rU + tU’ xU) mod qs SV = (rV + tV’ xV) mod qs

tV’ = (tV mod 2w) + 2w tU’ = (tU mod 2w) + 2w

s
'

VVMQV pmod)S))ty(t((Z UV= s
'

UUMQV pmod)S))ty(t((Z VU=
Shared secret value ZZ = ZMQV ZZ = ZMQV

Derive KeyingData Invoke the Key Derivation
function using ZZ, keylen, and
OtherInfo.

Invoke the Key Derivation function
using ZZ, keylen, and OtherInfo.

13

5.2.2 MQV1

MQV1 uses the store-and-forward form of the MQV algorithm. The MQV1 scheme is
used in situations where two parties contribute different amounts of information and use
different algorithms to obtain the common shared secret value. More precisely, Party U,
the initiator, has two private/public key pairs. One key pair is static, denoted (xU, yU), and
the other key pair is ephemeral, denoted (rU, tU). Party V, the receiving party, has one
private/public key pair that is static. It is denoted (xV, yV).

This scheme corresponds to the One Pass MQV scheme in ANSI X9.63. The scheme
provides Implicit Key Authentication to both parties, and Key- Compromise
Impersonation Resilience to the initiator. Interactive or store-and-forward
communications may be used.

Party U Party V
Static Data 1. Domain parameters (ps, qs, gs)

2. Static private key xU

3. Static public key yU

1. Domain parameters (ps, qs, gs)
2. Static private key xV

3. Static public key yV

Ephemeral Data 1. Domain parameters (ps, qs, gs)
2. Ephemeral private key rU

3. Ephemeral public key tU

N/A

Input (ps, qs, gs), xU, yV, rU, tU. (ps, qs, gs), xV, yU, tU.
w = ||q||/2 w = ||q||/2

tU’= (tU mod 2w) + 2w yV’ = yV (mod 2w) + 2w

SU = (rU + tU’xU) mod qs SV = (xV + yV’xV) mod qs

yV’ = yV (mod 2w) + 2w tU’= (tU mod 2w) + 2w

s
'

VVMQV pmodS))yy(y(Z UV= s
'

UUMQV pmodS))ty(t(Z VU=
Shared secret value ZZ = ZMQV ZZ = ZMQV

Derive KeyingData Invoke the Key Derivation function
using ZZ, keylen, and OtherInfo.

Invoke the Key Derivation function
using ZZ, keylen, and OtherInfo.

