

© Copyright IBM Corp. 2002 Page 1 of 16

IBM SSLite in Java Security Policy

May 2003

Revision: 1.07

NON CONFIDENTIAL Status: Preliminary

First Edition (January 2003)
This edition applies to the First Edition of the IBM BlueZ – FIPS140-2 SSLite Security Policy and to all subsequent versions until
otherwise indicated in new editions. IBM welcomes your comments on this publication. Please address them to:
bluez@zurich.ibm.com. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in
any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002.
All rights reserved. This document may be freely reproduced and distributed in its entirety and without modification.

JCOP, BlueZ and all BlueZ-based trademarks and logos are trademarks or registered trademarks of International Business
Machines Corp. in the US and other countries. Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems in the US and other countries.

IBM SSLite in Java
Security Policy

© Copyright IBM Corp. 2002 Page 2 of 16

1. Document Information

1.1. Document Scope

This document describes the services that the IBM SSLite in Java Package provides to a population of
security officers, and the security policy governing access to those services. Included is a description of
the basic security requirements for the SSLite package and a qualitative description of how each of the
security requirements is achieved.

1.2. Table of Contents

1. Document Information .. 2

1.1. Document History .. 2

1.2. Document Scope ... 2

1.3. Table of Contents ... 2

2. Applicable documents .. 4

2.1. Cryptography ... 4

2.2. Protocols.. 4

3. SSLite Package... 5

3.1. Module Components .. 5

4. Security Levels.. 5

5. Cryptographic Module Specification... 7

5.1. SSLite token interfaces .. 8

5.2. Cryptographic Standards.. 8

5.3. Module Interfaces .. 10

5.4. Cryptographic Module Self Tests... 10

Operational Environment .. 11

5.6. Module Status... 11

6. Roles and Services.. 11

6.1. Roles .. 11

6.2. Services.. 12

7. Cryptographically Sensitive Material.. 12

7.1. Cryptographic Keys... 12

8. Security Rules... 15

9. Notices .. 17

© Copyright IBM Corp. 2002 Page 3 of 16

2. Applicable documents

2.1. Cryptography

RSA Laboratories PKCS #15 v1.0: Cryptographic Token Information Format Standard – April 23, 1999
RSA Laboratories PKCS#15 v1.0 Amendment 1 Draft #1 - October 20, 1999
FIPS 140-2 standard, the Derived Test Requirements, and on-line implementation guidelines
Digital Encryption Standard: FIPS PUB 46-3, FIPS PUB 74, and FIPS PUB 81
SHA-1: FIPS PUB 180-1
Digital Signature Standard : FIPS PUB 186-2 27 January 2000
Pseudo-random Number Generation: Appendix 3 of FIPS PUB 186.
Digital Signature Scheme Giving Message Recovery: ISO/IEC 9796
The 3DES standard, ANSI X9.52, Triple Data Encryption Algorithm Modes Of Operation
Advanced Encryption Standard (AES) FIPS Publication 197, November 26, 2001
Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry. ANSI
X9.31-1998

2.2. Protocols

The TLS Protocol Version 1.0 RFC 2246, January 1999

© Copyright IBM Corp. 2002 Page 4 of 16

3. SSLite Package

3.1. Module Components

The following table lists the module components:

Type Name Release Date Delivery
Software SSLite JAR file sslite140.jar 3.15.3232

(FIPS140/
Prod)

Documentation SSLite Java Doc 3.15.3232
(FIPS140/
Prod)

Table 1a: Module Component List for all platforms

3.1.1. Module Description
SSLite is a SSL (Secure Socket Layer) V2.0, V3.0 and TLS (Transport Layer Security) V1.0 protocol
implementation including PKI (Public Key Infrastructure) functionality, in Java. For the purpose of FIPS
140-2 Level 1 validation the implementation is made available in the form of a signed Jar file. The
cryptographic functions used in SSLite are implemented in the FIPS 140-2 validated IBM CryptoLite in
Java (See FIPS Certificate #354) module, which is embedded in the SSLite module.

The SSLite package performance is comparable to that of native implementations. The package includes
support of PKCS#11 cryptographic tokens (smart cards, etc.), certificate revocation lists (CRL), PKCS#7,
PKCS#12, Java KeyStore key and certificate repositories, and PKIX infrastructure.

4. Security Levels
The IBM SSLite package meets the overall requirements applicable to Level 1 security of FIPS 140-2.
The individual security requirements specified for FIPS 140-2 meets the level specifications indicated in
the following table.

Security Requirements Section Level
Cryptographic Module 1
Ports and Interfaces 1
Roles and Services 1
Finite State Model 1
Physical Security 1
Operational Environment 1
Key Management 1
EMI/EMC 1
Self-Tests 1
Design Assurance 1
Mitigation of Other Attacks N/A

 Table 2: FIPS 140-2 validation levels

© Copyright IBM Corp. 2002 Page 5 of 16

5. Cryptographic Module Specification

IBM SSLite is classified as a multi-chip standalone module for FIPS 140-2 purposes. As such, the SSLite
Module must be validated upon a particular operating system and computer platform. The SSLite Module
is packaged in a single Java Archive File, which contains all the classes for the module. IBM SSLite runs
upon many other platforms including Windows ’95, ’98, and NT, Sun/Solaris, HP-UX, Linux, and AIX.
As outlined in 4.5 of the Implementation Guidance for FIPS 140-2, the module maintains its compliance
on other operating systems, provided:

• The operating system meets the operational environment requirements at the module’s level of
validation
• The module does not require modification to run in the new environment

Since the IBM SSLite module is a pure Java implementation it should be able to run unmodified on any
system which supports a Java Runtime of at least Version 1.1. The above requirements have been
demonstrated by testing and validating the IBM SSLite package on the following platforms.

Hardware Operating System Java VM version
IBM PC Compatible Windows 2000, SP3 1.3.1_03
IBM PC Compatible Red Hat Linux 8.0 1.3.1_07

 Table 3: Platforms on which CryptoLite has been tested

5.1. SSLite token interfaces

The SSLite module provides cryptography services through the embedded IBM CryptoLite in Java
module. IBM CryptoLite in Java contains a proprietary interface for interfacing to an external
cryptographic acceleration module. This module, also provided by IBM and FIPS140-2 validated, uses
optimized native code to provide high performance speedup for CryptoLite functionality in a totally
transparent manner. The module simply has to be present in the same directory as the CryptoLite module
at module startup time. This validity and integrity of the booster module is checked using an approved
HMAC method.

The IBM SSLite modules also contains industry standard MSCAPI and PKCS#11 token interfaces.

5.2. Cryptographic Standards

The IBM SSLite module supports the following approved and non approved FIPS algorithms through the
IBM CyptoLite in Java module.

HASH Functions

Algorithm Specification FIPS Approved
MD2 IETF RFC1319

Hash algorithm; hash size: 16 bytes; block size: 16 bytes.
No

© Copyright IBM Corp. 2002 Page 6 of 16

Used only for backward compatibility.
MD5 IETF RFC 1321

Hash algorithm; hash size: 16 bytes; block size: 64 bytes.
Used only for backward compatibility.

No

SHA-1 FIPS180-1
Hash algorithm; hash size: 20 bytes; block size: 64 bytes.

Yes

SHA256 Hash algorithm; hash/block sizes: 32/64, bytes. No

 Table 4: Hash Functions

CIPHER Functions

Algorithm Specification & Description FIPS Approved
RC2 IETF: RFC2268

Symmetric block cipher. Block size 8 bytes. Key size 0-
1024 bits. RC2 allows adjustment of the effective key
strength independent of the input key length.

No

RC4 Stream cipher; key sizes: 0-2048 bits.

No

DES, DES-CBC FIPS 46-3

Symmetric block cipher; block size: 8 bytes; key size: 56
bits.

For legacy systems only.

Yes

3DES, 3DES-
CBC

FIPS 46-3
Triple DES has 112/168 bits key length depending on
type of key.

Yes

AES
AES CBC
AES 256

FIPS197, Symmetric block cipher; block sizes: 16,24,32
bytes; key sizes: 16,24,32 bytes.

Yes

HMAC SHA-1 Hashed Message Authentication Codes (HMAC) based

on the SHA-1 hash algorithm.
Yes

 Table 5: Cipher Functions

Public Key

Algorithm Specification FIPS Approved
RSA Sign/Verify Public key encryption/signature scheme. Typical key/data

sizes: 512, 768, 1024 (typical), 2048 bits.

Yes

RSA
Encrypt/Decypt

RSA specification and padding scheme:
PKCS#1
OAEP Padding scheme for RSA encryption:
RFC2437

No

DSA Sign/Verify Public key signature scheme. Cannot be used for
encryption. Key sizes: 512-1024 bits in steps of 64 bits.

Yes

Diffie-Hellman
(DH)

Public key crypto system. Typical key/data sizes: 512,
768, 1024 (typical), 2048 bits. Used for key agreement.

No

 Table 6: Public Key Functions

© Copyright IBM Corp. 2002 Page 7 of 16

Random Number Generators

Algorithm Specification FIPS Approved
PSEUDO Random
Number Generator

FIPS 186-2
ANSI X9.31 1998
.

Yes

Universal Software
Based True Random
Number Generator

Patented by IBM,
EC Pat.No. EP1081591A2,
True random number generator that works reliably
on variety of platforms without exploiting platform
specific features. Entropy evaluation through
statistical analysis. Performance: 20-1000
bits/seconds. (Used to seed the Approved PRNG
in FIPS mode)

No

 Table 7: Random Number Generators

5.3. Module Interfaces

As a multi-chip standalone module, the SSLite Module’s physical interfaces consist of the keyboard,
mouse, monitor, serial ports, network adapters, etc. However, the underlying logical interface to the
SSLite package is a Java language Application Program Interface (API) documented in the SSLite User
Guide. The exported public methods comprise the modules Control input interface. Data Input and Output
are provided in the variables passed with method calls, and Status Output is provided in the returns and
error codes that are documented for each call. The SSLite Module is accessed from Java language
programs via the inclusion of the package export files and the package class file packaged in JAR format.

5.4. Cryptographic Module Self Tests

The SSLite relies exclusively on the embedded IBM CryptoLite in Java module for a number of self-tests
to check the proper functioning of the Module. This includes power-up self-tests and conditional self-tests.
Conditional tests are performed when symmetric or asymmetric keys are generated. These tests include
a continuous random number generator test and pair-wise consistency tests of the generated RSA keys.

Power-up Self-Testing
Power-up self-testing is initiated automatically when the SSLite module starts loading. (See the SSLite
Finite State Machine for more details). These tests comprise of the software integrity test and the known
answer tests of cryptographic algorithms. Should any of these tests fail; the SSLite module will terminate
the loading process and generate an exception. The module cannot be used in this state.
The integrity of the module is verified by checking a HMAC of the all of the jar files classes. The
Initialization will only succeed if this HMAC is valid.

The SSLite module executes the following cryptographic algorithms tests:

o DES KAT
o 3DES KAT
o AES KAT
o SHA KAT
o SHA256 KAT
o RSA_SIGN/VERIFICATION
o DSA PARAMETER GENERATION
o DSA_SIGN/VERIFICATION
o DIFFIE-HELLMAN
o RNG KAT

© Copyright IBM Corp. 2002 Page 8 of 16

Startup Recovery
Should the startup self tests fail during module initialization the crypto officer should re-initialize the
complete application.

Conditional Self-Testing
This includes continuous PRNG testing. The very first output block generated by the PRNG is never used
for any purpose other than initiating the continuous PRNG test which compares every newly generated
block with the previously generated block. The test fails if newly generated PRNG output block matches
the previously generated block. In such a case, the Module generates an exception to the calling
application. It is the responsibility of the calling application to handle the exception in a FIPS appropriate
manner, for example by retrying the PRNG service.

Pair-wise Consistency Self-Testing
The test is run whenever private key is generated by the SSLite Module. The private key structure of the
Module always contains either the data of the corresponding public key or information sufficient for
computing the corresponding public key. If the test fails the Module generates an exception to the calling
application. It is the responsibility of the calling application to handle the exception in a FIPS appropriate
manner, for example by retrying the key generation service.

5.5. Operational Environment

The SSLite module is written entirely in the Java programming language that allows for extensive review
to confirm security. Applications using SSLite functionality are secure from each other due to the fact that
each runs in a “Java sandbox” where the firewall protects applet objects from illegal access by other
applications. SSLite is developed and maintained according to IBM’s internal development standards and
tools including CVS (Version 1.11.1p1) are used for configuration management. The CryptoLite module
implements both approved and non-approved services. The calling application controls the cryptographic
material as well as the services that use them. It is the applications responsibility to ensure that when in a
FIPS compliant mode, only those FIPS approved algorithms are used.

5.6. Module Status

The module communicates any error status asynchronously through the use of exceptions. It is the
responsibility of the calling application to handle these exceptions.

6. Roles and Services

6.1. Roles

The IBM SSLite module supports two roles, a cryptographic officer role and a user role.

o ROLE_CO: The Cryptographic Officer Role is purely an administrative role and does not involve
the use of any of the modules cryptographic services. The role is not explicitly authenticated but
assumed implicitly on implementation of the modules installation and usage sections defined in
the security rules section.

o ROLE_USER: The User Role has access to all of the modules services. The role is not explicitly

authenticated but assumed implicitly on access of any of the modules services.

© Copyright IBM Corp. 2002 Page 9 of 16

Role Type of Authentication Authentication Data
Cryptographic Officer
Role

None None

User Role None None
 Table 8: Roles and Required Identification and Authentication

Authentication
Mechanism

Strength of Mechanism

There are no role or user
authentication
mechanisms

 Table 9: Strengths of Authentication Mechanisms

6.2. Services

The modules services are accessed through API interfaces from the calling application.

Service User Role
Certification authority services (com.ibm.SSLite.CA) Yes
Certificate services (com.ibm.SSLite.CE) Yes
Certificate request entry services (com.ibm.SSLite.CRE) Yes
Certificate extension services (com.ibm.SSLite.Extension) Yes
Lightweight directory access protocol services (com.ibm.SSLite.LDAP) Yes
Public key infrastructure Services (com.ibm.SSLite.PKI) Yes
S/MIME services (com.ibm.SSLite.SMIME) Yes
Certificate revocation list services (com.ibm.SSLite.SSLCRL) Yes
X509 Version 3 Certificate services (com.ibm.SSLite.SSLCert) Yes
SSL Context services (com.ibm.SSLite.SSLContext) - Yes
Java version 2 KeyStore token services (com.ibm.SSLite.SSLKSToken) Yes
Microsoft CryptoAPI 2.0 token services (com.ibm.SSLite.SSLMSCAPIToken) Yes
X.500 distinguished name services (com.ibm.SSLite.SSLName) Yes
PKCS11 token services (com.ibm.SSLite.SSLPKCS11Token) Yes
PKCS12 token services (com.ibm.SSLite.SSLPKCS12Token) Yes
PKCS7 token services (com.ibm.SSLite.SSLPKCS7Token) Yes
SSL socket connection socket services (com.ibm.SSLite.SSLServerSocket) Yes
SSL session services (com.ibm.SSLite.SSLSession) Yes
SSL stream socket protocol services (com.ibm.SSLite.SSLSocket) Yes
SSL general token services (com.ibm.SSLite.SSLToken) Yes
Signed jar file verification services (com.ibm.SSLite.SignedJarInputStream) Yes
Signed jar file generation services (com.ibm.SSLite.SignedJarOutputStream) Yes
X509 certificate name extensions (com.ibm.SSLite.XAltName) Yes
X509 basic constraints extensions (com.ibm.SSLite.XBasic Constraints) Yes
X509 key usage extensions (com.ibm.SSLite.XKeyUsage) Yes
X509 extended key usage extensions (com.ibm.SSLite.XExtKeyUsage) Yes

© Copyright IBM Corp. 2002 Page 10 of 16

7. Cryptographically Sensitive Material

7.1. Cryptographic Keys

Key Storage
The SSLite module does not provide long-term cryptographic key storage. If an application program
makes use of SSLite service to implement cryptographic key storage functionality, it is a responsibility of
the application program developers to ensure FIPS140-2 compliance of key storing techniques they
implement.

Key establishment
SSLite provides protocol services for SSLv2.0, SSLv3.0 and SSLv3.1/TLS1.0. Each of these protocols
involves the generation of key material based on elements within the handshake protocol.
SSLv3.0/TLSv1.0 depends on SHA-1 for the generation of key material. SSLv2.0 and SSLv3.0 generally
depend on MD5 for key material generation and thus are not FIPS compliant. There is an exception for 2
SSLv3.0 cipher suites 0xFEFE and 0xFEFF where SSLite will use the SSLv3.1/TLS1.0 method for key
generation which is based on SHA-1.

Key Protection
The management and allocation of memory is the responsibility of the operating system. It is assumed
that a unique process space is allocated for each request, and that the operating system and the
underlying central processing unit (CPU) hardware control access to that space. Each instance of the
cryptographic module is self-contained within a process space. All keys are associated with the User role.
It is the responsibility of application program developers to protect keys exported from the SSLite Module.

Key Generation
Key generation is handled using the IBM CryptoLite subsystem which uses a the FIPS approved RNG
algorithm which is based on SHA-1. The RNG has a maximum number of internal states of 2^160, this
being limited by the compression function in SHA-1. The RSA and DH key generation algorithms use the
RNG engine seeded with 20 bytes of true random data. This true random generator is based on IBM
patented technology where statistical analysis used to estimate the entropy of the clock jitter. The internal
RNG engine is enhanced using an automatic reseeding policy that insert a true random byte every 128
bytes of output if more than 30 seconds passed since last being reseeded. Applications can additionally
provide their own seeding data and also increase the automatic reseeding policy of the internal RNG
engine for example to add true random data every 8th byte without time constraint.

Key zeroization
Key objects are normally zeroed and any associated data discarded when the key object is garbage
collected through the finalizer method. The IBM CryptoLite sub-module provides an additional mechanism
which helps to ensure key zeroization through a dispose method. An application can explicitly call this
method in order to clear and release key material associated with a key object without waiting for a
possible pending invocation of the finalizer method.

Key Import/Export
The SSLite module provides a series of services for applications to access cryptographic material
contained within various long term storage elements or tokens. These key repositories and tokens are
outside of SSLite’s cryptographic boundary. The SSLite module temporarily holds and uses key material
on behalf of the calling applications and processes. Key material imported is stored internally in token key
rings. This temporary internal storage of key material and its subsequent use is on behalf of the calling
applications.

© Copyright IBM Corp. 2002 Page 11 of 16

SSLite supports the following token types.

PKCS#7 describes a general syntax for data that may have cryptography applied to it, such as
digital signatures and digital envelopes. The syntax admits recursion, so that, for example, one
envelope can be nested inside another, or one party can sign some previously enveloped digital
data. It also allows arbitrary attributes, such as signing time, to be authenticated along with the
content of a message, and provides for other attributes such as countersignatures to be
associated with a signature.
This token is a soft token and can be retrieved from different media. It contains a set of
certificates and, optionally, associated CRLs. Keys cannot be stored in this type of repository.
This repository does not require authentication. Certificates and CRLs are protected by a
signature. This type of token is used when the expected set of items is defined by some context.

PKCS#11 specifies an application programming interface (API), called “Cryptoki,” to devices
which hold cryptographic information and perform cryptographic functions. Cryptoki, “follows a
simple object-based approach, addressing the goals of technology independence (any kind of
device) and resource sharing (multiple applications accessing multiple devices), presenting to
applications a common, logical view of the device called a “cryptographic token”. The standard
specifies the data types and functions available to an application requiring cryptographic services
using the ANSI C programming language.
PKCS#11 tokens can store keys and certificates. Storage of CRLs is not supported. Access to a
token is protected by a personal identification number (PIN).

PKCS#12 is a standard format for exchange of private keys and certificates supported by most
browsers and cryptographic applications. It describes a transfer syntax for personal identity
information, including private keys, certificates, miscellaneous secrets, and extensions. Machines,
applications, browsers, Internet kiosks, and so on, that support this standard will allow a user to
import, export, and exercise a single set of personal identity information. This standard supports
direct transfer of personal information under several privacy and integrity modes.
This token is a soft token and can be retrieved from different media. It contains private keys,
certificates, and associated CRLs. The content is protected by a user pass-phrase. The public
items (certificates, CRLs) and the private items (keys) can be protected by algorithms with
different strengths

Microsoft CryptoAPI (an application programming interface) provides services that enable
application developers to add security based on cryptography to applications. CryptoAPI includes
functionality for encoding to and decoding from ASN.1, hashing, encrypting and decrypting data,
for authentication using digital certificates, and for managing certificates in certificate stores.
Encryption and decryption are provided both using both session keys and with public/private key
pairs. CryptoAPI functions use cryptographic service providers (CSP’s) to perform encryption and
decryption, and to provide key storage and security. These CSP’s are independent modules.
Ideally, CSP’s are written to be independent of a particular application, so that any application will
run with a variety of CSP’s.
Microsoft CryptoAPI support is available on MS Windows operating systems only(95/98, NT, or
2000). An intermediate system DLL is required which mediates the Java calls to the underlying
operating system APIs.

Java KeyStore is is a database of private keys and their associated certificates or certificate
chains. The certificate chains aid in authenticating end entity certificates. The Java Cryptography
Architecture (JCA) provides extensible architecture to manage keys. This architecture is
embodied in java.security as a KeyStore. The Java KeyStore follows the existing JCA
architecture which provides a framework and implementations for a KeyStore.

© Copyright IBM Corp. 2002 Page 12 of 16

8. Security Rules

Operating System
The cryptographic module is dependant on the operating system environment being set up in accordance
with FIPS 140-2 specifications. This includes that the host operating system be restricted to a single
operator mode. An additional requirement for this cryptographic provider is the availability of a valid
commercial grade installation of a Java SDK 1.3.1 or greater JVM.

Application Usage
The application shall ensure that keys are exchange in a FIPS compliant manner
The application shall be ensure that cryptographically sensitive material is not inadvertently output over
physical ports

The application shall ensure that SSLv2.0 is not used
The application shall ensure that SSLv3.0 is only used with the following cipher suites:

o SSLv3.0/SSL_RSA_FIPS_WITH_DES_CBC_SHA (0xFEFE)*
o SSLv3.0/SSL_RSA_FIPS_WITH_3DES_EDE_SHA (0xFEFF)

The application shall ensure that SSLv3.1/ TLS1.0 is only used with the following cipher suites:

SSLite DES based FIPS approved supported algorithms
o SSLv3.0/SSL_RSA_FIPS_WITH_DES_CBC_SHA (0xFEFE)*
o TLSv1/SSL_RSA_FIPS_WITH_DES_CBC_SHA (0x0009) *
o TLSv1/SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA (0x0011)*
o TLSv1/SSL_DHE_DSS_WITH_DES_CBC_SHA (0x0012)*
o TLSv1/SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA (0x0014)*
o TLSv1/SSL_DHE_RSA_WITH_DES_CBC_SHA (0x0015)*
o TLSv1/SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA (0x0019)*
o TLSv1/SSL_DH_anon_WITH_DES_CBC_SHA (0x001A)*
o TLSv1/ SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA (0x0062)*
o TLSv1/SSL_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA (0x0063)*

SSLite TDES based FIPS approved supported algorithms
o SSLv3.0/SSL_RSA_FIPS_WITH_3DES_EDE_SHA (0xFEFF)
o TLSv1/SSL_RSA_FIPS_WITH_3DES_CBC_SHA (0x000A)
o TLSv1/ SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA (0x0013)
o TLSv1/SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA (0x0016)
o TLSv1/SSL_DH_anon_WITH_3DES_EDE_CBC_SHA (0x001B)

SSLite AES128 based FIPS approved supported algorithms
o TLSv1/ SSL_RSA_WITH_AES_128_CBC_SHA (0x002F)
o TLSv1/SSL_DHE_DSS_WITH_AES_128_CBC_SHA (0x0032)
o TLSv1/ SSL_DHE_RSA_WITH_AES_128_CBC_SHA (0x0033)
o TLSv1/SSL_DH_anon_DSS_WITH_AES_128_CBC_SHA (0x0034)

SSLite AES256 based FIPS approved supported algorithms
o TLSv1/ SSL_RSA_WITH_AES_256_CBC_SHA (0x0035)
o TLSv1/ SSL_DHE_RSA_WITH_AES_256_CBC_SHA (0x0039)
o TLSv1/SSL_DHE_DSS_WITH_AES_256_CBC_SHA (0x0038)
o TLSv1/ SSL_DH_anon_DSS_WITH_AES_256_CBC_SHA (0x003A)

* = Only to be used for backwards compatibility

© Copyright IBM Corp. 2002 Page 13 of 16

Tokens
All tokens used for storing private cryptographic keys should be password protected. The password
should follow generally accepted guidelines for password security. Please note that encryption of keys
using a password-based key generation is not FIP S Approved. For FIPS purposes, these values are
considered to be in plaintext.

Tokens that are used to supply cryptographic services in addition to key storage are recommended to be
FIPS140 level 2 validated.

All soft tokens should be configured local to the computer.

Single User Guidelines
The following explains how to configure a Unix system for single user. The general idea is the same
across all Unix variants:

o Remove all login accounts except "root" (the superuser).
o Disable NIS and other name services for users and groups.
o Turn off all remote login, remote command execution, and file transfer daemons.

© Copyright IBM Corp. 2002 Page 14 of 16

9. Notices

AIX, Everyplace, and IBM are trademarks or registered trademarks of IBM Corporation in the United
States, other countries, or both.

Pentium and X-Scale are trademarks or registered trademarks of Intel Corporation in the United States,
other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© 2002 International Business Machines Corporation. All rights reserved.

