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Outline

* Why current safety-critical testing isn’t suitable
* Assurance based on input space coverage,
*Explainable Al as part of validation, and
*Transfer learning

Some problems in assured autonomy,
and potential solutions

IEEE DSC 2023



What is NIST and why are we doing this?

 US Government agency, which supports US industry through
developing better measurement and test methods

e 3,000 scientists, engineers, and staff including 4 Nobel laureates
e Broad involvement with industry and academia
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What are interaction faults?

* NIST studied software failures in 15 years of
FDA medical device recall data

* What causes software failures?
* logic errors? calculation errors? inadequate
input checking? interaction faults? Etc.

Interaction faults: e.g., failure occurs if
pressure < 10 & volume > 300
(interaction between 2 factors)

So this is a 2-way interaction
=> testing all pairs of values can find this fault

NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY
US. DEPARTMENT OF COMMERCE



How are interaction faults distributed?

* Interactions e.g., failure occurs if

pressure < 10 (1-way interaction)
pressure < 10 & volume > 300 (2-way interaction)

pressure < 10 & volume > 300 & velocity =5  (3-way interaction)

 Surprisingly, no one had looked at interactions > 2-way before
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Cumulative percent of faults
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Cumulative percent of faults
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NASA distributed database

Cumulative percent of faults
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Fault profile better
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TCPI/IP

Cumulative percent of faults
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Various domains collected

Cumulative proportion of faults fort = 1..6

Wide variation in percent

of failures caused by
single factor

Variability decreases as
number of factors
increases

More testing or users
=> harder to find errors,

fewer single factor failures

e Number of factors involved in failures is small
* No failure involving more than 6 variables has been seen
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Fault distribution as testing progresses

* for testing cycles, starting from distribution of branch conditions;
curve moves down and to the right with more inputs/usage;
close to empirical data

Empirical data Model
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How is all this related to autonomous
systems? -

Mars Curiosity Rovet




(Slide from Darryl Ahner, US Air Force Institute of Technology)

Defense Science Board Study

STAT T&E COE: Scientia Prudentia et Valor mmmmmmn

DSB 2012 The Role of Autonomy in DoD Systems Studxlrecommends:
“USD(AT&L) to create developmental and operational T&E

techniques that focus on the unique challenges of autonomy (to include

developing operational training techniques that explicitly build trust in

autonomous systems).”

Recommendation:

USD(AT&L) establish developmental and operational

T&E techniques that focus on the unique challenges of

autonomy The Role of Autonomy in DoD Systems

. Coping with the difficulty of enumerating all

conditions and non-deterministic responses

. Basis for system decisions often not apparent
to user
. Measuring trust that the autonomous system

will interact with its human supervisor as intended
Leverage the benefits of robust simulation

*
MH IEEE DSC 2023 4
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Software safety assurance is already very expensive

Consumer level software cost:
about 50% code development,
50% testing and verification

For aviation life-critical,
12% code development,
88% testing and verification
(Software is about 30% of
cost for new civilian aircraft,
higher for military)

Autonomy makes the
problem even harder!

V&YV cost and Certification

For FAA compliant DO-178B Level A software, the
industry usually spends 7 times as much on verification
(reviews, analysis, test). So that's about 12% for
development and 88% for verification.

Level B reduces the verification cost by approximately
15%. The mix is then 25% development, 75% verification.

Randall Fulton
FAA Designated Engineering Representative
(private email to L. Markosian, July 2008)

13 April 2010 NFM 2010 ler
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Autonomy makes the problem even more expensive!

11:171)  Assurance for Autonomous Systems is Hard

Traditional testing will require exorbitant time and money:

11B miles, 500 years, $6B
- Driving to Safety, RAND Corp. Report, 2016

Table 1. Examples of Miles and Years Needed to Demonstrate Autonomous Vehicle Reliability

Benchmark Failure Rate

How many miles (years®) would (A) 1.09 fatalities per (B) 77 reported
autonomous vehicles have to be 100 million miles? injuries per 100
£ driven... million miles?
% | (1) without failure to demonstrate with 95% 275 million miles 3.9 million miles
g confidence that their failure rate is at most... (12.5 years) (2 months)
T (2) to demonstrate with 95% conlidence their 8.8 billion miles 125 million miles
5 failure rate to within 20% of the trve rate of... (400 years) (5.7 years)
l% (3) to demonstrate with 95% confidence and 11 billion miles 161 million miles
80% power that their failure rate is 20% better (900 years) (7.3 years)
than the human driver failure rate of...

(C) 190 reported
crashes per 100
million miles?

1.6 million miles
(1 month)

51 million miles
(2.3 years)

65 million miles
(3 years)

* We assess the fime it would Iake to compele the requisite miles with a flegt of 20 gyfgaomous vehicles flarger than any known existing fleet] driving 24 hours

a day, 365 days a year, ot on average speed of 25 miles per hour.
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DPA Illustrating the challenge

Non-Learning System Learning-Enabled Autonomous System
(e.g. manual brake-by-wire) (e.g. automated brake-by-wire for collision avoidance)
perception Algorithm Conventional

(e.g. trained neural network)

safety assurance
methods don’t
work well for this

‘ - Adaptive Control

Vision Sensor (e.g. learning system dynamics)

Safety assurance Safety assurance
can be provided can NOT be provided
: : NIST

National Institute of
IEEE DSC 2023 Standards and Technology
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High level DARPA Assured Autonomy Goals

« Increase scalability of design-time assurance

« What is the baseline capability of the proposed methods, in terms of the hybrid
state-space and number and complexity of learning-enabled components

« How do you plan to scale up by an order of magnitude?

« How will you characterize the tradeoffs between fidelity of your modeling
abstractions and scalability of the verification approach.

« Reduce overhead of operation-time assurance

« What is the baseline overhead of the operation-time assurance monitoring
techniques?

« How do you plan to minimize it to be below 10% of the nominal system resource
utilization?

« Scale up dynamic assurance

« What is the size and scale of dynamic assurance case that can be developed and
dynamically evaluated with your tools?

Reduce trials to assurance
« How will your approach quantifiably reduce the need for statistical testing?

Scalability
Cost

Resources

Time

NIST

National Institute of
Standards and Technology



Code coverage works well - for conventional software

* Test coverage has traditionally
stronger been defined using graph-based
structural coverage criteria:

e statement (weak)
. branch (better)
@ . etc
> whete: * Based on paths through the code
B - Branch coverage/Decision coverage
, BC - BranchCondition coverage

' DOU - Al G s embinon coverags * We may have perfect structural

DPU - AllP-uses coverage

weaker DU - Al dpaths covcs coverage of code, but what does
3 Smentovesge that tell us about response to

rare inputs?

Subsumption relationships of

structural coverage criteria e What if the code is always the

same, and only the inputs
NIST
matter? —e I



Can we use code coverage for machine learning?

* Much of Al/ML depends
on various neural nets

* Algorithm and code
stays the same

e Connections and
weights vary

* Behavior changes
depending on inputs
used in training

Input layer Hidden layer

Input #1 ‘ I/‘

IEEE DSC 2023

Output layer

‘ Output

NIST
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Input space coverage is needed

* Gold standard of assurance and verification of life-critical software
is not suitable for much of new life-critical autonomy software

* We can measure “neuron coverage”, but indirect measure and not clear how
closely related to accuracy and ability to correctly process all of the input
space

Nobody at the
wheel ...

* Measure the input space
directly

* Then see if the Al system
handles all of it correctly




Outline

* Why current safety-critical assurance isn’t suitable
* Assurance based on input space coverage
*Explainable Al as part of validation, and

*Transfer learning



Major DoD investment in assured autonomy

“The notion that autonomous systems can be fully tested is becoming increasingly infeasible as higher levels of self
governing systems become a reality...the stanaard practice of testing all possible states and all ranges of inputs to the
system becomes an unachievable goal. Existing TEVV methods are, by themselves, insufficient for TEVV of
autonomous systems; therefore a fundamental change is needed in how we validate and verify these systems.

- OSD TEV&V Strateqy Report, May 2015

(Note that "testing all possible states and all ranges of inputs” was

already unachievable, but the point holds.)
NIST

National Institute of
IEEE DSC 2023 Standards and Technology



NewScientist It doesn’t take much

Scientists have trained rats to drive intelligence to drive a
tiny cars to collect food car. Even rats can do it!
00POOOO

22 October 2019
By Alice Klein

eI

But can they do it under
all kinds of conditions ?

The problem is

harder outside of a
constrained
environment sy

[EEE DSC 2023 Stondards and Technology



Things get tricky as the scene becomes complex

* Multiple conditions involved in accidents

* "The camera failed to recognize the white truck against a
bright sky” (2 factors)

* "The sensors failed to pick up street signs, lane markings, and
even pedestrians due to the angle of the car shifting in rain

and the direction of the sun” (3 factors)

e We need to understand what combinations of
conditions are included in testing NIST

National Institute of
IEEE DSC 2023 Standards and Technology




How can we measure interaction fault detection capability?

rows of input 0 1 1 0

\1001

19 combinations
included in test set

Kuhn, D. R., Mendoza, I. D., Kacker, R. N., & Lei, Y. (2013).
Combinatorial coverage measurement concepts and

applications. 2013 IEEE Sixth Intl Conference on Software Testing,
Verification and Validation Workshops

Combination values Coverage

ab 00, 01, 10 75
ac 00, 01, 10 75
ad 00, 01, 11 75
bc 00, 11 .00
bd 00, 01, 10, 11 1.0
cd 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

NIST

National Institute of
Standards and Technology
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Total possible 2-

ab  00,01,10 75 o
way combinations

ac 00 01 10 75 )
ad 00 01, 11 75 = D2 (2) = 24
bc 00, 11 50
bd 00,01, 10, 11 1.0 |

S, = fraction of 2-
cd 00, 01 10, 11 1.0

way combinations
covered = 19/24

Rearranging - 079

the table:

00 00
01 01 00 00 00
10 10 01 01 01 00
11 11 10 10 11 11
bd cd ab ac ad bc

NIST

IEEE DSC 2023 National Institute of
Standards and Technology



Graphing Coverage Measurement

ENT oo 00
01 01
Y 10 10
P 11 11
B bd cd

00
01
10
ab

00
01
10
ac

100% coverage of .33 of combinations
75% coverage of .50 of combinations
50% coverage of .16 of combinations

00
01 00
11 11
ad bci | Completeness
0.8 -
-
QL
@
s
£ 0.6 -
S
£ S, = d M
S , = area under
= o curve
=
s =0.79
©
* 0.2
o-o v T . v . T v hd A T . v . Ll . hd A
0.0 0.2 0.4 0.6 0. 1.0
Fraction of parameter combination
Bottom line:
All combinations covered to at NIST
least .50 Natienal Institute of

IEEE DSC 2023 Stondards and Technology



What else does this chart show?

1 - S, = Untested combinations
(look for problems here)

S, = Tested combinations => code works for these NIST

National Institute of
IEEE DSC 2023 Standards and Technology



How is input combination coverage related
to structural coverage?

* Branch coverage condition theorem
* Where M, is the proportion of input combinations covered, and

* B, is the minimum proportion of input combinations triggering a
code branch,

* then 100% branch coverage will be achieved if

* (Recall that branch coverage subsumes statement coverage)

NIST

National Institute of
IEEE DSC 2023 Standards and Technology



How much combinatorial coverage is
achieved with conventional tests?

1

0.9 Fe L

e TR T
Spacecraft 07 e L b
software example . °¢ ST e e e (a1
- 82 variables, 2 o T i 4 9
- 7,489 tests, 0 =r i e W
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What levels of input space coverage are seen in
practical machine learning data sets?

Examples from WEKA data mining demo set

Combinations Combinations
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Research questions

* Practical ML examples don’t seem to have very high input space
coverage (previous slide)

* Can we improve results with better input space coverage?

* Empirical data show that small numbers of factors are involved in
system failures (generally 1 to 6).

* Is this also true of autonomous systems?

* How are input space coverage and classification/prediction
accuracy related?

* Can we apply some of these methods to temporal aspects?

(sequence covering arrays)
NIST

National Institute of
Standards and Technology



Outline

* Why current safety-critical testing isn’t suitable
* Assurance based on input space coverage
*Explainable Al as part of validation, and
*Transfer learning



What is the explainability problem?

* Al systems are good, but sometimes make mistakes, and human users
will not trust their decisions without explanation or justification
—> assurance and explainability are closely tied

* There is a tradeoff between Al accuracy and explainability: the most accurate
methods, such as convolutional neural nets (CNNs), provide no explanations;
understandable methods, such as rule-based, tend to be less accurate

* The black-box nature of these systems that makes assurance and testing
difficult also makes explanation even harder

NIST

National Institute of
IEEE DSC 2023 Stondards and Technology



Explainability — what’s current state of the art?

DARPA

Explainable AI — What Are We Trying To Do?

Today

» Why did you do that?

o
E===é= * Why not something else?
S.%EEQEE Learning This is a cat « When do you succeed?
SRR Process (p=.93) + When do you fail?
HE<A=0r » When can | trust you?
ERERER + How do | correct an error?
Training Learned Output User with
Data Function a Task
* | understand why
N 2 This Is a cat: « | understand why not
ew . 1 / . x *It has fur, whiskers, « | know when you'" succeed
Learning .~ and claws. 1k h 'l fail
o 1 | l i- ] | l P | -1t has this feature: | know when ! i
rocess * | know when to trust you
'q i ' ‘ } ' ' ‘ m u * | know why you erred
Tralnlng Explainable  Explanation User with
Data Model Interface a Task

Distribution Stat

ement "A" (Approve

>d for Public Releass

2, Distribution Unlimited

IEEE DSC 2023

Black-box statistical
predictions are
inadequate

Explanations must
be understandable
to non-specialist

NIST

National Institute of
Standards and Technology



How does this vehicle
move?

sw Jwv-lma

Tradeoff: / \ Expert system:

"""/: =a w\'" Good for explanations,
ww | [wew )| S0 not so good for accuracy
v | w e | ™
A N -

-OR - Neural nets:

DEEP NEURAL NETWORK G 9]0 d fo F aCCura Cy
)

Input A Hidden ] - Hidden 2 ’ Hidden 3 } Cutput
layer layer layer ayer layer

not so good for explanations

Can we get the
best of both worlds? NIST

National Institute of
IEEE DSC 2023 Standards and Technology




What has been tried?

* Interpretable models — e.g. rule-based expert systems: “if patient has
symptoms A and B, or has B with C and D, then illness is X”

* best for explanations
* hard to find rules
* |less accurate than other approaches

* Modify neural nets etc. to add explanations
* reduces accuracy, complicates the system
* explanations still not very understandable

* Model induction - infer explainable model from black-box
* flexible for application, good explanations using only input, output
* hard to produce the explainable model

 Our approach —derive rule predicates from inputs and outputs to
CNNs and other black-box functions NIST

National Institute of
IEEE DSC 2023 Standards and Technology



Fault location — identify fault-triggering input

Given: a set of tests that the SUT fails, which
combinations of variables/values triggered the failure?

variable/value combinations
In passing tests

variable/value combinations

Blue =
in failing tests

combinations
in passing tests

Yellow =
combinations

in passing tests o . -
Combinations in failing but

not in passing tests
These are the ones we want

NIST

National Institute of
IEEE DSC 2023 Stondards and Technol



Relevance to explainable Al

* | understand why

This is a cat: « | understand why not
*It has fur, whiskers, . ;
R | know when you'll sgcceed Non-class
* | know when you'll fail

+It has this feature:
‘ « | know when to trust you feature

« | know why you erred combinations

Explanation User with

Interface a Task aquatic,

venomous, 6 legs,

Class feature combinations -
brown & furry, black & furry, whiskers,

Individlal

feature
claws, ...not aquatic, not venomous, combinations —
not 6 legs, brown & furry, Animal shares features
whiskers, claws, with cat class
not aquatic, not ,
Jenomous ’not : Animal does not share
Kuhn, D. R., Kacker, R. N., Lei, Y., & Simos, D. E. (2020). ’ .
Combinatorial methods for explainable Al. In 2020 IEEE Intl legs features with non-cat
Conference on Software Testing, Verification and Validation EEE D ona classes a1

Workshops (ICSTW)



Clazs File [Clc:: He 1epl.cav; rows=1; cols=16 I f. . 2 1 5 6 1

Nomnalfie:  [Nomialieraeptieco: rowen36: b6 2wy 120 Sy 560 may 1820 Sway 4368 Gmar 5008 nput configuration

S — = e e e e e T T T e
10 0 1 0 0 0 0 0 1 1 0 0 4 1 0

Is this creature

0053 occurrences = s - i
a reptile? o07e cecuronces -
° 0055 occurrences = S = ;
0055 occurrences = 0.573 of cases, milk = 0
0072 occurrences = 0.750 of cases, alrkorne = 0
. 0081 occurrences = 0.635 of cases, agquatic = O
ConSIder rare D044 occurrences = 0.458 of cases, predator = 0

.406 of cases, toothed = 0
.813 of cases, backbone = 1

0038 ooccurrences
0078 occurrences

combinations

0076 occurrences = 0.792 of cases, breathes = 1
0090 occurrences = [0.938 of cases, wvenomous = [
0079 occurrences = 0.823 of cases, fins = 0

.373 of cases, nlegs = 4
.729 of cases, tail = 1
.865 of cases, domestic = 0
.448 of cases, catsize = 1

No single feature is sufficient 0036 occurrences

0070 ooccurrences

explanation — shares features with sl e
non-reptiles

I
o e Y e Y o e Y e s Y o o e o Y o} s

O000Z ooccurrences

No pair of features sufficient — [0805 sccurrences , :
] ] 0005 occurrences = 0.052 of cases, milk,nlegs = 0,4
Shares 2_Way Comb|nat|ons D00& occurrences = 0.063 of cases, eggs,nlegs =.l'4
0008 occurrences toothed, catsize = 0,1

.115 of cases, milk,catsize 0,1
.125 of cases, eggs,catsize = 1,1
0,1

W/ non-reptlles » |0011l occcurrences

0012 ooccurrences
0013 decwsrerERces

Mnirr1ec g g W e e e s ey e gy

.135 of cases, hair,catsize

4 == =42 = = == . U .

I
oD oo ooop o
=]
o
L
o
r+h
]
o
i
i
[
-



3-way combinations produce rules to
explain recognition of a reptile

00000 ooccurrences
00000 ooccurrences

Il
(]
o
H=

00000 occurrences .
.000 of cases, hair,nlegs,catsize
000 of cases, milk, aquatic,nlegs
.000 of cases, milk,nlegs,catsize
of cases, predator, toothed, nleq:

010 of cases, eggs,nlegs,catsize = 1,

00000 ooccurrences
00000 ooccurrences

0
a,
00000 ooccurrences 0
=

00000 ooccurrences
00001 occurrences

I
OO0 O0OO0OO0OoOOoOCd
=
(]
(o

00001 ooccurrences

.010 of cases, eggs,predator,nlegs = 1,0,4

00001 occurrences = .010 of cases. fteathers. toothed. backbone

Only reptiles have these combinations of features:

Non-rept|les in the not aquatic AND not toothed AND four legs
database do not have egg-laying AND not aquatic AND four legs
these 3-way not hairy AND four legs AND cat size

not milk-producing AND not aquatic AND four legs
not milk-producing AND four legs AND cat size
notpredator AND not toothed AND four legs

combinations



Mapping combinations to expressions

* |dentify t-way combinations that distinguish the predicted class from
others

* Combinations can be mapped to expressions to produce a rule-based
type of explanation

if (not aquatic AND not toothed AND four legs)
OR (egg-laying AND not aquatic AND four legs)
OR (not hairy AND four legs AND cat size)
OR (not milk-producing AND not aquatic AND four legs)
OR (not milk-producing AND four legs AND cat size)
OR (not predator AND not toothed AND four legs)
then reptile;
else not reptile;

As noted, none of the single factors above is sufficient for explanation

IEEE DSC 2023 44
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Clazs File: |Class file @1.cav; roms=1; cols=h

E Xa m p I e ° e m pty Mominal File: |Nominal file empty.cav; rows=7703; cols=5 |  2-wap: 10 3-wap: 10 4wap5  Swap 1l Bway 0
* Class File Contents: ggmpmaMm Humidity Light coz2 HumidityR atio
.
VS. occupied
[ ]
rooms, using

B3 B2 B2 B4

sensor data

v Enabled

Combinations = 10, Settings = Z10

Why do we conclude this room is occupied? D016 occuUrrences fd
00l& occurrences 0.
003& occcurrepsps Z
Ws = 0.005 of cases, CO_.,Hum_LdJ.tyRat.Lo = EZ, B4
/ 043 occurrences = 0.006 of cases, Light, HumidityRatio = BZ, B4
0054 occurrences = 0.007 of cases, Temperature,C0Z = B3, EZ
These levels of humidity and lighting are strong 0078 occurrences = 0.010 of cases, Humidity,CoZ = B3, B2
indication 0205 occurrences = 0.027 of cases, Temperature, HumidityRatio = E3, E4
0247 occurrences = 0.032 of cases, Temperature, Humidity = E3,E3
0495 occurrences = 0.064 of cases, Humidity, HumidityRatio = E3, B4
ConSidering levels of I|ght|ng, CO2, and 0523 occurrences = 0.068 of cases, Temperature = B3
humidity ratio provide even stronger evidence: g3l occurrences = 0.313 of cases, Humidity = B3
D083 oeccurrences = 0.011 of cases, Light = BZ
Emptv rooms donlt have these IeVGIS 0534 occurrences = 0.0&89 of cases, COC2 .=.B: .
2190 oeccurrences = 0.2B4 of cases, HumidityRatio = B4

00003 ococcurrences =
00005 ococurrences

00008 ooccurrences

.001 of cases, Temperature,Light,COZ = B3,BZ,BC
001 of cases, Humldlty,ngh% ScmgityRatlo = E3,EBZ, B4 45

00011l ococcurrences =



Cla:

File Infarmation
Classz File:

|C|ass file mall.csv; rows=1; colz=18

A different example:

Mominal File: |Nominal file meta.cav; rows=81; colz=18 | 2-way: 153 3-way: 816 d-way: 3,060 S-way: 8568

Class File Contents: | lymphatic affere lyme lymsz bypass extravas regen earh

lymph node pathology — S

why is this classified as
malignant not
metastatic?

ﬂBNMmA]¢Mhy]5%Vw] Bway |

* These combinations are
characteristic of lymphoma that
arises in lymph node instead of
metastatic that spread to node
from somewhere else

[v Enabled

Combinations = 153, Settings = 1358

0000 ooccurrences

0000 occurrences 0.

nininin =S upe T & T

0000 occcurrences = 0.000 of cases, chnode, spec = 4,1

0000 occurrences = 0.000 of cases, defect, chnode = 2,4

0000 occcurrences = 0.000 of cases, extrawvas,chnode = 1,4

D000 occcurrences = 0.000 of cases, lymphatic,chnode = 4,4

0001 occcurrences = 0.012 of cases, bypass, chnode = 1,4

0001 oceccurrences = 0.01Z2 of cases, chang, chnode = 2,4

0001 occcurrences = 0.012 of cases, chnode, exclu = 4,2

0001 occcurrences = 0.012 of cases, lyme,chnode = 1,4

D001 occcurrences = 0.01Z2 of cases, lymphatic, spec = 4,1

0002 oeccurrences = 0.0Z5 of cases, lyms, chnode = 1,4

000Z occurrences = 0.0Z5 of cases, affere,chnode = 2,4

00D0Z oceccurrences — 0.0Z25 of cases, dimin, chnode = 1,4

0002 oeccurrences = 0.0Z25 of cases, esarlyup,chnode = 2,4

0002 occurrences = 0.0Z5 of cases, enlar,chnode = 2,4

0002 oeccurrences = 0.0Z25 of cases, regen,chnode = 1,4

0002 oeccurrences = 0.02Z25 of cases, spec,num = 1,2

0003 occurrences = 0.037 of cases, lymphatic,disloc = 4,1

D004 occurrences = 0.049 of cases, chstru,spec = 8,1

D004 occurrences = 0.049 of cases, lymphatic,chstru = 4,8

D005 occcurrences = 0.068Z2 of cases, lymphatic,chang = 4,2
IEEEDSCZOZiETDG occurrences = 0.074 of cases, chstru,num = 8,2 46



Summary - explainable Al

* Combinatorial methods can provide explainable Al

* We have prototype that applies this approach

* Determine combinations of variable values that differentiate an example from other
possible conclusions

=>» Feature combinations present shared with class
=» Feature combinations not shared with class not present

* Method can be applied to black-box functions such as CNNs

* Present explanation in the preferred form of rules,
“if A& B, or Cwith D & E, then conclusion is X” ANST

IEEE DSC 2023 Standards and Technology



Outline

* Why current safety-critical testing isn’t suitable
* Assurance based on input space coverage
*Explainable Al as part of validation, and
*Transfer learning — example application

NIST

National Institute of
Standards and Technology



Transfer learning — what is the problem?

* Differences inevitably exist between training data sets,
test data sets, and later real-world data

* Further differences exist between data from two or
more different environments

How do we predict performance of a model trained on one
data set when applied to another?

New environment

*Changed environment

*Additional possible values, etc.

Lanus, E., Freeman, L. J., Kuhn, D. R., & Kacker, R. N. (2021, April). Combinatorial
Testing Metrics for Machine Learning. In 2021 IEEE Intl Conference on Software
Testing, Verification and Validation Workshops (ICSTW)




Transfer learning — conventional practice

Randomized selection — but how much random data wiill
be sufficient, especially with smaller data sets?

Ensure at least one of each object type — but this may
not be representative of object attribute distributions

Interactions are critical to consider in most ML
problems, especially for safety, but conventional
practice does little to ensure data sets are adequately

representative of interactions
NIST

National Institute of

IEEE DSC 2023 Stondards and Technology



Example — image analysis

* Planes in satellite imagery — Kaggle ML data set —
determine if image contains or does not contain an

airplane

« Two data sets — Southern California (SoCal, 21,151
images) or Northern California (NorCal, 10,849 images)

« 12 features, each discretized into 3 equal range bins

nY NANESHEY &R . S0 0N S SRk
REVERRAS el WL [ ] barhl)
. 0k T 0 O A L P A TR
ill“!!!ﬂﬁﬁliﬂ%lmﬂlll
B P W .

‘ National Institute of
Standards and Technology

"IEEE DSC 2023



Transfer learning problem

Train model on one set, apply to the other set
Problem —

* Model trained on larger, SoCal data applied to
smaller, NorCal data - performance drop

* Model trained on smaller, NorCal data applied to
larger, SoCal data - NO performance drop

This seems backwards!
Isn’t it better to have more data?
Can we measure, explain and predict it next time? | NSU

IEEE DSC 2023 Stondards and Technology
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Density of combinations in one versus the
other data set, 2-way

Interactions in Southern \ Northern Interactions in Northern \ Southern
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In Difference

In Intersection

I

- Not in Set

11 10

Image from Combinatorial Testing Metrics for Machine Learning, Lanus, Freeman, Kuhn, Kacker, IWCT 2021

For C= SoCaI_, N = NorCal, The NorCal data set has fewer “never seen”
|C\N| / |C| =0.02 ==l combinations, even with half as many
IN\C| / IN| =0.12 observations NIST

National Institute of
IEEE DSC 2023 Standards and Technology



Summary — Transfer learning

Current approaches to estimating success for transfer
learning are largely ad-hoc and not highly effective

Combinatorial methods show promise for improvements —
measurable quantities directly related to determining if one
data set is representative of the field of application

Much additional work is needed to evaluate this idea, and to
understand the link between combinatorial difference values
and prediction accuracy

Empirical studies planned
NIST

National Institute of
Standards and Technology



Assured autonomy — more questions than answers

*|nteractions of learning components with
programmed components — especially replacing
humans

*Changes the nature of system failures

* More like failures involving human factors issues?

© Turing test for bugs! Distinguish between

human-triggered and Al-triggered system failures?
NIST

National Institu
Standards and Technology



Assured autonomy — key points & current state

* For capability and cost reasons, autonomous components
are becoming routine in software engineering

* Many, or most, methods used in high assurance
conventional systems are not sufficient for many
autonomous components

 Structural coverage — not for neural nets, and others
* Formal proofs — for some parts but limited

* How to deal with learning, dynamic changes in system?

* Understanding and measuring interaction coverage is
necessary NIST

National Institute of
Standards and Technology



Where are we going?

* Need new approaches in:
* Design
e Simulation
 Validation
 Formal verification
* Testing
e Explainability

e Security — much bigger problem than safety assurance — solvable?

* All the old vulnerabilities apply — with greater consequences
S NP “Yield Sign”

* And new vulnerabilities W “Stop Sign

4 - A e
s \'. i
S SRR L
eSS XN » Mo
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Leadlng to °ee AI VS. AI : Authentic Adversarial Adversarial
IEEE DSC 2023 Input Perturbation lnput




Learning and Applying Combinatorial Methods

Self-contained tutorial on using combinatorial testing for real-world software

Key concepts and methods, explains use of software tools for combinatorial testing
Advanced topics such as the use of formal models and test oracle generation

Costs and practical considerations

Designed for testers or undergraduate students of computer science or engineering

NIST

Notianol baatinte of
Ssandords ond Technology
fecrroiogy Adriabar

INFORMATION SECURITY PRUEBAS COMBINATORIAS PRACTICAS

PRACTICAL COMBINATORIAL TESTING

NIST

National Institute of
Standards and Technology




http://csrc.nist.gov/acts

Automated Combinatorial Testing for Software acrs

f w

Overview

Combinatorial methods can reduce costs for software testing, and have significant applications in
software engineering:

« Combinatorial or t-way testing is a proven method for more effective testing at lower cost. The key
insight underlying its effectiveness
resulted from a series of studies by NIST
from 1999 to 2004. NIST research showed
that most software bugs and failures are
caused by one or two parameters, with
progressively fewer by three or more,
which means that combinatorial testing
can provide more efficient fault detection
than conventional methods. Multiple
studies have shown fault detection equal t 1
to exhaustive testing with a 20X to 700X
reduction in test set size. New algorithms

Cumulative proportion of faults fort = 1..6

- ——

compressing combinations into a small
number of tests have made this method practical for industrial use, providing better testing at lower
cost. See articles on high assurance software testing or security and reliability.

e Autonomous systems assurance: Input space coverage measurements are needed in life-
critical assurance and verification of autonomous systems, because current methods for assurance
of safety critical systems rely on measures of structural coverage, which do not apply to many
autonomous systems. Combinatorial methods, including a theorem relating measures of input
space coverage, offer a better approach for autonomous system verification.

* Metrology* for software engineering. Sound engineering requires adequate measurement and
analysis. Structural coverage enables formally defined criteria for test completeness, but even full
coverage may miss faults related to rare inputs. Combinatorial methods open new possibilities for
metrology in software engineering, providing a more scientific approach to assurance and
verification.

*Metrology is the science of measurement (NIST is the US national metrology institute).

ANEMAe Pasnhilc abarial Parvvarvrasma RISl vameos Maaes iraseesasnd €y eestsre s Al ot shast Atetaltte ewrbamee oaasd

S PROJECT LINKS

Overview
FAQs

ADDITIONAL PAGES

Quick start

Downloadable Tools

Combinatorial Methods in Testing
Why do Combinatorial Testing?
Event Sequence Testing
Oracle-free Testing and Test Automation
Case Studies

Input Space Measurement
Why Measure Input Space?
Case studies

Assured autonomy
Explainable Al, Verification, and Validation
Rule-based Expert Systems and Formal
Methods
Case studies

Cybersecurity Testing
Combinatorial approach
Magic mirror vulnerability testing tool
Case studies

Software Testing Methodology
NIST Testing Process
DOs and DON'Ts of testing

ACTS Library
Fundamental background papers
Papers on combinatorial test methods
Covering Array Library



http://www.afit.edu/STAT/ P%SAF

AIR FORCE INSTITUTE or TECHNOLOGY

HOME ABOUT AFIT  GRADUATE EDUCATION  CONTINUING EDUCATION  RESEARCH ~ CONSULTING  STUDENTS  LBRARY  ALUMNI  CAREERS QQ SEARCH : QUICK LINKS

STAT CENTER OF EXCELLENCE

CENTERHOME  OURPEOPLE  BEST PRACTICES AND TEST PLANNING GUIDES ~ TOOLS  ABOUT ~  PROGRAMS ~  STAT NEWSLETTER ~  ASKA STATQUESTION  SHORT COURSES

Welcome To The STAT Center Of Excellence

DASD (DT&E), in collaboration with the Commander Air Education and Training Command, established the STAT Center of
Excellence (COE) in April 2012 under the stewardship of the Air Force Institute of Technology (AFIT). The COE attained Full
Operational Capability in July 2012.

_ 2 —
& Analy,. -
o\ b Sz

During development of the Test & Evaluation Master Plan (TEMP), the COE works with acquisition program managers and
the program's Chief Developmental Tester to improve test effectiveness and ensure efficient use of scarce resources.

Utilizing a combination of rigorous scientific methods and lessons learned, the COE determines where test designs can be
improved and efficiencies gained, and then applies this knowledge to the program’s T&E strategy development.

In order to achieve more defensible test results, the STAT Center initially partnered with 20 major acquisition programs. ng
This partnership has grown to support more than 59 major acquisition programs since 2012. As a condition for effective National Institute of
partnering, these programs are early enough in their test strategy planning to allow the implementation of STAT to allow the Standards and Technology

better informing of the program leadership. The use of STAT does not ensure the success of a program, but rather allows programs to make better use of




Freely Available Tools

Covering array generator — basic tool for test input or configurations;

Combinatorial coverage measurement — detailed analysis of combination

coverage; automated generation of supplemental tests; helpful for integrating
c/t with existing test methods

Sequence covering array generator — new concept; applies combinatorial
methods to event sequence testing

Input modeling tool — design inputs to covering array generator using
classification tree editor; useful for partitioning input variable values

Fault location tool — identify combinations and sections of code likely to cause
problem

NIST

National Institute of
Standards and Technology



Please contact us
if you’re interested!

Rick Kuhn, Raghu Kacker, M.S. Raunak
{kuhn, raghu.kacker, raunak}@nist.gov

http://csrc.nist.gov/acts

IEEE DSC 2023
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