Standardizing Protocols for Threshold ECDSA J

Jonathan Katz
Chief Scientist, Dfns

Sept. 26, 2023
MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023

Thanks to Denis Varlakov, Nik Sorokovikov, and Antoine Urban for helpful
discussions

Distributed KeyGen. ..

Overview

Overview of the talk

® Threshold cryptography (signing) in a “key-management network”
e Applies to schemes beyond ECDSA

Jonathan Katz Distributed KeyGen. .. 2/21

Overview

Overview of the talk

® Threshold cryptography (signing) in a “key-management network”
e Applies to schemes beyond ECDSA

® Standardizing threshold ECDSA protocols
® No-honest-majority setting
e Honest-majority setting

Jonathan Katz Distributed KeyGen. .. 2/21

Key-management networks

Key-management network

® Most (all?) treatments of threshold cryptography in the literature
assume a single user distributing a key among n parties

e Users act independently, and may choose different sets of parties

e Even if users choose (some of) the same parties, protocol executions
for different users’ keys are considered in isolation

Jonathan Katz Distributed KeyGen. .. 3/21

Key-management networks

Key-management network

® Most (all?) treatments of threshold cryptography in the literature
assume a single user distributing a key among n parties

e Users act independently, and may choose different sets of parties

e Even if users choose (some of) the same parties, protocol executions
for different users’ keys are considered in isolation

® Key-management network: a dedicated set of n parties holding shares
of multiple keys on behalf of multiple users

Jonathan Katz Distributed KeyGen. .. 3/21

Key-management networks

Key-management network

® Most (all?) treatments of threshold cryptography in the literature
assume a single user distributing a key among n parties

e Users act independently, and may choose different sets of parties
e Even if users choose (some of) the same parties, protocol executions
for different users’ keys are considered in isolation
® Key-management network: a dedicated set of n parties holding shares
of multiple keys on behalf of multiple users

® Technical advantages:
e Each party’s state can be shared across protocol executions involving
different keys

e Possibility of parallelization /batch processing across keys

Jonathan Katz Distributed KeyGen. .. 3/21

Key-management networks

The robust KeyGen protocol | described previously

Jonathan Katz Distributed KeyGen. .. 4/21

Key-management networks

Suggestions

® Proposers should be encouraged to highlight potential optimizations
of their protocols when run in a key-management network

® Schemes should be evaluated (among other factors) based on their
performance in a “key-management network” setting

Jonathan Katz Distributed KeyGen. .. 5/21

(Threshold) ECDSA

* G is a cyclic group of prime order g, with generator g
» Private key x € Zg; public key y = g*
» To sign a (hashed) message m:

« Choose k < Zg; compute R := gk and r := F(R)
« Compute s := k=1 (m+ rx)

Jonathan Katz Distributed KeyGen. .. 6/21

(Threshold) ECDSA

* G is a cyclic group of prime order g, with generator g
» Private key x € Zg; public key y = g*
« To sign a (hashed) message m:

+ Choose k < Zg; compute R := gX and r := F(R)
« Compute s := k=1 - (m+ rx)

Threshold ECDSA

* n is the total number of parties

* tis an upper bound on the number of corrupted parties

» Honest majority: t < n/2; no-honest majority: n/2 <t <n

Jonathan Katz Distributed KeyGen. .. 6/21

No-honest-majority ECDSA

Threshold ECDSA in the no-honest-majority setting

Will focus on the CGGMP protocol
® Goal is not to present the protocol in detail
e Will highlight some optimizations/issues that arise in a
key-management network setting

We would be interested in collaborating on a submission to NIST

® Is it possible to merge with a DKLS submission?

Jonathan Katz Distributed KeyGen. .. 7/21

No-honest-majority ECDSA

CGGMP protocol

CGGMP protocol offers
® Support for any t < n
® Presigning + one-round online signing
® Universally composable
® Security for adaptive adversaries

e Can incorporate identifiable abort

Jonathan Katz Distributed KeyGen. .. 8/21

No-honest-majority ECDSA

CGGMP protocol (high level)

Key generation and provisioning
® Run DKG protocol to generate shares of a private key (denoted [x];)

® Each party P; generates a Paillier key N;, values s;, t; € Z}k\/,-' and ZK
proofs of various properties of those parameters

Jonathan Katz Distributed KeyGen. .. 9/21

No-honest-majority ECDSA

CGGMP protocol (high level)

Key generation and provisioning
® Run DKG protocol to generate shares of a private key (denoted [x];)
® Each party P; generates a Paillier key N;, values s;, t; € Z}k\/,-' and ZK

proofs of various properties of those parameters

Signing
® Generate random [k~ 1], [a]:
e Compute [ak~!]; and [xk~1]; using a multiplication protocol
® Reconstruct g? and ak~!; use these to compute g and r := F(g¥)
e Locally compute m- [k~ +r- [xk~ e = [k~L - (m+ rx)];

Jonathan Katz Distributed KeyGen. .. 9/21

No-honest-majority ECDSA

Provisioning

Provisioning is somewhat slow. . .

Jonathan Katz Distributed KeyGen. ..

No-honest-majority ECDSA

Provisioning

Provisioning is somewhat slow. . .

Observation: provisioning can be done once for a given network of parties
(rather than on a per-key basis)

Jonathan Katz Distributed KeyGen. ..

No-honest-majority ECDSA

Provisioning

Provisioning is somewhat slow. . .

Observation: provisioning can be done once for a given network of parties
(rather than on a per-key basis)

Of course, need to prove that this does not affect security

Jonathan Katz Distributed KeyGen. ..

No-honest-majority ECDSA

Using precomputation to optimize signing

The signing protocol involves many ZK proofs

One bottleneck: = 20t computations of the form sj?(tjy mod N;, where
|| x|| & 500, ||yl ~ 3500, and || ;|| ~ 3000

Jonathan Katz Distributed KeyGen. .. 11/21

No-honest-majority ECDSA

Using precomputation to optimize signing

The signing protocol involves many ZK proofs

One bottleneck: = 20t computations of the form sj?(tjy mod N;, where
|| x|| & 500, ||yl ~ 3500, and || ;|| ~ 3000

Observation: do precomputation during provisioning to speed up
fixed-base multi-exponentiations

e E.g., for parameters above, ~ 8% speedup by storing ~ 300KB

Jonathan Katz Distributed KeyGen. .. 11/21

No-honest-majority ECDSA

(Key-dependent) presigning

CGGMP presigning computes gk, [k~];, and [xk~!];

® Given this information and m, can sign in one round

Jonathan Katz Distributed KeyGen. .. 12/21

No-honest-majority ECDSA

(Key-dependent) presigning

CGGMP presigning computes gk, [k~];, and [xk~!];

® Given this information and m, can sign in one round

Note that presigning is key-dependent

® Key-dependent presigning is not great in practice

Jonathan Katz Distributed KeyGen. .. 12/21

No-honest-majority ECDSA

(Key-dependent) presigning

CGGMP presigning computes gk, [k~];, and [xk~!];

® Given this information and m, can sign in one round

Note that presigning is key-dependent

® Key-dependent presigning is not great in practice

Question: is (efficient) key-independent presigning (with one-round online
signing) possible in the no-honest-majority setting?

Jonathan Katz Distributed KeyGen. .. 12/21

Honest-majority ECDSA

Honest-majority ECDSA

Jonathan Katz Distributed KeyGen. .. 13/21

Honest-majority ECDSA

Honest-majority ECDSA

We see value in honest-majority ECDSA protocols

® Can be more efficient, while offering “equivalent” security for some
applications

e Can offer better availability

e Can offer security properties (e.g., robustness) not achievable
otherwise

We would be interested in collaborating on a submission to NIST

Jonathan Katz Distributed KeyGen. .. 13/21

Honest-majority ECDSA

Honest-majority ECDSA

Note

In the honest-majority setting, the number of parties running the protocol
is (at least) 2t + 1

Jonathan Katz

Distributed KeyGen. .. 14 /21

Honest-majority ECDSA

Honest-majority ECDSA

Note

In the honest-majority setting, the number of parties running the protocol
is (at least) 2t + 1

Damgérd et al. (2020) show an efficient honest-majority ECDSA protocol
® Appears covered by US Patent 11,757,657 assigned to Sepior APS

Jonathan Katz Distributed KeyGen. .. 14 /21

Honest-majority ECDSA

Honest-majority ECDSA

Note

In the honest-majority setting, the number of parties running the protocol
is (at least) 2t + 1

Damgérd et al. (2020) show an efficient honest-majority ECDSA protocol
® Appears covered by US Patent 11,757,657 assigned to Sepior APS

Will sketch an alternate approach

® One possibility. . .

Jonathan Katz Distributed KeyGen. .. 14 /21

Honest-majority ECDSA

Honest-majority ECDSA (high level)

Provisioning and key generation

® Provision parties with setup for PRSS (cf. DKG talk)

® Honest-majority DKG to generate [x];
Presigning

® Generate random [k~ 1., [a];

e Compute [ak—!]; using a multiplication protocol

® Reconstruct ak~1; compute [K]:, g, and r := F(g¥)
Signing

e Compute m-[k™ e+ r-[k7 e - [X]e = [k1 - (M4 X))o

Jonathan Katz Distributed KeyGen. ..

Honest-majority ECDSA

Honest-majority ECDSA (high level)

Provisioning and key generation
® Provision parties with setup for PRSS (cf. DKG talk)
® Honest-majority DKG to generate [x];

Key-independent presigning

® Generate random [k~ 1., [a];

e Compute [ak—!]; using a multiplication protocol

® Reconstruct ak~1; compute [K]:, g, and r := F(g¥)
Signing

e Compute m-[k™ e+ r-[k7 e - [X]e = [k1 - (M4 X))o

Jonathan Katz Distributed KeyGen. .. 16/21

Honest-majority ECDSA

Batch presigning

Presigning needs a multiplication protocol resilient to malicious behavior

Jonathan Katz Distributed KeyGen. .. 17/21

Honest-majority ECDSA

Batch presigning

Presigning needs a multiplication protocol resilient to malicious behavior

Can amortize cost of multiplication by doing batch presigning

® This becomes practical when presigning is key-independent!

Jonathan Katz Distributed KeyGen. .. 17/21

Honest-majority ECDSA

Batch multiplication [Nordholt-Veeningen (2018)]

Given {[a;]c} 71, {[bi]e} ™t

Jonathan Katz Distributed KeyGen. .. 18/21

Honest-majority ECDSA

Batch multiplication [Nordholt-Veeningen (2018)]

Given {[a;]c} 71, {[bi]e} ™t

Let F, G be degree-m polynomials with F(i) = a;, G(i) = b; for i € [m];

locally compute {[a; = F(j)]¢ f;";iz and {[b; = G(j)]: f;"nfb

Jonathan Katz

Distributed KeyGen. .. 18/21

Honest-majority ECDSA

Batch multiplication [Nordholt-Veeningen (2018)]

Given {[a;]c} 71, {[bi]e} ™t

Let F, G be degree-m polynomials with F(i) = a;, G(i) = b; for i € [m];

locally compute {[a; = F(j)]¢ f;";iz and {[b; = G(j)]: f;"nfb

For i € [2m + 1], use “passively secure” multiplication to get {[c,-]t},?;"jl

Jonathan Katz Distributed KeyGen. .. 18/21

Honest-majority ECDSA

Batch multiplication [Nordholt-Veeningen (2018)]

Given {[a;]c} 71, {[bi]e} ™t

Let F, G be degree-m polynomials with F(i) = a;, G(i) = b; for i € [m];

locally compute {[a; = F(j)]¢ f;";iz and {[b; = G(j)]: f;"nfb

For i € [2m + 1], use “passively secure” multiplication to get {[c,-]t},?;"jl

Let H be degree-2m polynomial with H(i) = ¢; for i € [2m + 1]
e If everyone was honest, then H(X) = F(X) - G(X)

Jonathan Katz Distributed KeyGen. .. 18/21

Honest-majority ECDSA

Batch multiplication [Nordholt-Veeningen (2018)]

Given {[a;]c} 71, {[bi]e} ™t

Let F, G be degree-m polynomials with F(i) = a;, G(i) = b; for i € [m];

locally compute {[a; = F(j)]¢ f;";iz and {[b; = G(j)]: f;"nfb

For i € [2m + 1], use “passively secure” multiplication to get {[c,-]t},?;"jl

Let H be degree-2m polynomial with H(i) = ¢; for i € [2m + 1]
e If everyone was honest, then H(X) = F(X) - G(X)

Choose a +— Zg; reconstruct F(«), G(«), H() and check correctness

Jonathan Katz Distributed KeyGen. .. 18/21

Honest-majority ECDSA

Batch presigning

Measuring performance for threshold signing of a single message is not
indicative of the amortized performance when batch presigning is used

Jonathan Katz Distributed KeyGen. .. 19/21

Honest-majority ECDSA

Highlighted some (technical) considerations for threshold cryptography in
“key-management networks"

® Should be taken into account in submissions/evaluation

Interest in standardizing CGGMP no-honest-majority protocol +
honest-majority ECDSA protocol

Jonathan Katz Distributed KeyGen. .. 20/21

Distributed KeyG 21/21

	Overview
	Key-management networks
	ECDSA
	No-honest-majority ECDSA
	Honest-majority ECDSA
	

