
1

A Closer Look at Pairings

Luther Martin
June 3, 2008

2

Questions to answerQuestions to answer

` What is the Tate pairing?
` What types of elliptic curves can be used to calculate

pairings?
` How can we calculate pairings faster?
` What is the ate pairing?
` What are the security implications for this?

1

3

PairingsPairings

` A special function called a pairing is needed to implement most
IBE algorithms

` The benefits of IBE don’t come for free – pairings are more
expensive (computationally) that operations that are used in
other traditional public-key algorithms

` Best optimized pairing is roughly comparable to an RSA
decryption (within roughly 20 percent)

` Research is finding new ways to optimize pairing calculations,
but there’s still work to do

` The security implications of the optimizations are still not fully
understood
� Some require special structure which an attacker might or might not

be able to take advantage of

Structures usedStructures used and notation summaryand notation summary

` Finite field
� Can add and multiply
� If q is a prime number and k is a positive integer, there is

only one finite field with qk elements which we write GF(qk)
•	 Example: GF(7) = {0,1,2,3,4,5,6}
•	 For k > 1 this gives us a way to multiply and divide vectors

` Multiplicative group of a finite field
� Non-zero points in a finite field that we can multiply which we

write as GF(qk)*
� Example GF(7)* = {1,2,3,4,5,6}

2

4

5

Structures usedStructures used and notation summaryand notation summary

` Elliptic curve group
� Points on an elliptic curve E: y2 = x3 + ax + b that

we can add using the usual connect-the-dots
method

� If the coefficients a and b of the elliptic curve E are
from GF(qk) we write E(GF(qk)) for this

Bilinear mappingsBilinear mappings

` e:G1×G2→GT
� First input comes from G1
� Second input comes from G2
� Output is in GT
� So we might write g = e(P,Q)

` Usually think of G1 and G2 being elliptic curve groups
so we write the operation there as addition
� P3 = P1 + P2

` Usually think of GT as being in GF(qk)* so we write
the operation there as multiplication
� g3 = g1×g2 = g1g2

3

6

7

BilinearityBilinearity

` A function e is bilinear if it’s linear in both inputs
� e(aP,Q)=e(P,Q)a

� e(P,bQ)=e(P,Q)b

� Can combine to get e(aP,bQ)=e(P,Q)ab

` Can pull constants out of either input
` Note that we’re writing some operations like they’re

addition and others as if they’re multiplication
� Addition in an elliptic curve group
� Multiplication in a finite field

PairingsPairings

` Just being bilinear isn’t enough
` f(x,y) = 1 is bilinear but not very interesting or useful
` The trace map of GF(qk) over GF(q) is bilinear but

tricky to compute
` A mapping which is bilinear, non-degenerate and

efficiently-computable is called a pairing
� A “useful” bilinear mapping

` A very useful pairing is the Tate pairing
� First cryptographic use was actually to attack elliptic curve

systems (MOV reduction, 1993)
� Now it’s been rehabilitated

4

8

9

Calculating the Tate pairingCalculating the Tate pairing

` Idea: to calculate e(P,Q), do the following:
� Find a rational function that’s defined by P
� Evaluate this function at Q

` If the point P is of order p, we can get the Tate
pairing like this:

f = 1
for i = 1 to p
f = f * fi(Q) // we get fi from iP

end for

Miller’s algorithmMiller’s algorithm

` For cryptographic uses, p is typically 2160 or greater
� Iterating from 1 to 2160 will take essentially forever

` We can also calculate the Tate pairing using a
double-and-add technique
� Iterate over the binary expansion of p

• Repeatedly double
• Add when the bit of p that we’re at is a ‘1’
• Accumulate the factors of the rational function as we do

� Loop 160 times instead of 2160

` This gives us Miller’s algorithm (1986)
` A straightforward implementation is fairly slow

5

10

11

Making Miller’s algorithm fasterMaking Miller’s algorithm faster

` It’s possible to speed up Miller’s algorithm using a number of
computational tricks

` Some of these require the creation of pairings that are much like
the Tate pairing
� The ate pairing is the most important
� Shorter version of “Tate”

` If e(P,Q) is the Tate pairing, the ate pairing calculates e(P,Q)r for
some integer r

` This requires special structure
` This structure lets you decrease the length of the loop in Miller’s

algorithm
` This structure may or may not make its use cryptographically

weak (probably not)
` More research is probably needed in this area

EmbeEmbedding dedding degreegree

` Because we need to multiply to calculate it, the Tate pairing
requires calculations to be done in a field

` We can only add in G1
� We want to be able to multiply to implement Miller’s algorithm
� Solution: embed G1in GF(qk)* where multiplication is defined
� The embedding degree (MOV degree) k is the degree of the

extension field where we can do this
` This means that we have vectors with k components, each one

an element of GF(q)
` We need for k to be relatively small to make this practical
` Most elliptic curve groups have embedding degrees that are

much too big
� Roughly the same as the order of G1
� Ouch: |G1| = 2160 means roughly 2160 coordinates

6

12

13

Low embedding degreeLow embedding degree

` Not many elliptic curves give us groups with a low embedding
degree

` A few types that do:
� Supersingular curves (k = 1, 2, 3, 4, 6)

•	 k = 2 the most useful
•	 y2 = x3 + 1; q ≡ 2 mod 3 (easier to hash to point)
•	 y2 = x3 + x; q ≡ 1 mod 3 (faster pairing calculation)

� MNT curves (k = 3, 4, 6)
� BN curves (k = 12)

` A low embedding degree makes a MOV attack possible
� If calculating a pairing is feasible then an MOV attack is also

feasible
` So we need to account for this when we pick parameters

MOV attackMOV attack

` Suppose that we want to find the discrete logarithm of aP
` Suppose that we have a pairing e that we can use
` Say e(P,Q) = g
` Note that e(aP,Q) = e(P,Q)a = ga

` We can find the discrete log a from either aP or ga

` aP might be in elliptic curve group and ga in a finite field
� Embedding degree k = 2 for E(GF(q)) means that we can calculate

discrete logs in GF(q2)*
•	 Index calculus with 320 bits (weak) instead of Pollard’s rho with 160

bits (strong)

7

14

15

MOV attackMOV attack

` If you can implement a pairing, you can do an MOV
attack

` You need to pick parameters so that this doesn’t
matter

` In the previous example we could calculate discrete
logs in either GF(qk)* of order 2320 or a group G1of
order 2160

` If we make q big enough so that the GF(qk)* has
order 21024, we’re done
� 512-bit q instead of 160-bit q

SecuritSecurityy considerationsconsiderations

` With supersingular curves, the embedding degree is
always low (k ≤ 6)
� This has been fairly well studied
� But they certainly “sound weak,” don’t they?
� Bad reputation because of MOV attack

` With ordinary curves, additional structure is needed
to get a low embedding degree
� This has not been well studied
� More research is needed

` The conservative choice for implementing a pairing-
based algorithm is to use a supersingular curve

8

16

17

UnderlUnderlyyiing computational problemsng computational problems

` Diffie-Hellman problem
� Given g, ga, gb, find gab

� We assume that we need to calculate discrete log of either
ga or gb to do this

` Bilinear Diffie-Hellman problem
� Given P, aP, bP, cP, find e(P,P)abc

� Note that we can also calculate e(P,aP) = ga (also gb, gc)
� We assume that we need to calculate the discrete logs of

aP, bP, cP, ga, gb, gc to do this

Picking parametPicking parameteersrs

` To attack IBE systems with a pairing e:G1×G2→GT whose
security depends on the bilinear Diffie-Hellman problem, we
assume that you need to calculate a discrete log in G1, G2, or GT
� Just like we assume that calculating discrete logs is the only way to

solve the Diffie-Hellman problem
` G1 and G2 are easy to understand if they’re elliptic curve groups

of prime order
� Just look at SP 800-57 to see how big they need to be for a

particular security level
` GT is slightly more complicated

� It’s the same order as G1 and G2, but it’s in a finite field
� We can find discrete logs in GT in two different ways

9

18

19

SecuritSecurityy inin GGTT

` If e:G1×G2→GT is a pairing, the output is in GF(qk)*
` We can calculate discrete logs in GT in two ways

� Pollard’s rho in GT

� Index calculus in GF(qk)*

` We need to pick parameters so that both of these are
difficult enough
� Just like with Diffie-Hellman with GF(p) replaced by GF(qk)

Parameter sizesParameter sizes

` Example: 80 bits of security
� Need p = |G1| ≥ 2160

� Need |GF(qk)*| ≥ 21024 or |GF(q)*| ≥ 21024/k

� If k = 2, need 512-bit q (1024 = 2 × 512)
•	 A supersingular curve can be used to implement this

� If k = 6, need 171-bit q (rounded up from 1024 / 6
= 170.67) and |GF(qk)*| = 21026 (6 x 171 = 1026)

• An MNT curve can be used to implement this

10

20

21

Parameter sizesParameter sizes

` Example: 128 bits of security
� |G1| ≥ 2256, need |GF(qk)*| ≥ 23072

� If k = 12, need 256-bit q (3072 = 12 × 256)
� A BN curve can be used to implement this

Parameters to getParameters to get comparable strengthscomparable strengths

Bits of
security

FFC ECC PBC

80 L = 1024
N = 160

f = 160-223 f = 160-223
k × L ≥ 1024

112 L = 2048
N = 224

f = 224-255 f = 224-255
k × L ≥ 2048

128 L = 3072
N = 256

f = 256-333 F = 256-333
k × L ≥ 3072

192 L = 7680
N = 334

f = 384-511 F = 384-511
k × L ≥7680

256 L = 15360
N = 512

f = 512+ F = 512+
k × L ≥15360

11

22

23

Selecting parametersSelecting parameters

` Select bit security level
� Determines size of p, k x log2q

` Select curve type
� Supersingular curve or ordinary curve

• Select curve family if ordinary

` Select curve
` Select appropriate pairing
` Select q
` Find p so that E(GF(q)) has a subgroup of order p

� Should be a Solinas prime for best efficiency

SummSummaryary

` What is the Tate pairing?
` What types of elliptic curves can be used to calculate

pairings?
` How can we calculate pairings faster?
` What is the ate pairing?
` What are the security implications for this?

12

24

13

