Ordered t-way Combinations for
Testing State-based Systems

D. Richard Kuhn, M S Raunak, Raghu N. Kacker
National Institute of Standards & Technology Gaithersburg, MD, USA
{kuhn, raunak, raghu.kacker}@nist.gov

Why do we need ordered input combinations?

* Covering arrays are great, but sequence of inputs can affect
results when state is maintained by the system (nearly all)

* Sequence covering arrays handle sequences of events, but
events may be complex and involve multiple parameters,
combinations

e States change according to inputs, combinations of input
values

* So we want to consider the order of inputs of combinations
In test set

What are ordered combinations?

Test | pO pl1 p2 p3
1 Ve d bk
2 b|al| c| d
3 b|d| c| a
4 cl|lal| b | d
5 c|d| b | a
6 d|al| c| b

—

Sequence covering, of events a, b, ¢, d
Sequence covering array has all
sequences of events for some
specified length, non-repeating

Each row is one test sequence

Test | pO p1 p2 p3

1l W/ b | c

2 c | d Ordered

3 /% d ¢ V& | combinations
4 al| b | d

5 c|d| b | a

6 |d V) c b

Combination order c; *> ¢, *> ..*> ¢, of
s combinations of t parameter values,
abbreviated s-order, is a set of t-way
combinations in s rows

Each row is one set of test inputs

Ordering of combinations as rows entered
sequentially

Example: pOpl =ad *- p2p3 =cb

Order of covering array tests affects error detection

@ Example:
p1 /\ Py p1 A p2

~p1V ~p;
not followed by

Test | pP1 p2 P3 P4

1 oo 1]o0 p1 A\ ~p2
| 2 0 1 0 1

~ E L /04101 Reordering tests to:
p1 A ~p; 4 1] 11110 1

5 0 1 0 0
6 0 0 1 1

@ ~p1 V p2
‘ solves the problem

v W BEN

Ordered combination cover

* An ordered combination cover, designated OCC(N, s, t, p, v), covers all
s-orders of t-way combinations of the v values of p parameters, where
t is the number of parameters in combinations and s is the number of
combinations in an ordered series.

* Number of combination order tuples to cover, for s-orders of t-way
combinations of p parameters with v values each:

v'C(p,t)* Test | p0 pl p2 p3

1 Vg 4 b|c

! 2 b|al|c| d

How can we find these ordered s T8 d | < V&)
combination covers (OCC) B c | o b 4
efficiently? 5 |c|d|b]|a
6 d V/ﬂ o 74

Generating ordered combination covers (OCC) ?

* The problem turns out to be easy!

* Theorem (OCC Coverage). A test set covers s-orders of t-way
combinations if and only if it includes an ordered series
containing a total of s covering arrays, each of strength t.

So,
1. make a t-way covering array
2. write s copies of it

Ordered coverage of adjacent combinations

* An adjacent combination orderc; > ¢, 2 ... > ¢, of t-way
combinations, abbreviated s-order, is a set of t-way combinationsin s
consecutive rows.

* No interleaving between the ordered combinations, i.e.,

Ordered: c,*> ¢, c, is eventually followed by c,
Adjacent ordered: ¢, < ¢, c, is immediately followed by c,

* Ordered combinations with added constraint that rows are adjacent,
l.e., for ¢, > ¢, where ¢, and ¢, are in consecutive rows

* We need to produce an ordering of combinations such that every
t-length permutation of combinations occurs as tests (rows) are input
sequentially

‘ This can be done with a deBruijn sequence

deBruijn sequences

e Studied in early 20t century, many properties proved by deBruijn

* For a given set S of k symbols, a deBruijn sequence D(k, n) includes
every n-length permutation of the symbolsin S

* length of a deBruijn sequence is k", and no shorter length sequence covering
all the n-length permutations is possible

* Probably re-invented by every hacker on the planet (to crack key code locks)

9 digits ’ No ‘enter’ key:
628 key presses

instead of
3,125 for 4-digit code

key codes length 2: 18 digits
00,01,02,10,11,12,20,21,22
\)

1
001021122

Generating adjacent ordered combination covers

1. Generate a covering array of desired strength for the input model of
the system under test.

2. Number the rows of the covering array sequentially, from 1 to k, for a
covering array with k rows.

3. Generate a deBruijn sequence D(k,s) of the k row indices.

4. For each row index i in the sequence, write row i from the covering
array. After the last row, append the initial s — 1 rows of the covering
array, resulting in N =k*+ s -1 rows.

Example

2 values each:

e Covering array of 9 variables,

transpose

N\

deBruijn

sequence
generator

row humbers

1..6

112131415162232425263343536445465566

Using adjacent ordered combinations

* Therac-25 example - radiation therapy machine fatal errors,
1985-1987 - widely known in software safety

* Multiple bugs and safety failures

e Critical, fatal race condition - error occurs if
X-ray beam selected,
changed to electron
without min time
between selections

Testing to detect error

. , _ Test | py | P2 | P3 | P4

p; = min time between option selections ty |1 [1010
p, = X-ray beam selected ta |1 101110
p; = electron beam selected ts | 110101
p, = start beam ta | 0101110
ts O(1 0|1

Then, error only detected if test set contains

-

a sequence of:

P1P,P3P, = 1100 (X-ray beam selected)

followed by

P1P,P3P4 = 0011 (not min time so X-ray still on, electron selected & beam started)

OCCa guaranteed to contain this sequence.
Unlikely that other test set would, even if very large

Combination order coverage measurement

Prototype tool to analyze coverage and
output combination orders that are not
found in test set

Example:

* testset (a) with 4 variables, 12 tests
e forab =11, covered combinations
for cd following are cd =01 and

cd =10
* missing combinations output (c)

0,1:('1','1)) -j2,3: ('1','1))
0,1: (l1l‘l1l) ! 'n oy

alb|c|d alb|c|d
olof[1]oll[olo]1]o0
ol1flof1lffol21]0]1
1lolol1{[2]ofl0]12
olof[1]alffolof1]1
1l1]ofo|lfx 100
1[a]1]offfzfafa]o
1lolofl1]{[2]o0oflo0]1
ol1flof1lffol2]o]1
olo[1]oll[olofl1]o0
1lolol1{[2]oflo0]12
ol1flof1lffol2]o]1
olof[1]ol][olofl1]o
(a) (b)

0.211.'11=>01:1"1,"1)
0201 .11>02:17.'1)
0,2:('1,'1)->0,3:("1','0)
0,2:('1','1")->1,2:('1','1")
0211.'11>13:"1.0)
2. 1)>23:11."1)
02:{1.'1)1>23:(0,7)
0,3:('1,'0)->2,3:("1,'1)

(©)

Coverage statistics

file = t9.csv Nvars: 4 Nrows: 12

Coverage stats for

Static - input space coverage

* static (simple) t-way coverage 'I' °°"ered8 s P°SSible8 e
2 24 24| 1.0000

and 3 22 32| 0.6875

4 6 16| 0.3750

* dynamic (ordered combinations)
Dynamic - order coverage

covera ge covered max possible |coverage

l-way | 2-seq 64 64 1.0000

l-way | 3-seq 512 512 1.0000

2-way | 2-seq 553 576 0.9601
|

2-way | 3-seq 11,069 13,824 0.8007

Future directions

* Empirical data on real-world problems
- many possible applications
- network protocols
- automated test pattern generation for sequential circuits

- blockchain smart contracts

* Comparison with random tests, structural coverage criteria
- e.g., fuzz testing
- also see if we can improve on standard CT

* Inclusion of constraints on sequencing
* Tool support

Please contact us
if you’re interested!

Rick Kuhn, M S Raunak, Raghu Kacker
{kuhn, raunak, raghu.kacker,}@nist.gov

http://csrc.nist.gov/acts

16

