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Questions to answerQuestions to answer 

` What is the Tate pairing? 
` What types of elliptic curves can be used to calculate 

pairings? 
` How can we calculate pairings faster? 
` What is the ate pairing? 
` What are the security implications for this? 
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PairingsPairings 

` A special function called a pairing is needed to implement most 
IBE algorithms 

` The benefits of IBE don’t come for free – pairings are more 
expensive (computationally) that operations that are used in 
other traditional public-key algorithms 

` Best optimized pairing is roughly comparable to an RSA 
decryption (within roughly 20 percent) 

` Research is finding new ways to optimize pairing calculations,
but there’s still work to do 

` The security implications of the optimizations are still not fully
understood 
� Some require special structure which an attacker might or might not 

be able to take advantage of 

Structures usedStructures used and notation summaryand notation summary 

` Finite field 
� Can add and multiply 
� If q is a prime number and k is a positive integer, there is 

only one finite field with qk elements which we write GF(qk) 
•	 Example: GF(7) = {0,1,2,3,4,5,6} 
•	 For k > 1 this gives us a way to multiply and divide vectors 

` Multiplicative group of a finite field 
� Non-zero points in a finite field that we can multiply which we 

write as GF(qk)* 
� Example GF(7)* = {1,2,3,4,5,6} 
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Structures usedStructures used and notation summaryand notation summary 

` Elliptic curve group 
� Points on an elliptic curve E: y2 = x3 + ax + b that 

we can add using the usual connect-the-dots 
method 

� If the coefficients a and b of the elliptic curve E are 
from GF(qk) we write E(GF(qk)) for this 

Bilinear mappingsBilinear mappings 

` e:G1×G2→GT 
� First input comes from G1 
� Second input comes from G2 
� Output is in GT 
� So we might write g = e(P,Q) 

` Usually think of G1 and G2 being elliptic curve groups
so we write the operation there as addition 
� P3 = P1 + P2 

` Usually think of GT as being in GF(qk)* so we write
the operation there as multiplication 
� g3 = g1×g2 = g1g2 
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BilinearityBilinearity 

` A function e is bilinear if it’s linear in both inputs 
� e(aP,Q)=e(P,Q)a 

� e(P,bQ)=e(P,Q)b 

� Can combine to get e(aP,bQ)=e(P,Q)ab 

` Can pull constants out of either input 
` Note that we’re writing some operations like they’re 

addition and others as if they’re multiplication 
� Addition in an elliptic curve group 
� Multiplication in a finite field 

PairingsPairings 

` Just being bilinear isn’t enough 
` f(x,y) = 1 is bilinear but not very interesting or useful 
` The trace map of GF(qk) over GF(q) is bilinear but

tricky to compute 
` A mapping which is bilinear, non-degenerate and

efficiently-computable is called a pairing 
� A “useful” bilinear mapping 

` A very useful pairing is the Tate pairing 
� First cryptographic use was actually to attack elliptic curve 

systems (MOV reduction, 1993) 
� Now it’s been rehabilitated 
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Calculating the Tate pairingCalculating the Tate pairing 

` Idea: to calculate e(P,Q), do the following: 
� Find a rational function that’s defined by P 
� Evaluate this function at Q 

` If the point P is of order p, we can get the Tate
pairing like this: 

f = 1 
for i = 1 to p
f = f * fi(Q) // we get fi from iP 

end for 

Miller’s algorithmMiller’s algorithm 

` For cryptographic uses, p is typically 2160 or greater 
� Iterating from 1 to 2160 will take essentially forever 

` We can also calculate the Tate pairing using a
double-and-add technique 
� Iterate over the binary expansion of p 

• Repeatedly double 
• Add when the bit of p that we’re at is a ‘1’ 
• Accumulate the factors of the rational function as we do 

� Loop 160 times instead of 2160 

` This gives us Miller’s algorithm (1986) 
` A straightforward implementation is fairly slow 
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Making Miller’s algorithm fasterMaking Miller’s algorithm faster 

` It’s possible to speed up Miller’s algorithm using a number of
computational tricks 

` Some of these require the creation of pairings that are much like 
the Tate pairing 
� The ate pairing is the most important 
� Shorter version of “Tate” 

` If e(P,Q) is the Tate pairing, the ate pairing calculates e(P,Q)r for 
some integer r 

` This requires special structure 
` This structure lets you decrease the length of the loop in Miller’s 

algorithm 
` This structure may or may not make its use cryptographically

weak (probably not) 
` More research is probably needed in this area 

EmbeEmbedding dedding degreegree 

` Because we need to multiply to calculate it, the Tate pairing 
requires calculations to be done in a field 

` We can only add in G1 
� We want to be able to multiply to implement Miller’s algorithm 
� Solution: embed G1in GF(qk)* where multiplication is defined 
� The embedding degree (MOV degree) k is the degree of the 

extension field where we can do this 
` This means that we have vectors with k components, each one 

an element of GF(q) 
` We need for k to be relatively small to make this practical 
` Most elliptic curve groups have embedding degrees that are 

much too big 
� Roughly the same as the order of G1 
� Ouch: |G1| = 2160 means roughly 2160 coordinates 
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Low embedding degreeLow embedding degree 

` Not many elliptic curves give us groups with a low embedding
degree 

` A few types that do: 
� Supersingular curves (k = 1, 2, 3, 4, 6) 

•	 k = 2 the most useful 
•	 y2 = x3 + 1; q ≡ 2 mod 3 (easier to hash to point) 
•	 y2 = x3 + x; q ≡ 1 mod 3 (faster pairing calculation) 

� MNT curves (k = 3, 4, 6) 
� BN curves (k = 12) 

` A low embedding degree makes a MOV attack possible 
� If calculating a pairing is feasible then an MOV attack is also 

feasible 
` So we need to account for this when we pick parameters 

MOV attackMOV attack 

` Suppose that we want to find the discrete logarithm of aP 
` Suppose that we have a pairing e that we can use 
` Say e(P,Q) = g 
` Note that e(aP,Q) = e(P,Q)a = ga 

` We can find the discrete log a from either aP or ga 

` aP might be in elliptic curve group and ga in a finite field 
� Embedding degree k = 2 for E(GF(q)) means that we can calculate 

discrete logs in GF(q2)* 
•	 Index calculus with 320 bits (weak) instead of Pollard’s rho with 160 

bits (strong) 
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MOV attackMOV attack 

` If you can implement a pairing, you can do an MOV 
attack 

` You need to pick parameters so that this doesn’t 
matter 

` In the previous example we could calculate discrete 
logs in either GF(qk)* of order 2320 or a group G1of 
order 2160 

` If we make q big enough so that the GF(qk)* has 
order 21024, we’re done 
� 512-bit q instead of 160-bit q 

SecuritSecurityy considerationsconsiderations 

` With supersingular curves, the embedding degree is 
always low (k ≤ 6) 
� This has been fairly well studied 
� But they certainly “sound weak,” don’t they? 
� Bad reputation because of MOV attack 

` With ordinary curves, additional structure is needed 
to get a low embedding degree 
� This has not been well studied 
� More research is needed 

` The conservative choice for implementing a pairing-
based algorithm is to use a supersingular curve 
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UnderlUnderlyyiing computational problemsng computational problems 

` Diffie-Hellman problem 
� Given g, ga, gb, find gab 

� We assume that we need to calculate discrete log of either 
ga or gb to do this 

` Bilinear Diffie-Hellman problem 
� Given P, aP, bP, cP, find e(P,P)abc 

� Note that we can also calculate e(P,aP) = ga (also gb, gc) 
� We assume that we need to calculate the discrete logs of 

aP, bP, cP, ga, gb, gc to do this 

Picking parametPicking parameteersrs 

` To attack IBE systems with a pairing e:G1×G2→GT whose 
security depends on the bilinear Diffie-Hellman problem, we 
assume that you need to calculate a discrete log in G1, G2, or GT 
� Just like we assume that calculating discrete logs is the only way to 

solve the Diffie-Hellman problem 
` G1 and G2 are easy to understand if they’re elliptic curve groups 

of prime order 
� Just look at SP 800-57 to see how big they need to be for a 

particular security level 
` GT is slightly more complicated 

� It’s the same order as G1 and G2, but it’s in a finite field 
� We can find discrete logs in GT in two different ways 
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SecuritSecurityy inin GGTT 

` If e:G1×G2→GT is a pairing, the output is in GF(qk)* 
` We can calculate discrete logs in GT in two ways 

� Pollard’s rho in GT 

� Index calculus in GF(qk)* 

` We need to pick parameters so that both of these are 
difficult enough 
� Just like with Diffie-Hellman with GF(p) replaced by GF(qk) 

Parameter sizesParameter sizes 

` Example: 80 bits of security 
� Need p = |G1| ≥ 2160 

� Need |GF(qk)*| ≥ 21024 or |GF(q)*| ≥ 21024/k 

� If k = 2, need 512-bit q (1024 = 2 × 512) 
•	 A supersingular curve can be used to implement this 

� If k = 6, need 171-bit q (rounded up from 1024 / 6 
= 170.67) and |GF(qk)*| = 21026 (6 x 171 = 1026) 

• An MNT curve can be used to implement this 
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Parameter sizesParameter sizes 

` Example: 128 bits of security 
� |G1| ≥ 2256, need |GF(qk)*| ≥ 23072 

� If k = 12, need 256-bit q (3072 = 12 × 256) 
� A BN curve can be used to implement this 

Parameters to getParameters to get comparable strengthscomparable strengths 

Bits of 
security 

FFC ECC PBC 

80 L = 1024 
N = 160 

f = 160-223 f = 160-223 
k × L ≥ 1024 

112 L = 2048 
N = 224 

f = 224-255 f = 224-255 
k × L ≥ 2048 

128 L = 3072 
N = 256 

f = 256-333 F = 256-333 
k × L ≥ 3072 

192 L = 7680 
N = 334 

f = 384-511 F = 384-511 
k × L ≥7680 

256 L = 15360 
N = 512 

f = 512+ F = 512+ 
k × L ≥15360 
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Selecting parametersSelecting parameters 

` Select bit security level 
� Determines size of p, k x log2q 

` Select curve type 
� Supersingular curve or ordinary curve 

• Select curve family if ordinary 

` Select curve 
` Select appropriate pairing 
` Select q 
` Find p so that E(GF(q)) has a subgroup of order p 

� Should be a Solinas prime for best efficiency 

SummSummaryary 

` What is the Tate pairing? 
` What types of elliptic curves can be used to calculate 

pairings? 
` How can we calculate pairings faster? 
` What is the ate pairing? 
` What are the security implications for this? 
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