Federal PKI Directory
Concept of Operations

Ken Eggers
13 May 1999

Technology Solutions for Government and Business
Overview

⇒ Background
FPKI Directory Architecture & Examples
Protection Issues
Design Issues
FPKI Directory Evolution
Background

Motivation

– Provide certificates for relying parties in different trust domains
– Support digital signature validation

Scope of Concept of Operations is “Where we’re headed”

– Identify capabilities
– Identify issues
– Propose approaches
Background (concluded)

High-level Protection and Design Issues

– Limited detail
– Identify design principles
– Requirements “discovery”
– Not a “how to build” document
Overview

Background
⇒ FPKI Directory Architecture & Examples
Protection Issues
Design Issues
FPKI Directory Evolution
Federal PKI Concept

Non-Federal

Federal

bridge CA bridge cross certificate pair
principal CA CA certificate
peer CA cross certificate pair
subordinate CA
FPKI Directory Concept

Government-wide Certificate Management Information Repository
- Certificates
- Certification Revocation Information (e.g., CRLs)
- Certification Practice Statements (CPSs)

Read-Only Access
- No External Modifications
- Internal Administrative Access for Modifications

“Public” (i.e., Sanitized) Information
FPKI Directory Components

Trust Domains
Federal Policy Management Authority (FPMA)
Domain Policy Management Authority (DPMA)
Certification Authorities (CAs)
 – Bridge CA (BCA)
 – Principal CA (PCA)

Directory Servers
 – BCA Directory Server
 – Border Directory Servers

Briefing
Focus
FPKI Directory Architecture
Directory Usage Scenario

“Outgoing” requests may (but need not) transit local directory servers

“Incoming” requests should not transit internal directory servers
Example Architectures

Four Examples:
- 1. Free Public Read Access (to Trust Domain Infrastructure Directory)
- 2. Restricted Public Read Access (to Trust Domain Infrastructure Directory)
- 3. Free Public Read Access to Border Directory Server
- 4. Restricted Public Read Access to Border Directory Server

Examples Vary from Security Perspective
These Aren’t the Only Possible Architectures...
Example 1. Free Public Read Access

- Public read access to everything
- No confidentiality
- “White pages” applications
Example 2. Restricted Public Read Access

- Moderate confidentiality for sensitive information
- Adequacy dependent on:
 - information sensitivity
 - security policy
 - strength of mechanism
Example 3. Free Public Read Access to Border Directory Server

- Organizational infrastructure domain protection
- Separate public border directory server
- Domain users access organizational infrastructure via alternate route
- Much stronger protection mechanisms
Example 4. Restricted Public Read Access to Border Directory Server

- Moderate confidentiality on border server
- Organizational infrastructure domain protection
- Multiple paths for organizational users
Overview

Background
FPKI Directory Architecture & Examples
ʁ Protection Issues
Design Issues
FPKI Directory Evolution
FPKI Directory Architecture

Trust Domain 1
- PCA 1
- Internal Directory Infrastructure
- Border Directory Server 1
- LDAP Server

Trust Domain 3
- Internal Directory Infrastructure
- PCA 3
- BCA
- BCA Directory Server
- LDAP Query/Resp.

Trust Domain 2
- Internal Directory Infrastructure
- PCA 2
- X.500 Server
- LDAP Server

Publications of Certificates & CRLs
Certification Path

BCA - Bridge Certification Authority
PCA - Principal Certification Authority
DSP - Directory System Protocol
LDAP - Lightweight Directory Access Protocol
Separate PCA Posting Directly to BCA Directory Server

- Explicit administrative post provides good granularity of control over disclosure
- Relatively high performance on queries, since all information is at BCA directory server
- Significant impact on PCA to perform explicit posting
Separate PCA Posting to Border Directory Server

- Explicit administrative post provides good granularity of control over disclosure
- Relatively slower than direct post to BCA - another “hop” required
- Significant impact on PCA to perform explicit posting
Administrative DAP or LDAP Posting from Domain Infrastructure

- Explicit administrative post provides good granularity of control over disclosure; reliance on correct operation of server is an issue
- Relatively slower than direct post to BCA - another “hop” required
- Significant impact on PCA to perform explicit posting
Replication (Shadowing) from Domain Infrastructure

- Relatively weak granularity of control over disclosure, due to limitations of replication to directory subtrees
- Relatively slower than direct post to BCA - another “hop” required
- Agreement setup is intensive, but normal operations should have minimal impact
Other Protection Issues

Limiting Incoming Requests

- Limit chaining on incoming requests (i.e., don’t chain from border directory into domain infrastructure)
- Provide separate, protected path to domain infrastructure for external members of domain

Limiting Malicious Input to Border Directory

- Prohibit external users from posting directly to directory
- Allow “out-of-band” input with administrative verification prior to posting
Overview

Background
FPKI Directory Architecture & Examples
Protection Issues
⇒ Design Issues
FPKI Directory Evolution
Directory Information Base Schema

Minimal set of rules to support interoperability for:

- Directory entry types
- Object classes
- Attributes
- Matching rules
- Name forms
- Structure rules

Internet X.509 PKI LDAPv2 Schema (initially)
NTIS U. S. Government On Line Directories (USGOLD) directory specifications (when/if applicable)
Time Synchronization for Chained Queries

Inclusion of timeLimit parameter could cause protocol servicing to immediately timeout if server’s clock is out of sync with other servers.

Omission of parameter can remedy this in some cases:

- Loop processing done by both X.500 DSP and LDAP.
- Directory user could stop lengthy queries without loops using the abandon service request.
- No hardware or software modifications.

Periodic clock synchronization

- Requires engineering modifications.
- Transparent to users.
Directory Integrity

Directory server authentication
- Strong authentication/signed operations
- Server-to-server identity corroboration

Data integrity
- Data source authentication (e.g., digital signature)
- Data content validation (e.g., message authentication code)
- Required for certificates, CRLs, etc.
- Optional for other information
Directory Management

Availability
- Assume 24 by 7
- FPKI server disaster recovery/contingency plans necessary

Key Management
- CPS should identify acceptable algorithms & usages
- Support building inter-domain trust paths

Unique User Identification
- FPMA should ensure uniqueness of domain names
- PCA should ensure uniqueness of domain user names
Shadowing (Replication)

X.500 capability (X.525) used to replicate subtrees from one directory server to another
 – Directory Information Shadowing Protocol (DISP)
 – Interoperability among vendors currently rare

Potential shadowing applicability
 – Population of organizational border directory
 – Replication of BCA directory information on other FPKI directory servers (relatively static information)
 – Replication of information among border directories (less static information)
Overview

Background
FPKI Directory Architecture & Examples
Protection Issues
Design Issues
⇒ FPKI Directory Evolution
FPKI Directory Evolution

Stage One: Initial BCA Directory Implementation
- “Proper” X.500 Directory System Agent (DSA)
- Directory System Protocol (DSP) chaining
- Lightweight Directory Access Protocol (LDAP v3) client access

Stage Two: New Modes of Access
- LDAP v3 referral support
- LDAP query “gateway” supports LDAP-only servers

Goal
- Border directory server per organization
- “Subscriber” border directory servers
Stage One: Initial BCA Directory Implementation

1. DSP chaining via local border directory
 - Internal server chains to local border directory server
 - Local border server chains to BCA directory server
 - BCA directory server may continue to chain...

2. DSP chaining via BCA directory
 - Internal server chains directly to BCA directory server
 - BCA directory server may continue to chain...

3. LDAP v3 access with referral
 - Client accesses internal server using LDAP v3
 - Server returns referral to client
Stage Two: New Modes of Access

1. BCA directory referrals to LDAP v3 clients
 - Directory server with information is LDAP-only
 - Directory server with information doesn’t support chaining

2. BCA directory “LDAP query gateway”
 - BCA directory receives chained DSP request
 - Gateway function processes request using LDAP operations for LDAP-only servers