

Efficiency of Revocation Methods Private-key based revocation The member does not need to anything besides computing (B, K) The verifier needs to compute B^f (1 EXP) for each f in PRIV-RL For name base option, the verifier can pre-compute all B^f Signature based revocation We could use Camenisch-Shoup non equality proof For each item in SIG RL, the member needs to perform 3 EXP For each item in SIG-RL, the verifier needs to perform ~ 2 EXP The member can pre compute non-revoked proofs without knowledge of message to be signed We expect the revocation lists to be small We only need to revoke if (hardware) attacks happen E.g., change ownership of a TPM will not result in a revocation it is still a valid TPM (Intel) Intel Corporation

Privacy and Revocation Properties of Schemes

	PKI	DAA with Random Base	DAA with Name Base	EPID
Unique Public Key	Yes	No	No	No
Unique Private Key	Yes	Yes	Yes	Yes
Anonymous	No	Yes	Yes	Yes
Unlinkable	No	Yes	No	Yes
Check for revealed private key	Yes	Yes	Yes	Yes
Revoke the signer of a signature	Yes	No	Yes	Yes
10				(intel)

EPID Scheme from Bilinear Maps in Details (cont.)

Sign

If random base option, the member chooses B from G₃ randomly If name base option, the member derives B from the verifier's basename The member computes K = B^f The member computes PK{ (A, f) : $e(A, w g_2^f) = e(g_1, g_2)$ and K B^f } The member computes PK{ (f) : K B^f and K_i \neq B^f_i } for each (B_i, K_i) pair

Verify

in SIG-RL

If random base option, verifies that B is an element in G_3 If name base option, derives B from the verifier's basename Verifies that K is an element in G_3 Verifies PK{ (A, f) : e(A, w g_2^{f}) = e(g_1 , g_2) and K B^f } Verifies that K \neq B^{fi} for each f_i in PRIV RL Verifies PK{ (f) : K = B^f and K_i \neq B^f_i } for each (B_i, K_i) pair in SIG RL

Intel Corporation

7

Intel Corporation