
Standardizing Protocols for Threshold ECDSA

Jonathan Katz
Chief Scientist, Dfns

Sept. 26, 2023
MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023

Thanks to Denis Varlakov, Nik Sorokovikov, and Antoine Urban for helpful
discussions

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
1 / 21



Overview

Overview of the talk

Threshold cryptography (signing) in a “key-management network”

Applies to schemes beyond ECDSA

Standardizing threshold ECDSA protocols

No-honest-majority setting
Honest-majority setting

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
2 / 21



Overview

Overview of the talk

Threshold cryptography (signing) in a “key-management network”

Applies to schemes beyond ECDSA

Standardizing threshold ECDSA protocols

No-honest-majority setting
Honest-majority setting

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
2 / 21



Key-management networks

Key-management network

Most (all?) treatments of threshold cryptography in the literature
assume a single user distributing a key among n parties

Users act independently, and may choose different sets of parties

Even if users choose (some of) the same parties, protocol executions
for different users’ keys are considered in isolation

Key-management network: a dedicated set of n parties holding shares
of multiple keys on behalf of multiple users

Technical advantages:

Each party’s state can be shared across protocol executions involving
different keys

Possibility of parallelization/batch processing across keys

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
3 / 21



Key-management networks

Key-management network

Most (all?) treatments of threshold cryptography in the literature
assume a single user distributing a key among n parties

Users act independently, and may choose different sets of parties

Even if users choose (some of) the same parties, protocol executions
for different users’ keys are considered in isolation

Key-management network: a dedicated set of n parties holding shares
of multiple keys on behalf of multiple users

Technical advantages:

Each party’s state can be shared across protocol executions involving
different keys

Possibility of parallelization/batch processing across keys

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
3 / 21



Key-management networks

Key-management network

Most (all?) treatments of threshold cryptography in the literature
assume a single user distributing a key among n parties

Users act independently, and may choose different sets of parties

Even if users choose (some of) the same parties, protocol executions
for different users’ keys are considered in isolation

Key-management network: a dedicated set of n parties holding shares
of multiple keys on behalf of multiple users

Technical advantages:

Each party’s state can be shared across protocol executions involving
different keys

Possibility of parallelization/batch processing across keys

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
3 / 21



Key-management networks

Example

The robust KeyGen protocol I described previously

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
4 / 21



Key-management networks

Suggestions

Proposers should be encouraged to highlight potential optimizations
of their protocols when run in a key-management network

Schemes should be evaluated (among other factors) based on their
performance in a “key-management network” setting

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
5 / 21



ECDSA

(Threshold) ECDSA

ECDSA

G is a cyclic group of prime order q, with generator g

Private key x ∈ Zq; public key y = g x

To sign a (hashed) message m:

Choose k ← Zq; compute R := gk and r := F (R)
Compute s := k−1 · (m + rx)

Threshold ECDSA

n is the total number of parties

t is an upper bound on the number of corrupted parties

Honest majority: t < n/2; no-honest majority: n/2 ≤ t < n

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
6 / 21



ECDSA

(Threshold) ECDSA

ECDSA

G is a cyclic group of prime order q, with generator g

Private key x ∈ Zq; public key y = g x

To sign a (hashed) message m:

Choose k ← Zq; compute R := gk and r := F (R)
Compute s := k−1 · (m + rx)

Threshold ECDSA

n is the total number of parties

t is an upper bound on the number of corrupted parties

Honest majority: t < n/2; no-honest majority: n/2 ≤ t < n

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
6 / 21



No-honest-majority ECDSA

Threshold ECDSA in the no-honest-majority setting

Will focus on the CGGMP protocol

Goal is not to present the protocol in detail

Will highlight some optimizations/issues that arise in a
key-management network setting

We would be interested in collaborating on a submission to NIST

Is it possible to merge with a DKLS submission?

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
7 / 21



No-honest-majority ECDSA

CGGMP protocol

CGGMP protocol offers

Support for any t < n

Presigning + one-round online signing

Universally composable

Security for adaptive adversaries

Can incorporate identifiable abort

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
8 / 21



No-honest-majority ECDSA

CGGMP protocol (high level)

Key generation and provisioning

Run DKG protocol to generate shares of a private key (denoted [x ]t)

Each party Pi generates a Paillier key Ni , values si , ti ∈ Z∗
Ni
, and ZK

proofs of various properties of those parameters

Signing

Generate random [k−1]t , [a]t

Compute [ak−1]t and [xk−1]t using a multiplication protocol

Reconstruct ga and ak−1; use these to compute gk and r := F (gk)

Locally compute m · [k−1]t + r · [xk−1]t = [k−1 · (m + rx)]t

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
9 / 21



No-honest-majority ECDSA

CGGMP protocol (high level)

Key generation and provisioning

Run DKG protocol to generate shares of a private key (denoted [x ]t)

Each party Pi generates a Paillier key Ni , values si , ti ∈ Z∗
Ni
, and ZK

proofs of various properties of those parameters

Signing

Generate random [k−1]t , [a]t

Compute [ak−1]t and [xk−1]t using a multiplication protocol

Reconstruct ga and ak−1; use these to compute gk and r := F (gk)

Locally compute m · [k−1]t + r · [xk−1]t = [k−1 · (m + rx)]t

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
9 / 21



No-honest-majority ECDSA

Provisioning

Provisioning is somewhat slow. . .

Observation: provisioning can be done once for a given network of parties
(rather than on a per-key basis)

Of course, need to prove that this does not affect security

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
10 / 21



No-honest-majority ECDSA

Provisioning

Provisioning is somewhat slow. . .

Observation: provisioning can be done once for a given network of parties
(rather than on a per-key basis)

Of course, need to prove that this does not affect security

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
10 / 21



No-honest-majority ECDSA

Provisioning

Provisioning is somewhat slow. . .

Observation: provisioning can be done once for a given network of parties
(rather than on a per-key basis)

Of course, need to prove that this does not affect security

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
10 / 21



No-honest-majority ECDSA

Using precomputation to optimize signing

The signing protocol involves many ZK proofs

One bottleneck: ≈ 20t computations of the form sxj t
y
j mod Nj , where

∥x∥ ≈ 500, ∥y∥ ≈ 3500, and ∥Ni∥ ≈ 3000

Observation: do precomputation during provisioning to speed up
fixed-base multi-exponentiations

E.g., for parameters above, ≈ 8× speedup by storing ≈ 300KB

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
11 / 21



No-honest-majority ECDSA

Using precomputation to optimize signing

The signing protocol involves many ZK proofs

One bottleneck: ≈ 20t computations of the form sxj t
y
j mod Nj , where

∥x∥ ≈ 500, ∥y∥ ≈ 3500, and ∥Ni∥ ≈ 3000

Observation: do precomputation during provisioning to speed up
fixed-base multi-exponentiations

E.g., for parameters above, ≈ 8× speedup by storing ≈ 300KB

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
11 / 21



No-honest-majority ECDSA

(Key-dependent) presigning

CGGMP presigning computes gk , [k−1]t , and [xk−1]t

Given this information and m, can sign in one round

Note that presigning is key-dependent

Key-dependent presigning is not great in practice

Question: is (efficient) key-independent presigning (with one-round online
signing) possible in the no-honest-majority setting?

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
12 / 21



No-honest-majority ECDSA

(Key-dependent) presigning

CGGMP presigning computes gk , [k−1]t , and [xk−1]t

Given this information and m, can sign in one round

Note that presigning is key-dependent

Key-dependent presigning is not great in practice

Question: is (efficient) key-independent presigning (with one-round online
signing) possible in the no-honest-majority setting?

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
12 / 21



No-honest-majority ECDSA

(Key-dependent) presigning

CGGMP presigning computes gk , [k−1]t , and [xk−1]t

Given this information and m, can sign in one round

Note that presigning is key-dependent

Key-dependent presigning is not great in practice

Question: is (efficient) key-independent presigning (with one-round online
signing) possible in the no-honest-majority setting?

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
12 / 21



Honest-majority ECDSA

Honest-majority ECDSA

We see value in honest-majority ECDSA protocols

Can be more efficient, while offering “equivalent” security for some
applications

Can offer better availability

Can offer security properties (e.g., robustness) not achievable
otherwise

We would be interested in collaborating on a submission to NIST

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
13 / 21



Honest-majority ECDSA

Honest-majority ECDSA

We see value in honest-majority ECDSA protocols

Can be more efficient, while offering “equivalent” security for some
applications

Can offer better availability

Can offer security properties (e.g., robustness) not achievable
otherwise

We would be interested in collaborating on a submission to NIST

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
13 / 21



Honest-majority ECDSA

Honest-majority ECDSA

Note

In the honest-majority setting, the number of parties running the protocol
is (at least) 2t + 1

Damg̊ard et al. (2020) show an efficient honest-majority ECDSA protocol

Appears covered by US Patent 11,757,657 assigned to Sepior APS

Will sketch an alternate approach

One possibility. . .

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
14 / 21



Honest-majority ECDSA

Honest-majority ECDSA

Note

In the honest-majority setting, the number of parties running the protocol
is (at least) 2t + 1

Damg̊ard et al. (2020) show an efficient honest-majority ECDSA protocol

Appears covered by US Patent 11,757,657 assigned to Sepior APS

Will sketch an alternate approach

One possibility. . .

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
14 / 21



Honest-majority ECDSA

Honest-majority ECDSA

Note

In the honest-majority setting, the number of parties running the protocol
is (at least) 2t + 1

Damg̊ard et al. (2020) show an efficient honest-majority ECDSA protocol

Appears covered by US Patent 11,757,657 assigned to Sepior APS

Will sketch an alternate approach

One possibility. . .

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
14 / 21



Honest-majority ECDSA

Honest-majority ECDSA (high level)

Provisioning and key generation

Provision parties with setup for PRSS (cf. DKG talk)

Honest-majority DKG to generate [x ]t

Presigning

Generate random [k−1]t , [a]t

Compute [ak−1]t using a multiplication protocol

Reconstruct ak−1; compute [k]t , g
k , and r := F (gk)

Signing

Compute m · [k−1]t + r · [k−1]t · [x ]t = [k−1 · (m + rx)]2t

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
15 / 21



Honest-majority ECDSA

Honest-majority ECDSA (high level)

Provisioning and key generation

Provision parties with setup for PRSS (cf. DKG talk)

Honest-majority DKG to generate [x ]t

Key-independent presigning

Generate random [k−1]t , [a]t

Compute [ak−1]t using a multiplication protocol

Reconstruct ak−1; compute [k]t , g
k , and r := F (gk)

Signing

Compute m · [k−1]t + r · [k−1]t · [x ]t = [k−1 · (m + rx)]2t

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
16 / 21



Honest-majority ECDSA

Batch presigning

Presigning needs a multiplication protocol resilient to malicious behavior

Can amortize cost of multiplication by doing batch presigning

This becomes practical when presigning is key-independent!

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
17 / 21



Honest-majority ECDSA

Batch presigning

Presigning needs a multiplication protocol resilient to malicious behavior

Can amortize cost of multiplication by doing batch presigning

This becomes practical when presigning is key-independent!

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
17 / 21



Honest-majority ECDSA

Batch multiplication [Nordholt-Veeningen (2018)]

Given {[ai ]t}m+1
i=1 , {[bi ]t}m+1

i=1

Let F ,G be degree-m polynomials with F (i) = ai , G (i) = bi for i ∈ [m];
locally compute {[aj = F (j)]t}2m+1

j=m+2 and {[bj = G (j)]t}2m+1
j=m+2

For i ∈ [2m + 1], use “passively secure” multiplication to get {[ci ]t}2m+1
i=1

Let H be degree-2m polynomial with H(i) = ci for i ∈ [2m + 1]

If everyone was honest, then H(X ) = F (X ) · G (X )

Choose α← Zq; reconstruct F (α), G (α), H(α) and check correctness

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
18 / 21



Honest-majority ECDSA

Batch multiplication [Nordholt-Veeningen (2018)]

Given {[ai ]t}m+1
i=1 , {[bi ]t}m+1

i=1

Let F ,G be degree-m polynomials with F (i) = ai , G (i) = bi for i ∈ [m];
locally compute {[aj = F (j)]t}2m+1

j=m+2 and {[bj = G (j)]t}2m+1
j=m+2

For i ∈ [2m + 1], use “passively secure” multiplication to get {[ci ]t}2m+1
i=1

Let H be degree-2m polynomial with H(i) = ci for i ∈ [2m + 1]

If everyone was honest, then H(X ) = F (X ) · G (X )

Choose α← Zq; reconstruct F (α), G (α), H(α) and check correctness

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
18 / 21



Honest-majority ECDSA

Batch multiplication [Nordholt-Veeningen (2018)]

Given {[ai ]t}m+1
i=1 , {[bi ]t}m+1

i=1

Let F ,G be degree-m polynomials with F (i) = ai , G (i) = bi for i ∈ [m];
locally compute {[aj = F (j)]t}2m+1

j=m+2 and {[bj = G (j)]t}2m+1
j=m+2

For i ∈ [2m + 1], use “passively secure” multiplication to get {[ci ]t}2m+1
i=1

Let H be degree-2m polynomial with H(i) = ci for i ∈ [2m + 1]

If everyone was honest, then H(X ) = F (X ) · G (X )

Choose α← Zq; reconstruct F (α), G (α), H(α) and check correctness

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
18 / 21



Honest-majority ECDSA

Batch multiplication [Nordholt-Veeningen (2018)]

Given {[ai ]t}m+1
i=1 , {[bi ]t}m+1

i=1

Let F ,G be degree-m polynomials with F (i) = ai , G (i) = bi for i ∈ [m];
locally compute {[aj = F (j)]t}2m+1

j=m+2 and {[bj = G (j)]t}2m+1
j=m+2

For i ∈ [2m + 1], use “passively secure” multiplication to get {[ci ]t}2m+1
i=1

Let H be degree-2m polynomial with H(i) = ci for i ∈ [2m + 1]

If everyone was honest, then H(X ) = F (X ) · G (X )

Choose α← Zq; reconstruct F (α), G (α), H(α) and check correctness

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
18 / 21



Honest-majority ECDSA

Batch multiplication [Nordholt-Veeningen (2018)]

Given {[ai ]t}m+1
i=1 , {[bi ]t}m+1

i=1

Let F ,G be degree-m polynomials with F (i) = ai , G (i) = bi for i ∈ [m];
locally compute {[aj = F (j)]t}2m+1

j=m+2 and {[bj = G (j)]t}2m+1
j=m+2

For i ∈ [2m + 1], use “passively secure” multiplication to get {[ci ]t}2m+1
i=1

Let H be degree-2m polynomial with H(i) = ci for i ∈ [2m + 1]

If everyone was honest, then H(X ) = F (X ) · G (X )

Choose α← Zq; reconstruct F (α), G (α), H(α) and check correctness

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
18 / 21



Honest-majority ECDSA

Batch presigning

Note

Measuring performance for threshold signing of a single message is not
indicative of the amortized performance when batch presigning is used

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
19 / 21



Honest-majority ECDSA

Summary

Highlighted some (technical) considerations for threshold cryptography in
“key-management networks”

Should be taken into account in submissions/evaluation

Interest in standardizing CGGMP no-honest-majority protocol +
honest-majority ECDSA protocol

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
20 / 21



Thank you!

Jonathan Katz Distributed KeyGen. . .
Sept. 26, 2023MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023
21 / 21


	Overview
	Key-management networks
	ECDSA
	No-honest-majority ECDSA
	Honest-majority ECDSA
	

