

Secure Attribute-Based Messaging with ABE

- Aim:
 - Demonstrate the usefulness and feasibility of attribute-based encryption
 - Illustrate practical challenges faced by ABE securing a novel messaging paradigm, Attribute-Based Messaging (ABM)

Funded by:

ABM Concept

- ABM sends messages, e.g., email, to parties described in terms of a collection of *attributes*.
- Similar to a listserv, but recipients are determined dynamically using one or more enterprise databases
- An ABM address is a database query.
- Ex: female grad students in engineering who have passed their qualifying exams

Advantages

Efficiency: people who do not need an email do not receive it

• Ex: all of the faculty on sabbatical

Exclusivity: sensitive messages can target more limited groups

• Ex: all tenured faculty serving on conflict of interest committees

Intensionality: often easier to describe recipients than list them

• Ex: Smith's attending and ordering physicians

Applications

- Enterprise Communication
- Alerts and Emergency Communication
 - Disease outbreak monitoring and alerts CDC
- Heath care
 - Messaging oriented exploring improving convenience and security with ABM

ABM Addresses

- Addresses are disjunctive normal forms
- Ex: ((Position = Faculty) and (Salary > 150000)) or (Position = Graduate Director)
- Defines receiving policy

Challenges

Access Control: on what attributes should a party be allowed to route?

• Ex: All faculty who make more than \$150,000/year

Confidentiality: if the senders do not know their specific recipients, how can they encrypt end-to-end?

Privacy: what are senders and recipients allowed to know

Implementation, Use, and Management Challenges

- Interoperation with existing systems
 - · Webmail easiest
 - Aim to work with existing Mail User Agents (MUAs) or Mail Transfer Agents (MTAs)
 - Application integration may be necessary
- · Efficiency of
 - · Access control decisions
 - Encryption
- Manageability
 - · Policies must be easy to manage and use

Approach – Attribute-Based Security

- Attribute-Based Access Control (ABAC)
 - "Policy specialization" provides attributes that can be used for routing
- Attribute-Based Encryption (ABE)
 - New public key system provides end-to-end confidentiality

ABAC

- Grants access based on user attributes
- Many established ideas for how to use attributes in AC
 - X.509 attribute certificates
 - Much implicit use in application servers
- New approaches
 - · Attributes in dynamic tokens as in Shibboleth
 - Trust negotiation
 - ABE, Secret Handshakes

ABAC for ABM

- Attribute-Based Access Control (ABAC)
 - · Uses same attributes used to target messages
 - More flexible rules than with RBAC
- Access policy
 - Sending rules are disjunctive normal forms specified using XACMI
 - · The sending rules collectively define the

sending policy

- Ex: (Position = Faculty) AND (Designation = Director)
 => (Position = Faculty)
- Sun's XACML engine is used for policy decision

ABAC for ABM

- Issues
 - Need a sending rule per ABM address
 - Usability loss of messaging semantics
- Solution
 - One rule per <attribute, value>
 - Any address can be formed with allowed attributes
 - Policy specialization
 - Specifies per user sending policy
 - List of attributes a user is allowed to route on

ABE

- Emerging pairing-based cryptosystems that allow encryption and decryption using attributes (rules)
- Ciphertext Policy ABE (CP-ABE) [BSW07]
 - A pairing-based cryptosystem that allows encrypting data with attribute rules
 - Only users who posses keys for attributes that satisfy the attribute rule can decrypt the data
 - Supports string and numerical attributes and monotonic attribute rules
- Protects against collusion

ABE for ABM

- Encrypt using "attribute rules" and public parameters
 - Use the same attributes used to target messages
- · Attribute rules are disjunctive normal forms and define

reading policy

- {Reading policy} = {Receiving policy} correctness
 - Translate receiving policy into a reading policy
- Ex: ("Position_val_Faculty") AND (Salary > 150000)
- An Attribute Authority (AA) issues attribute keys to each user based on the enterprise database
 - E.g., "Faculty" attribute has a key

ABE for ABM

- Issues
 - No Revocation
 - Key Management
- Solution
 - · Short-lived keys
 - One expiry attribute per user [BSW07]. Key Validity period is maximum tolerable vulnerability window

Protocol Steps

The protocols for the ABM system are given in terms of three "paths"

- · Policy specialization path
- Messaging and address resolution path
- Attribute keying path

Security and Privacy Analysis

- Enforcement of sending, read, and receiving policies
 - S/MIME to authenticate sender to ABM server
 - Vulnerability windows: receive subset of read
- Component compromise and collusion
 - MTA or ABM server
 - Clients
- Privacy
 - · What should senders and receivers know?

Efficiency Analysis

- Measure costs on each path and try to estimate latencies for mid-size enterprises
- Must conjecture the attributes and types of policies that will be used
- Implementation uses the CP-ABE library [BSW07].

Encryption Time

Equality – e.g., (Position = Faculty), Relational – e.g., (Salary > 150000)

		Number of Relational Literals						
		0	2	4	6			
Number of Equality Literals	0		1.53s	3.00s	4.49s			
	1	0.05s	1.55s	3.05s	4.56s			
	2	0.07s	1.57s	3.08s	4.56s			
	3	0.09s	1.59s	3.09s	4.60s			
	4	0.12s	1.61s	3.12s	4.61s			
	5	0.14s	1.65s	3.16s	4.64s			
	6	0.17s	1.66s	3.17s	4.63s			

Decryption times averaged 352ms.

NNCSA

Key Generation Time

Boolean – e.g., (Position_VAL_Faculty), Numerical – e.g., (Salary = 150000)

		Number of Boolean Attributes								
		0	1	2	3	4	5	6		
Number of Numerical Attributes	0		0.05s	0.07s	0.10s	0.12s	0.20	0.17s		
	1	0.86s	0.87s	0.88s	0.90s	0.93s	0.95s	0.97s		
	2	1.67s	1.68s	1.69s	1.70s	1.73s	1.76s	1.78s		
	3	2.44s	2.48s	2.49s	2.52s	2.54s	2.57s			
	4	3.26s	3.28s	3.29s	3.32s	3.34s	3.35s			
	5	4.05s	4.07s	4.09s	4.12s					
	6	4.87s	4.89s	4.92s						

Other Results Summary

- Policy Specialization
 - Latency proportional to number of rules
 - < 1 second for 150 rules
 - < 12 seconds for 700 rules
- Address Resolution
 - · With access control and without confidentiality
 - < 400ms for a 60K RDB
 - < 8 seconds for 60K XML DB

Conclusions

- Messaging (email) based on attributes collected from an enterprise database is feasible and deployable for midsize enterprises.
- Access control and confidentiality are manageable using attribute-based security mechanisms.
- Improved ABE schemes with better revocation properties are needed.
- Privacy management of attributes needs to be better understood before deploying ABM and ABE.

