NIST Cryptographic Standards Program

Bill Burr
william.burr@nist.gov
Dec 4, 2002
NIST Cryptographic Standards

• First Federal Information Processing Standard (FIPS) in Cryptography in 1977
 – FIPS 46, The Data Encryption Standard (DES)

• Mandatory for Federal use of cryptography to protect unclassified, sensitive data
 – FIPS 140-2

• Standardize a set of strong cryptographic tools
 – Can’t test and approve every good algorithm/method
 • Too expensive to study each one
 – Too many would confound interoperability
Crypto Standards Toolkit

- **Standardized, best of breed solutions for**
 - **Encryption**
 - algorithms
 - modes
 - **Message authentication**
 - **Digital signature**
 - **Hashing**
 - **Key generation**
 - deterministic (pseudorandom) generators
 - nondeterministic (hardware) generators
 - key derivation
 - **Key management**
 - wrapping
 - agreement
 - transport
Toolkit Advantages

• FIPS 140-2 product testing
 – CMVP Laboratory validation testing
 – Known answer testing for many of the tools

• Confidence in the security of the tools
 – Carefully evaluated and monitored

• Interoperability and acceptance
 – Tools very widely implemented and used
 – Seen as the safe choice

• Use by Federal agencies often required
Sources of Standards & Recommendations

• Public submissions with NIST selection
 – DES, AES, new crypto modes
• Standards Bodies
 – ANSI-X9
 • TDES, Diffie-Hellman, ECDSA and ECDH, DSA (sorta), RSA variants
 – IETF
 • HMAC
 • perhaps eventually PKIX, TLS, S/MIME, IKE….
• NSA
 – DSA, SHAxxx, proposed AES Key Wrap
Cryptographic Standards

Security Requirements for Cryptographic Modules
FIPS 140-2

Symmetric Key
* DES (FIPS 46-3)
* 3DES (FIPS 46-3, X9.52)
* AES (FIPS 197)
* Modes of operation
 - DES (FIPS 81)
 - SP 800-38A
 - Advanced Modes
* HMAC (FIPS 198)

Public Key
* Dig. Sig. Std. (FIPS 186-2, FIPS 186-3)
 - DSA (X9.30) – bigger keys
 - RSA (X9.31) – PKCS1 pad
 - ECDSA (X9.62)
* Key Establishment Schemes
 - Diffie-Hellman - X9.42
 - RSA - X9.44
 - Elliptic Curves -X9.63
* Key Management Guideline
 - Best Practices
 - Specific protocols and apps

Secure Hash
* SHA-1, SHA-256.
SHA-384, SHA-512
(FIPS 180-2)
Comparable Strengths

<table>
<thead>
<tr>
<th></th>
<th>56</th>
<th>112</th>
<th>128</th>
<th>192</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym. Key</td>
<td>80</td>
<td>112</td>
<td>128</td>
<td>192</td>
<td>256</td>
</tr>
<tr>
<td>Hash</td>
<td>160</td>
<td>256</td>
<td>384</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>MAC</td>
<td>64</td>
<td>160</td>
<td>256</td>
<td>384</td>
<td>512</td>
</tr>
<tr>
<td>RSA/DSA</td>
<td>512</td>
<td>1k</td>
<td>2k</td>
<td>3k</td>
<td>7.5k</td>
</tr>
<tr>
<td>EC</td>
<td>160</td>
<td>224</td>
<td>256</td>
<td>384</td>
<td>512</td>
</tr>
</tbody>
</table>

Size in bits

- Sym. Key: Symmetric key encryption algorithms
- MAC: Message Authentication code
- Pub. Key: Factoring or discrete log based public key algorithms
- EC: Elliptic Curve based public key algorithms
- White background: currently approved FIPS
- Yellow background: under development
- Black background: not secure now
NIST Crypto Standards Status

<table>
<thead>
<tr>
<th>Sym. Key</th>
<th>56</th>
<th>80</th>
<th>112</th>
<th>128</th>
<th>192</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>46-3</td>
<td>185</td>
<td>46-3</td>
<td>FIPS 197 (AES)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modes</td>
<td>81</td>
<td>SP 800-38-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hash</td>
<td>180-1</td>
<td>180-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC</td>
<td>FIPS 198 (HMAC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA, DSA,</td>
<td>186-2</td>
<td>186-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-DSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH/RSA</td>
<td>Key Management FIPS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-DH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **White:** FIPS approved
- **Red:** working draft phase
- **Black:** no longer secure
- **Yellow:** draft in progress
- **Gray:** initial recommendation published, more to come

Table Notes:
- 56, 80, 112, 128, 192, 256: Key sizes in bits.
- 46-3: Key management scheme.
- 180-1, 180-2: Hash functions.
- 186-2, 186-3: Key exchange protocols.
- FIPS 197 (AES): FIPS-approved symmetric key encryption.
- FIPS 198 (HMAC): FIPS-approved message authentication code.

Diagram:
- Key Management FIPS:
 - White: FIPS approved
 - Red: working draft phase
 - Black: no longer secure
 - Yellow: draft in progress
 - Gray: initial recommendation published, more to come
Modes of Operation Recommendation

- SP 800-38A 2001 ED, Recommendation for Block Cipher Modes of Operation, 2001
 - update of FIPS 81
 - 5 modes
 - ECB
 - CBC
 - CFB
 - OFB
 - Counter
- Generalized for any block cipher
Submitted Modes

• Total of 17 Modes submitted
• Message authentication seemed most urgent
 – Problems with CBC MAC
 • Extension and collision attacks
 – Originally proposed to limit CBC MAC to fixed size or known size messages
 • Didn’t make anybody happy
RMAC

• Proposed NIST Special Publication 800-38B, The RMAC Authentication Mode
 – submitted by E. Jaulmes, A. Joux, & F. Valette
 • DCSSI Crypto Lab
 – comments to EncryptionModes@nist.gov by 12/02/02
 – resists “general forgery” & “extension forgery” attacks
 – parameters:
 • k, the key size of the encryption algorithm
 • b, the block size of the encryption algorithm
 • m, the length of the MAC
 • r, the size of R, a per message random salt
 – define five parameter sets for $b=128$ and 2 for $b=64$
 • Most are roughly “balanced” wrt “general forgery” and “extension forgery” attacks
Next Modes?

• Counter with CBC-MAC mode
 – appears destined to be mandatory to implement in 802.11

• AES Key Wrap
 – encryption mode or or key management scheme?
Key Management

- Key Management
 - Workshop in November 2001
 - Schemes document
 - missing part is RSA
 - Bert Kaliski & Russ Housley
 » Proof of security of TLS with RSA
 » Simple RSA per per Shoup for endgame
 - Guidance document: hard to scope, many issues
 - Proposed 80-bit crypto end of use date: 2015
e-Authentication

• 24 Projects
 – President’s Management Agenda
 – E-Sign and Paperwork Elimination acts
 – Intense OMB interest
 – Concept of authentication gateway
 • Password authentication

• NIST doing technical guidance on e-Authentication
 – Success of 802.11 complicates this
 • Access point authentication
 – Man-in-the-middle used to be harder
 • Eavesdropping is more probable
802.11 Issues

• Authentication
 – Theft of service
 – Active attacks inside Government LANs
 – Broader implications for business and citizen e-Authentication
 • more passwords through tunnels
 – rogue APs
 – man-in-the-middle

• Confidentiality
 – Need “FIPS quality” encryption
Questions
Crypto FIPS

- FIPS 46-3, Data Encryption Standard - 1999
 - refers to ANSI X9.52-1998 for triple DES
 - expect to kill 56-bit DES with 46-4 due in 94
- FIPS 81, DES Modes of Operation – 1980
- FIPS 113, Computer Data Authentication - 1985
 - DES MAC for financial apps.
- FIPS 117, Key Management using ANSI X9.17
 - being withdrawn
- FIPS 180-2, Secure Hash Standard – 2002
 - SHA1, SHA-256, SHA-384, SHA-512
Crypto FIPS

• FIPS 185, Escrowed Encryption Alg. – 1994
 – Skipjack
• FIPS 186-2, Digital Signature Standard
 – DSS, RSA: X9.31 & PKCS#1, ECDSA: X9.62
• FIPS 197, Advanced Encryption Standard (AES) 2001
• FIPS 198, HMAC - Keyed-Hash Message Authentication Code, 2002
Links

• NIST Cryptographic Toolkit
 – http://csrc.nist.gov/encryption/

• AES
 – http://csrc.nist.gov/encryption/aes/

• Modes of Operation
 – http://csrc.nist.gov/encryption/modes/

• Key Management

• Cryptographic Module Validation
 – http://csrc.nist.gov/cryptval/