The Effect of Multiple Algorithms in the Advanced Encryption Standard

Ian Harvey
Chief Scientist, nCipher Corporation
AES3, April 13-14 2000

The Problem

• Five finalist candidates
• No significant security results (yet)
• Different performance trade-offs
• Choice of one appears arbitrary
• Can we do better?
 – List factors in algorithm choice
 – Suggest multiple algorithm approaches
 – Analyse benefits & disadvantages
Factors in algorithm choice

- Security (theoretical and practical)
- Performance (speed, resource requirement)
- Cost of implementation
- Architectural implications
- Legal / IP issues

In a given situation, some factors may be almost totally unimportant

Security

- Theoretical security
 - Reputation of authors
 - Reputation of analysts
 - Absence of results over time
- Implementation security (emissions, fault induction)
 - Depends on platform
 - Difficult to evaluate in advance
- Individuals don’t want to / shouldn’t decide
 - ‘Brand names’ are useful
Performance

• Trade-off between speed and security
• Trade-off between speed and resource requirement
• One-dimensional ‘figure of merit’ impossible
• Always depends on platform
• Can identify typical categories...

Performance (2)

• Best ideal-case speed
 – chosen platform
 – e.g. hand-coded assembler, big ASIC
• Best worst-case speed
 – mixed-platform deployment
 – portable code, possibly fewer optimisations
• Minimum resource requirement
 – Speed less important
 – Mass production, may relax interoperability
Cost of Implementation

- Hardware complexity
- Software availability & portability
- Existence of reference design for given platform
- Design for test
 - vectors for complete coverage
 - vectors for debugging

Architectural Issues

- What ‘shape’ is interface to algorithm?
- Fundamental: block size and key size
- Additional parameters & nonstandard features
- Source of frustration to developers
 - often badly specified ⇒ compatibility problems
 - may require extra protocol ⇒ security holes?
Legal Issues

- License cost often commercially prohibitive
- ‘Free Software’ increasingly important
- International deployment a major headache
- “Circumvention is better than cure”
 - inconvenience to users

Multiple Algorithm AES

- More than one algorithm is presented
- Algorithms can be made optional
- Interoperability questions
 - End users need interoperability
 - AES could guarantee it
 - AES could present alternatives but no recommendations
AES with free algorithm choice

- **End users decide:**
 - only if components available
 - not qualified to make security judgments
- **Protocol designers decide:**
 - often, don’t know platform ⇒ same problems as us
- **Hardware vendors & toolkit suppliers**
 - don’t know application ⇒ need to compromise
- **Confusion in the marketplace**
 - what does “AES Compatible” mean?
 - ‘brand name’ effect diluted

Multiple Algorithm Models

- **A:** All implementations include all N algorithms
- **B:** One primary algorithm, 0..N-1 optional extras
- **C:** Any (N/2)+1 from N chosen
 - More generally M (≤N) chosen, argue about compatibility
 - Will become norm if AES makes no specific rules
Security properties

- Need continued operation if one algorithm is broken
- Approach A gives significant benefit
 - Simply discontinue broken algorithm
- Approach B gives some benefit
 - Most problematic if primary algorithm is broken
- Approach C has disadvantages
 - Any break might render systems inoperable
 - Leaves implementers to judge security
 - Negotiation open to attack

Performance

- Best ideal-case
 - All multiple-algorithm approaches score well
- Best worst-case
 - Overall benefits
 - Approach A: select mutually fastest algorithm
 - Approach B: add secondary algorithms if faster
 - Approach C: choose M best algorithms on each platform
Performance - minimum size

- Resource requirements:
 - Approach A has major disadvantages
 - Approach B good if primary algorithm is small
 - Approach C can choose M ‘smallest’ algorithms

- Some natural pairing of candidates
 - RC6 can reuse MARS’ resources
 - Rijndael, Twofish use similar primitives

- In future, security will be more important
 - Moore's law - 1% per week!

Implementation-cost issues

- Multiple algorithms increase implementation cost
 - Approach A is worst of all
 - Approach B as good as single-algorithm case if important
 - Approach C is worse than single-algorithm case

- Mitigated by good standard
 - Portable reference C code
 - Comprehensive test vectors (including ‘simple’ cases)
 - Intermediate values aid debugging
Architectural Implications

- Most significant disadvantage of multi-algorithm AES
- Need for negotiation?
 - extra security design required
 - approaches A, B can hardwire choice
- Need to restrict non-standard options
 - no two candidates agree on what ‘odd’ key lengths allowed
 - block size, # of rounds variations
 - don’t allow explicit choice of # of rounds!

Legal Issues

- Ideal: all final algorithms free of IP problems
- Necessary: enough final algorithms freely available
- Work required by NIST
 - Approach B easiest, C and A progressively harder
- ‘Patent hijack’ resilience
 - Similar properties to security resilience; A is best
Summary

• Generally increases security, but be careful!
 – Approach C has notable problems
• All approaches increase speed
• All approaches create architectural issues
• Approaches A, C increase costs
• Approach B need not increase costs

Approach B Strategy

• Primary algorithm criteria
 – security is #1 factor
 – speed not important
 – small size an advantage
 – lack of legal issues
 ⇒ conservative, traditional design?
• Secondary algorithm criteria
 – can take more risks for added performance
Contact

• mailto: ih@ncipher.com
• http://www.ncipher.com/

• © nCipher Corporation Ltd., 2000
 this version dated 2000.04.04