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ABSTRACT 

The major challenge faced by the nuclear industry related to software testing of digital embedded devices is the 
identification of practical software (SW) testing solutions that provide a strong technical basis and are at the same 
time effective in establishing credible evidence of software common cause failures (SCCF) reduction. Towards this 
effort, we conducted a systematic empirical study on pseudo-exhaustive SW testing methods for embedded digital 
devices. In this paper, we describe the realization of a testbed for conducting an automated pseudo-exhaustive software 
testing on embedded digital devices and the intricate interactions between the multiple software tools involved in the 
workflow. The collected results and derived findings confirm the ability of the automated pseudo-exhaustive testing 
methodology to economically exercise the interaction input/state space in a systematic, rigorous, and comprehensive 
manner. 

Key Words: Pseudo-exhaustive testing, t-way combinatorial testing, Nuclear I&C, Smart sensor 

1 INTRODUCTION 
One of the Modernization pathways for the US Nuclear Industry is toward all-digital solutions 

for the instrumentation and controls (I&C) operations in Nuclear Power plants. Of specific interest is the 
use of advanced software-based embedded digital devices (EDDs) that have the potential to substantially 
increase plant reliability and performance operations. EDDs are typically edge devices like sensors, 
transmitters and actuators. That said, there is the concern in the nuclear community that latent software 
common cause failures (SCCF) may manifest in these devices and potentially inhibit or degrade safety 
functions. Traditionally, diversity and defense-in-depth architectural methods for I&C systems have been 
the norm for addressing vulnerabilities associated with SCCF. However, these methods incur increased 
system and plant integration complexity along with high implementation and maintenance costs. To this 
end, there has been significant interest in the regulatory community towards finding cost-effective design 
assurance and testing methods for critical software systems that could provide options beyond diversity and 
defense-in-depth practices. 

The major challenge faced by the nuclear industry related to software testing of digital embedded 
devices is the identification of practical software (SW) testing solutions that provide a strong technical basis 
and is at the same time effective in establishing credible evidence of SCCF reduction. Towards this effort, 
we conducted a systematic empirical study on pseudo-exhaustive SW testing methods for embedded digital 
devices. To our knowledge, this is new and novel work in the application of pseudo-exhaustive testing 
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methods to nuclear applications. In this work, we aim to investigate the efficacy of pseudo-exhaustive 
methods by answering the following two questions: (1) Can pseudo-exhaustive testing based on t-way 
combinatorial testing (CT) provide evidence that is congruent with exhaustive testing for an embedded 
digital device? Under what assumptions and conditions is this claim true? (2) Is t-way combinatorial testing 
effective at discovering logical and execution-based flaws in software-based devices? 

As a part of this study, we devised a pseudo-exhaustive testing framework based on t-way 
combinatorial testing that serves as a systematic solution for achieving rigorous software testing while still 
working within a tractable input and state space. The collected results and derived findings confirm the 
ability of the automated pseudo-exhaustive testing methodology to economically exercise the interaction 
input/state space in a systematic, rigorous, and comprehensive manner. 

2 SYSTEMATIC PSEUDO-EXHAUSTIVE TESTING 
The nuclear regulatory guidelines (NRC BTP 7-19) [1] strongly infer that the testability of software in 

critical nuclear embedded digital devices is an important criteria for evaluation. It suggests a goal of 100% 
testability of the software, or if that criteria cannot be met to use diversity and redundancy to mitigate the 
possibility of SCCF. Exhaustive software testing is a testing approach in which the software needs to be 
tested with all combinations of input values and state variable values. Considering that the input and state 
space of typical EDD or I&C software is nearly infinite, literal exhaustive testing is infeasible if not 
impossible [2]. The natural question arises as to what are the options for addressing this challenge? The 
number of methods and approaches for testing software are considerable [3], with varying degrees of power 
to test and exercise the software. One recent method that has gained interest in other industries is so-called 
pseudo-exhaustive or bounded-exhaustive testing [4]. Pseudo-exhaustive is actually a collection of 
techniques organized in a systematic process. Another factor we counted is that pseudo-exhaustive testing 
approaches have an established technical basis and some history of use in safety critical systems [5]. 

Software testing is considered pseudo-exhaustive when well-formed relations between input space and 
state-space allow the testable state-space to be reduced, enabling a feasible testable set. The key assumption 
here is that the state space reduction process must preserve the properties of and among the elements from 
the original state space. The properties to be preserved are the reachability property of the state space, and 
the equivalence and interaction relations of the input space. The reduced pseudo-exhaustive tests are 
assumed to be able to reach and exercise all paths through the code. The reduced pseudo-exhaustive tests 
are also assumed to be able to exercise all the behaviorally equivalent partitions of the input variables and 
parameters and all logical interactions between them as would a truly exhaustive test set do. From this 
description, different approaches to achieve pseudo-exhaustive criteria are possible, and several different 
approaches have been reported [6] [4]. These assumptions of pseudo-exhaustive criteria are discharged 
using our proposed pseudo-exhaustive testing methodology that is built upon the following basic 
techniques: t-way combinatorial testing, equivalence partitioning, boundary value analysis (BVA), 
structural path coverage analysis, and function interaction verification. We discuss these methods briefly; 
more detailed discourse can be found in the technical report [7]. 

● Equivalence Partitioning – This method partitions the domain of variable, parameter and 
configuration space into regions that are control flow and data flow equivalent. 

● Boundary Value Analysis (BVA) – This method helps to confine the input model by deriving the 
most test-effective and error-sensitive set of sample values that lie on the boundaries of these 
equivalence partitions. 

● t-way combinatorial testing – This method provides a means to generate effective tests for testing 
the interactions between variables, parameters, and configurations across all the equivalence 
partitions. Previous investigations made by National Institute of Standards and Technology (NIST) 
on a variety of software applications [8] including medical devices, an HTTP server, a web browser, 
NASA’s distributed database and FAA Traffic Collision Avoidance System [4] indicate that most 



      
      

        
         

         
    

           
                

    
                                                                              

 
               

       
         

            
       

         
        

                
       

             
      

            
                          

  
       

          
             

    
          

       
            

             
               

      
         

          
            

of the software faults are triggered by one or two parameters and progressively fewer by the 
interaction of three, four, five and up to six parameters. 

● Structural Path Analysis (Modified Condition/Decision Coverage (MC/DC) metric) – This method 
helps to ensure that the reduced test set traverses all paths in the code and exercises all possible 
logical outcomes of the decisions and conditions in the code. It is an important step to evaluate the 
completeness of the input model and the generated test vectors. 

● Function Interaction Verification – This is the method adopted during software integration testing 
to verify if function call interactions and data flow couplings between functions happen as expected. 

Figure 1: Testing Levels 

2.1 Test Strategy 
Our testing methodology follows white box testing principles. We assume the source code is available 

for analysis and review. This assumption is reasonable for safety critical systems certification, where code 
structural analysis is typically required. Conceptually, the methodology we employ is shown in Figure 1. t-
way combinatorial testing is applied at the unit function level to test the behavior of all the t-way input 
parameter and variable interactions within the functions. To construct a well-formed input space model for 
a given function, we employ Equivalence Partitioning and BVA prior to t-way testing. During integration 
testing, we exercise the function call sequences and function interactions at the intra-thread level. Lastly, 
we perform system testing where interactions across all threads occur. While unit and integration tests focus 
on the structural coverage of the control flow graphs and call graphs, system testing level focuses on 
functional coverage of the system level requirements. During system testing, functionality of the system is 
tested by feeding in data sequences that closely resemble the data sequences coming from a real sensor and 
off-nominal data (e.g. fuzzing or randomized testing) verifying if the processing and filtering functions 
within the system are capable of providing a stable and correct output. With this systematic approach we 
identify interaction faults at all levels of the software. 

3 EMBEDDED TARGET: VCU SMART SENSOR 
To assess the effectiveness of our proposed systematic software testing workflow we applied it on an 

embedded target called the VCU Smart Sensor revision 3 [[7], Appendix B]. The VCU smart sensor is a 
surrogate and representative EDD from a software architectural perspective. The smart sensor performs 
barometric pressure and temperature state measurement sensing, processes those measurements with a 
smoothing filter, and then produces filtered state measurements for the controller. The smart sensor is a 
derivative from VCU ARIES_2 Advanced Autopilot Platform which consists of a mature design and code, 
and has over 10,000 hours of tested flight time. The VCU smart sensor is built on an STM32F429-Discovery 
board, which uses the ARM Cortex-M4 168 MHz microcontroller unit (MCU) featuring 2 MB of Flash 
Memory and 256 KB of RAM. The VCU Smart Sensor software consists of several threads executing 
periodically in a real time operating system (RTOS). This multithreaded real-time embedded software is 
representative of the software present in safety-critical I&C devices and sensor devices used in nuclear 
applications. The VCU smart sensor, though similar in functionality to the smart sensor device assessed by 
Bishop et al [9], has more SW complexity (e.g., more lines of code (LOC) and larger code size) due to the 



        
        

                        
   
  

 
 

 
 

 
 

    
    

    
 

          
          

           
      

           
               

            
      

         
           

             
  

 

 
                                                               

   
            

            
            

         
        

usage of RTOS, multi-threading, and filtering functions. This additional software complexity of our device 
is viewed as a benefit for this study as it stresses the testing methodology in capability and scalability. 

Table 1: Cyclomatic Complexity of a few functions in smart sensor software 
Flash Usage 102 KB 
RAM Usage 81 KB 

Serial Modem 
Thread 

Barometer 
Thread 

Communication 
Thread 

Cyclomatic Complexity 102 33 101 
Thread Priority 2 4 3 

Allocated Stack size 256 256 2048 

The three main threads in the smart sensor software are the serial modem thread, communication 
thread, and barometer thread. The serial modem thread is responsible for receiving and transmitting data 
from and to the host machine through the USART serial port. The communication thread is responsible for 
analyzing received requests from the host machine and creating responses to them. The barometer thread 
(ms5611 thread) is responsible for communicating with the sensor head through the I2C bus, reading in 
sensor data, and processing and filtering it. The memory footprint on the MCU, the Flash and RAM usage 
of the entire VCU smart sensor software, is provided in Table 1. Table 1 also gives the priority and working 
area/stack size allotted for the various threads and cyclomatic complexity at the thread level for the smart 
sensor software. The cyclomatic complexity of most of the functions within the threads is less than 10 which 
indicates a modular and testable code as is usually the expectation with safety-critical software. The few 
functions having a cyclomatic complexity above 10, but still less than 22, indicate moderately complex 
code with medium testability. 

Figure 2: Test Bed Architecture 

4 TEST BED ARCHITECTURE AND WORKFLOW 
The test bed architecture for realizing the systematic pseudo-exhaustive testing is shown in Fig 2. The 

test bed diagram depicts the tools involved in the testing process and the major steps in the workflow. The 
NIST ACTS tool [10] performs automatic test case generation of t-way combinatorial test vectors. Razorcat 
TESSY tool [11] provides the environment to prepare the input model, automate the execution, and code 
coverage analysis of the tests on embedded software on the actual target. The workflow broadly consists of 



          
  

                   
                                 

 
               

        
      

       
              
           

        
              

             
  

       
     

            
       

         
     

         
          

        
      
             

             
       

      
           
          

     

five different processes: Input Model Generation, Testcase Generation, Oracle Generation, Test Execution, 
and Coverage Analysis. 

Figure 3 Classification tree for ms5611_get_current_pressure function 

4.1 Input Model Generation 
Referring to step 1 in Fig 2, the process starts with inputting the C source files into a test module in 

Tessy. The ‘module analysis’ conducted in Tessy results in the population of all functions (external and 
local) and all variables present (external, global, function parameters, return values etc.) in the source files. 
Input model preparation phase is heavily guided by the principles of Equivalence partitioning and BVA. 
Tessy’s automated analysis of source files help in the identification of the input variables to a function and 
outputs for monitoring the functional correctness criteria of the function. The identified test interfaces are 
further refined manually by reviewing them against the Software Design and Requirements documents. 
Tessy’s classification tree editor is used to systematically partition the vast input space of the software under 
test and collect a set of error-sensitive and effective set of test input values. By referring to the software 
requirements and design documents and applying a combination of interface-based and functionality-based 
equivalence partitioning approach, the tester selects appropriate characteristics for each input parameter to 
partition its vast input domain. The chosen characteristics become the classifications or parent nodes for 
the tree and sub trees in the classification tree. Each classification is subdivided into behaviorally equivalent 
partitions (classes). The partitions are expected to be disjoint and to completely cover the input domain of 
the variable under consideration. Boundary and inlying value partitions for each characteristic are 
considered separately and become the leaves of the classification tree. The representative boundary and 
inlying values that are fed into the leaf classes become the set of test inputs used for combinatorial test case 
generation. Fig 3 shows the classification tree created for input parameters for one of the functions in the 
smart sensor software. In this case, there are 8 input parameters used in this function. These 8 input 
parameters are classified based on their valid input ranges specified in the barometer device datasheet. The 
minimum, maximum and typical values for the sensor calibration parameters and temperature and pressure 
data are derived from the datasheet. To test for outside normal range values, variables that have invalid 
values within its datatype range have a classification for “outside normal range value”. In this example, 
valid pressure and temperature data ranges between 0 and 16777215, but the datatype is ‘unsigned int32’ 
which ranges from 0 to 4294967296. Hence all values greater than 16777215 are considered as invalid 
values. To consider this value for testing, an equivalence class ‘max+1’ is created which is assigned a test 
input value 16777216. 



 
             

    
        

      
     

           
       

 

 
              

             
            
        

           
 

       
 

              
       

            
        

              
        

         
     

    
            

           
             

              
            

             
       

              
       
                 

           
               

  

 
              
          

                 

4.2 Combinatorial Testcase Generation 
Referring to step 2 in Fig 2, after the input model preparation, the set of test values for each variable 

are extracted from the classification tree and fed into the ACTs tool. ACTs tool accepts the input parameters, 
the parameter types, and the set of parameter values to be used for combinatorial testcase generation. In 
addition it accepts any constraints and relations between the variables that need to be considered when 
generating the t-way combinatorial testcases. ACTS generates t-way test vectors that contain all t-way 
combinations of input values in the input model. The t-way (2, 3, 4, 5 and 6-way) testcases generated are 
exported from ACTs and converted into a format that can be imported into Tessy as unit tests, using a 
translation script tool we created. 

4.3 Oracle Integration 
Referring to step 3 in Fig 2, the next step in the workflow is the oracle integration. In order to verify 

the correctness of the software functions we need to feed in expected output values or the oracle data for 
the automatically generated t-way combinatorial tests. Manually calculating the expected output values for 
the numerous functions contained in most EDD software is not practically feasible as many thousands of 
testcases are the norm. The different techniques we can adopt for determining the oracle data are given 
below: 

● Statically feeding in expected output values for each testcase – Practically infeasible for higher 
interaction levels 3,4,5,6 with >2000 testcases. 

● Runtime calculation of test oracle data – Algorithm/equations can be inserted into Tessy’s 
Epilogue/Prologue fields or the stubs of external functions to calculate the expected outputs and 
Tessy’s evaluation macros can be used to compare them with the actual outputs during runtime. 
These act like a “shell” for automating the comparison of oracle data to actual results. 

● Diverse oracle – To support diversity in our oracle module we synthesized model based design of 
the software function (e.g., a Kalman filter model) in MATLAB Simulink. The auto generated code 
could be used as the oracle algorithm or the actual output values from the model could be used as 
the expected values to compare to the output values from the software under test. 

4.4 Test Execution 
Referring to step 4 in Fig 2, tests are executed on the target using the On Chip Debugger port (Serial 

Wire Output (SWO) port for ARM processors) of the microprocessor which allows direct unintrusive 
insertion of the test vectors into the memory and register stack of the executing software. We used Keil 
µvision and ST-Link debugger to run the tests directly on the STM32F4 microcontroller. By collecting the 
real time values and time stamps of all program data and comparing them with the expected output values, 
Tessy automatically evaluates testcases as Pass or fail. The use of embedded debuggers facilitates 
automated test execution, but additionally it provides high levels of controllability and observability with 
respect to the executing embedded code – which is highly desirable. This helps testers have a “window” 
into the execution flow thereby aiding in the root cause of failed testcases, and discerning complex failures 
like timing and synchronization issues. The article by Weiss et al [12] gives more detail on the use of 
embedded debuggers for SW testing. At the unit testing level, for functions within the threads, test 
executions starts with the baseline test of 2-way combinatorial testing which then proceeds to 3, 4, 5 and 6-
way tests. 

4.5 Structural Path Analysis and Feedback 
Referring to step 5 in Fig 2, the structural path coverage information generated from Tessy after each 

test execution is fed back to Input Model Creation and Testcase Generation stages to improve the input 
model or the t-way level of the tests until we achieve a 100% MC/DC coverage on the code or as close as 



         
           

           
              

         
          

 

                  
           
            

           
        

            
    

            
            

                
         

           
            

         
            

       
           

       
       

             
      

                                                                                     
                                                                   

 
       

       
    

      
  

            

possible to that metric level. It has been previously proven [13] that given an input model with necessary 
variable values, 100% branch coverage for t-way conditionals is obtained if the sum of minimum 
combinatorial coverage (Mt) and minimum proportion of t-way combinations needed to trigger a branch 
within the code (Bt) is greater than one, i.e., Mt + Bt > 1. This theorem implies that by using covering arrays 
that have minimum combinatorial coverage of 100% (Mt = 1) and a complete input model, 100% branch 
coverage is guaranteed. Therefore by using MC/DC coverage which subsumes branch coverage, we verify 
the adequacy of the equivalence classes and boundary values in our input model. 

We observed that low coverage is in most of the cases due to a deficient input model; either an 
unconsidered input parameter or an unconsidered sample value. This could be due to human errors that 
happen during input model creation which is a fully manual effort. As shown in Fig 4, if low coverage was 
found to be the result of not considering an input parameter in the tests, the missing parameter is added to 
the test interfaces and combinatorial testcases are re-generated with the updated input model. If low 
coverage is due to not considering a value for an input parameter in the tests, this value is added as a new 
class to the classification tree and combinatorial testcases are re-generated with the updated input model. 
In some cases, the input model would be comprehensive and the low code coverage obtained with t-way 
tests would be due to the presence of ‘t + n’-way conditionals present in the code. This is fixed by increasing 
the interaction level of the test vectors to ‘t + n’. In very rare cases, low coverage could be due to the test 
vectors not executing error handling portions of the code. Fault injection tests needs to be performed to 
cover them. We observed that with an insufficient input model, we need a higher t-way interaction level 
test vectors to cover the entire code and meet the goal of 100% MC/DC coverage. For example, for the 
circular buffer read function in the serial_modem thread, with an input model that does not include a value 
that is greater than the size of buffer for the length parameter, the 2-way tests containing 20 test vectors 
only achieved an MC/DC coverage of 87.5%. However, with the same input model, a 100% MC/DC 
coverage was achieved when switched to the 3-way interaction level containing 64 test vectors. This is not 
economical as with each increase in the interaction level, there is an exponential increase in the number of 
test vectors. Whereas, when the input model was improved by adding a boundary value for the length 
parameter that is greater than the size of the buffer, we achieved 100% MC/DC coverage with just the 2-
way interaction level containing 28 tests. 

Figure 4: Coverage Analysis Workflow 

4.6 Component/Thread Level Integration Tests 
Integration testing is essential to verify that the interactions between the functions happen as intended. 

Functions interact by calling one another and passing data between them as arguments and return values. 
These interactions are depicted in functions call graphs. Function calling sequences can be complex 
structures, involving decisions, modes of operation, predicates, etc. The function call graphs need to be 
analyzed and these complex interactions need to be understood by the tester to formulate effective 
integration testcases. Covering the nodes (ensuring each function is called at least once) and edges (every 



         
                

            
           

         
  

           
             
           

  
          

         
         

         
           

             
               

            
       

       
           

           
               

     
    

               

 
 

 
      

        
        

        
 

                        
                

           
         

      
         

              
           

             
      

              
               

 

call of function is invoked at least once) in a function call graph is essential for rigorous integration testing, 
and Pseudo-Exhaustive Testing. In order to traverse the different paths in the function call graphs, we need 
to identify the different sequences of input data values to be fed into the progressing time steps of thread 
execution. Tessy’s component test feature helps to conduct integration testing on a software component or 
a software thread that consists of several internal functions which makes calls to underlying external 
functions. Scenarios can be created in Tessy to invoke the component/thread level function and to verify 
the order of the external function calls made by the thread at every periodic time steps (eg: 0ms, 10ms, 
20ms… for 10ms periodic thread). By providing data values to the inputs at every time step, the identified 
outputs at the thread level can be verified against expected values after thread execution for every time step. 

5 RESULTS, ANALYSIS AND FINDINGS 
Several critical native bugs in the smart sensor software were uncovered by applying the proposed 

systematic test methodology of incrementally conducting the different levels of interaction testing on the 
smart sensor software. All the bugs were caught during unit testing by applying the 2-way combinatorial 
test vectors. Although the same test failures re-appeared during the 3, 4, 5 and 6-way combinatorial tests, 
no additional bugs were caught in the 3 to 6-way combinatorial tests. It was also seen that with a carefully 
constructed input model, we were able to achieve 100% MC/DC coverage with the 2-way combinatorial 
tests for all functions. Based on the time taken to execute the t-way tests on the smart sensor software 
functions of varying complexity levels, it is seen that on an average it took 1sec to execute a single testcase 
on the physical hardware device. This faster test execution rate, achieved due to the test automation in 
Tessy, helped to reduce the total testing time even when dealing with larger test suites (>5000 test vectors) 
for the 5 and 6-way tests, thereby increasing the test efficiency. Table 2 indicates the average number of 
variables, values/variable and the number of t-way testcases generated for few functions in smart sensor 
software. On average, most of the functions in the smart sensor software dealt with 5 input parameters and 
5 sample values/parameters. The number of testcases can be seen to be exponentially increasing as the t-
way interaction level increases. 

Table 2: Input model and Test generation details for a few functions 

Tested function # 
Variables 

# Values/
Variable 

2-Way
Tests 

3-Way
Tests 

4-Way
Tests 

5-Way
Tests 

6-Way
Tests 

Circular_buffer_read 4 4-5 28 125 500 N/A N/A 
get_current_pressure 9 4-5 20 76 285 870 2411 

kalman_filter 5 6-7 48 316 1608 7776 N/A 

Table 3 shows the test failures that were observed during 2-way combinatorial tests and the root causes 
for them. It can be noted that a majority of the testcase failures is due to the software not handling invalid 
inputs, such as invalid buffer size, number of bytes, sensor data, etc. Not handling invalid inputs could end 
up in software responding with false or even meaningless data. ‘Missing buffer overflow checks’ in software 
is another more critical bug that is caught with this test methodology. Not checking if the length of bytes to 
be copied exceeds the destination buffer size before calling standard C library ‘Memcpy’ function results 
in the function corrupting other valid memory locations and causing the software to get hung in an 
undefined state. The test methodology is thereby found capable of detecting potential buffer overflow 
security vulnerabilities in the code. Few others bugs due to the software not following good programming 
practices like divide by zero and overflow checks during mathematical computations have also being caught 
in the 2-way combinatorial tests. Errors in boundary guard conditions (e.g., incorrect buffer full check) also 
get caught with the 2-way tests. The different classes of native bugs being caught and their severity indicate 
the effectiveness of our pseudo-exhaustive testing methodology. 



                             

  
 

 
 

  
 

   
  

 
 

 

 
 

   

 
  

 

  
  

  
  

 
                        

             
       

          
         

          
            

 

            
          
                

 

                       
         

         
      

        
        

          
         

          
            

         
 

Table 3: List of native bugs caught during testing 

TestCase Failure Root cause 
Unable to fill the buffer completely. Can only fill

buffersize-1 elements. 
Incorrect buffer full check 

TestExecution Timeout - Buffer overflow and 
corruption of neighboring memory addresses cause
the ‘Memcpy’ function to hang when called with a 

length greater than the destination buffer size. 

Missing destination buffer overflow 
check 

Indicates successful data read operation even with 
invalid configurations of buffer, ‘size of buffer’, 

‘head’ and ‘tail’ pointers. 

Invalid buffer configurations are not
handled. 

Returns varying negative values of buffer read length 
when the requested ‘number of bytes’ is negative. 

Invalid negative values of the number 
of bytes to be read is not handled. 

Negative values of buffer size are accepted during 
buffer initialization and the buffer is filled with 

negative size value. 

Invalid buffer size is not considered 
during buffer initialization 

Actual output value indicates ‘Infinity’ Missing Divide by Zero check 
Actual output value indicates ‘NaN’ (Not a Number) Missing Overflow check in float

computations 
Function processes input values outside valid range Missing invalid input value handling 

5.2 Seeded Fault Testing 
To further evaluate the effectiveness of our methodology, we applied our approach on a set of reference 

faulty versions of the code i.e., seeded faults in the original code. By using a wide variety of mutants that 
included operator, operand, datatype and constant mutations in the code, this activity helped us ascertain 
the effectiveness of the approach to different fault classes. While several mutants were detected by 
combinatorial tests at the function unit level, few mutants were detected only when the entire thread was 
tested with the main thread function calling the sub functions and passing data between functions. The 
general categories of seeded bugs that were caught in intra-thread level integration testing but not in unit 
testing are: 

● Bugs related to values and datatypes of function arguments being passed. 
● Bugs that affect the call sequences of ‘external functions’. 
● Bugs related to initialization of global or file static variables which need to consider the entire C 

file and not just a function. 

This seeded fault testing also indicated that along with valid values derived from equivalence 
partitions and BVA, an “Undefined” value also needs to be considered for all the input variables. This forces 
the software to use the initialization values of the variables given in the code or the default initialization 
values depending on their storage classes. Making this consideration of using the special undefined/ignore 
value (specified in Tessy as ‘*none*’) for variables during the input model generation phase, helps to find 
bugs related to faulty or missing initialization values. Table 4 shows a snapshot of the seeded 
faults/mutations made in the software, the stage of testing that caught the fault and the test failure that was 
observed due to the embedded fault in the code. All valid mutants applied to the code were ‘strongly 
detected’ by the combination of t-way combinatorial unit tests and intra-thread level integration tests. Few 
mutants that were not detected revealed dead/unreachable code portions within the software. The seeded 
fault testing thereby validates the quality of the t-way combinatorial unit tests and function interaction 
integration tests and their ability to detect a wide variety of software errors. 



 
   

 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

   

 
 

 

 

 

 
 

 

 

 
 

 

 
 

 
 

 

  
	

   
                  

         
        

              
                

             
         

            
             

            
           

         
            

              
             

Table 4: Seeded Fault Testing Results 
Seeded Fault Test Failures Caught by 

Relational Operator Replacement:
Operator: Replaced ‘<’ with ‘>’ in 

sensor value processing code. 

Processed pressure data deviated 
from expected values. 

Get_current_pr
essure function 

2-way tests 
Shift Operator Replacement Operator 

‘>>’ replaced with ‘<<’ in sensor 
value processing code. 

Processed pressure data deviated 
from expected values. 

Constant Replacement: Hardcoded 
value for pressure coefficient used in 

pressure calculation is faulted. 

Processed pressure data deviated 
from expected values. 

Scalar Variable Replacement:
Replaced float variables varM with 

varP in kalman filter function 

Filtered pressure output deviated 
from expected values 

Kalman_filter 
function 2-way 

tests 
Arithmetic Operator Replacement: 
Replaced + with - in kalman filter. 

Filtered pressure output deviated 
from expected values 

Statement deletion: Removed 
initialization values for the kalman 

filter coefficients. 

Filtered pressure output deviated 
from expected values 

Thread level 
integration test. 

Datatype Modification: Replaced 
uint32 datatype of a function 

argument with uint16. 

Data truncation during function call
results in erroneous pressure output

value. 
Logical Inversion: Check for 

Calibration was negated. 
Function call trace during thread 

execution deviated from the expected 
call trace. 

Operand in Relational Operation Off-
by-one: Thread Run Reset condition 

changed 

Function call trace after the allotted 
cycles for the thread, deviates from

the expected call trace. 
Constant Replacement: Faulty 

Initialization values for the kalman 
filter coefficients 

Filtered pressure output data deviated 
from expected values immediately 

after thread initialization. 

6 RELATED WORK 
The effectiveness of combinatorial testing (CT) on a number of critical application domains ranging 

from detecting software design faults in automotive [14], avionics [5] to detecting vulnerabilities in web 
applications [15] have been demonstrated. A comparative study [16] conducted by Wu et al, using nine real-
world programs indicate that CT is more efficient than random testing in detecting hard to find faults in 
software. Li et al studied [17] the effectiveness of CT in improving MC/DC coverage of the code and Kuhn 
et al [18] developed the relationship between structural coverage and input space coverage. A previous 
study [19], aimed at assessing the capability of combinatorial interaction tests to detect input model 
mutations using model-based mutation testing indicated that 3-way test suites were capable of detecting all 
the input mutants which 2-way tests could not. An oracle free testing approach using two-layer covering 
arrays introduced by Kuhn et al [20] is capable of verifying the correctness of equivalence classes in the 
input model and to detect certain classes of software errors. The descriptions on the application of CT on 
safety-related prioritization module that is part of AREVA NP I&C platform to preclude the presence of 
software common cause failures in it can be found in US EPR report [21]. The technical analysis of smart 
sensors to justify their use in safety-critical applications in the Nuclear industry is conducted by Bishop et 
al [9]. A closely related previous work is where Wood et al [23] employed a systematic model-based testing 



         
             

          
             

        
    

  
                  

          
        

        
            

                  
            

     
             

        
      

             
        

       
        
              

           
        

      

  

                        
        

  
              

           

                 
   

      
 

               
        

  
           

           
    

                
        
          

approach on the VCU smart sensor. In this work, a hierarchical mutation-based testing approach was used 
to detect seeded design faults. Our approach differs from this work, in several ways, namely we use t-way 
testing instead of mutation testing as a basis for stimulating interaction faults. Another closely related work 
[22] is where the authors developed an automated black-box software reliability test system to test software 
in EDDs. The authors evaluated the effectiveness of Software Reliability Testing (SRT) by using it to test 
the VCU smart sensor software with seeded faults. 

7 CONCLUSIONS AND RECOMMENDATIONS 
The proposed systematic test methodology provides a promising pathway for rigorous systematic 

testing of safety critical embedded software in nuclear power applications, offering potential options for 
‘device diversity’ and ‘defense in depth’ solutions for addressing software common cause failures. Our 
experiments and preliminary results indicate that Pseudo-Exhaustive testing at all levels of interaction 
(variable, function and thread interactions) on an embedded device can detect a diverse range of software 
flaws. We discovered a number of native defects (in addition to the seeded flaws) in the code that were 
latent for some time, and in one case the defect was there for years. Our study also provides affirmative 
evidence to the claim made by previous studies that most faults are found at lower levels of variable 
interaction (level 2 in our case). The combination of t-way combinatorial tests guided by path analysis 
(MC/DC) is a compelling approach for reasoning about “completeness or stopping point” of software 
testing. Careful selection of boundary values during the input model generation phase, combinatorially 
verifying the unit functions up to 6-way variable interactions and verifying the function and thread 
interactions help to exhaustively cover the functionality and structure of the software being tested. One of 
the objectives of this project was to conduct the research on state-of-the-art commercially available or open-
source tools. For the most part, the tools used in this study implemented and executed the pseudo-exhaustive 
testing strategy very well. The automated testing efficiency was in 150K tests/day. That said, the use of 
automated tools is not without challenges, especially in real time multi-threaded software where timing and 
ordering of tasks is critical as we noted above with the thread level testing. While the tools were very 
capable, the main challenges we faced were building the testbed architecture to conduct the study [7]. 
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