A Closer Look at Pairings

Luther Martin
June 3, 2008

Questions to answer

- What is the Tate pairing?
- What types of elliptic curves can be used to calculate pairings?
- How can we calculate pairings faster?
- What is the ate pairing?
- What are the security implications for this?

Pairings

- A special function called a pairing is needed to implement most IBE algorithms
- The benefits of IBE don't come for free - pairings are more expensive (computationally) that operations that are used in other traditional public-key algorithms
- Best optimized pairing is roughly comparable to an RSA decryption (within roughly 20 percent)
- Research is finding new ways to optimize pairing calculations, but there's still work to do
- The security implications of the optimizations are still not fully understood
- Some require special structure which an attacker might or might not be able to take advantage of

Structures usedand notation summery

- Finite field
- Can add and multiply
- If q is a prime number and k is a positive integer, there is only one finite field with q^{k} elements which we write $\operatorname{GF}\left(q^{k}\right)$
- Example: GF(7) $=\{0,1,2,3,4,5,6\}$
- For $k>1$ this gives us a way to multiply and divide vectors
- Multiplicative group of a finite field
- Non-zero points in a finite field that we can multiply which we write as $\mathrm{GF}\left(q^{k}\right)^{*}$
- Example GF(7)* $=\{1,2,3,4,5,6\}$

Structures usedand notation summery

- Elliptic curve group
- Points on an elliptic curve $E: y^{2}=x^{3}+a x+b$ that we can add using the usual connect-the-dots method
- If the coefficients a and b of the elliptic curve E are from $\operatorname{GF}\left(q^{k}\right)$ we write $E\left(\operatorname{GF}\left(q^{k}\right)\right)$ for this

Bilinear mappings

, $e: G_{1} \times G_{2} \rightarrow G_{T}$

- First input comes from G_{1}
- Second input comes from G_{2}
- Output is in G_{T}
- So we might write $g=e(P, Q)$

Usually think of G_{1} and G_{2} being elliptic curve groups so we write the operation there as addition

- $P_{3}=P_{1}+P_{2}$
- Usually think of G_{T} as being in $G F\left(q^{k}\right)^{*}$ so we write the operation there as multiplication
- $g_{3}=g_{1} \times g_{2}=g_{1} g_{2}$

Bilinearity

- A function e is bilinear if it's linear in both inputs
- $e(a P, Q)=e(P, Q)^{a}$
- $e(P, b Q)=e(P, Q)^{b}$
- Can combine to get $e(a P, b Q)=e(P, Q)^{a b}$
- Can pull constants out of either input
- Note that we're writing some operations like they're addition and others as if they're multiplication
- Addition in an elliptic curve group
- Multiplication in a finite field

Pairings

- Just being bilinear isn't enough
- $f(x, y)=1$ is bilinear but not very interesting or useful
- The trace map of $G F\left(q^{k}\right)$ over $G F(q)$ is bilinear but tricky to compute
- A mapping which is bilinear, non-degenerate and efficiently-computable is called a pairing
" A "useful" bilinear mapping
- A very useful pairing is the Tate pairing
- First cryptographic use was actually to attack elliptic curve systems (MOV reduction, 1993)
- Now it's been rehabilitated

Calculating the Tate pairing

- Idea: to calculate $e(P, Q)$, do the following:
- Find a rational function that's defined by P
- Evaluate this function at Q
- If the point P is of order p, we can get the Tate pairing like this:
$f=1$
for $i=1$ to p
$f=f$ * $f_{i}(Q) / /$ we get f_{i} from ip
end for

Miller's algorithm

- For cryptographic uses, p is typically 2^{160} or greater - Iterating from 1 to 2^{160} will take essentially forever
- We can also calculate the Tate pairing using a double-and-add technique
- Iterate over the binary expansion of p
- Repeatedly double
- Add when the bit of p that we're at is a ' 1 '
- Accumulate the factors of the rational function as we do
- Loop 160 times instead of 2^{160}
- This gives us Miller's algorithm (1986)
- A straightforward implementation is fairly slow

Making Miller's algorithm faster

- It's possible to speed up Miller's algorithm using a number of computational tricks
- Some of these require the creation of pairings that are much like the Tate pairing
" The ate pairing is the most important
- Shorter version of "Tate"
- If $e(P, Q)$ is the Tate pairing, the ate pairing calculates $e(P, Q)^{r}$ for some integer r
, This requires special structure
- This structure lets you decrease the length of the loop in Miller's algorithm
- This structure may or may not make its use cryptographically weak (probably not)
- More research is probably needed in this area

Embedding degree

- Because we need to multiply to calculate it, the Tate pairing requires calculations to be done in a field
- We can only add in G_{1}
- We want to be able to multiply to implement Miller's algorithm
- Solution: embed G_{1} in $\operatorname{GF}\left(q^{k}\right)^{*}$ where multiplication is defined
- The embedding degree (MOV degree) k is the degree of the extension field where we can do this
- This means that we have vectors with k components, each one an element of $G F(q)$
- We need for k to be relatively small to make this practical
- Most elliptic curve groups have embedding degrees that are much too big
- Roughly the same as the order of G_{1}
- Ouch: $\left|G_{1}\right|=2^{160}$ means roughly 2^{160} coordinates

Low embedding degree

- Not many elliptic curves give us groups with a low embedding degree
- A few types that do:
- Supersingular curves ($k=1,2,3,4,6$)
- $k=2$ the most useful
- $y^{2}=x^{3}+1 ; q \equiv 2 \bmod 3$ (easier to hash to point)
- $y^{2}=x^{3}+x ; q \equiv 1 \bmod 3$ (faster pairing calculation)
- MNT curves ($k=3,4,6$)
- BN curves ($k=12$)
- A low embedding degree makes a MOV attack possible
- If calculating a pairing is feasible then an MOV attack is also feasible
vo we need to account for this when we pick parameters

MOV attack

- Suppose that we want to find the discrete logarithm of $a P$
- Suppose that we have a pairing e that we can use
- Say $e(P, Q)=g$
- Note that $e(a P, Q)=e(P, Q)^{a}=g^{a}$
- We can find the discrete log a from either $a P$ or g^{a}
- $a P$ might be in elliptic curve group and g^{a} in a finite field
- Embedding degree $k=2$ for $E(G F(q))$ means that we can calculate discrete logs in $G F\left(q^{2}\right)^{*}$
- Index calculus with 320 bits (weak) instead of Pollard's rho with 160 bits (strong)

MOV attack

- If you can implement a pairing, you can do an MOV attack
- You need to pick parameters so that this doesn't matter
- In the previous example we could calculate discrete logs in either $\operatorname{GF}\left(q^{k}\right)^{*}$ of order 2^{320} or a group G_{1} of order 2^{160}
- If we make q big enough so that the $\operatorname{GF}\left(q^{k}\right)^{*}$ has order 2^{1024}, we're done
- 512-bit q instead of 160 -bit q

Security considerations

- With supersingular curves, the embedding degree is always low ($k \leq 6$)
- This has been fairly well studied
- But they certainly "sound weak," don't they?
- Bad reputation because of MOV attack
- With ordinary curves, additional structure is needed to get a low embedding degree
- This has not been well studied
- More research is needed
- The conservative choice for implementing a pairingbased algorithm is to use a supersingular curve

Underlying computational problems

- Diffie-Hellman problem
- Given g, g^{a}, g^{b}, find $g^{a b}$
- We assume that we need to calculate discrete log of either g^{a} or g^{b} to do this
- Bilinear Diffie-Hellman problem
- Given $P, a P, b P, c P$, find $e(P, P)^{a b c}$
- Note that we can also calculate $e(P, a P)=g^{a}\left(\right.$ also $\left.g^{b}, g^{c}\right)$
- We assume that we need to calculate the discrete logs of $a P, b P, c P, g^{a}, g^{b}, g^{c}$ to do this

Picking parameters

- To attack IBE systems with a pairing e: $G_{1} \times G_{2} \rightarrow G_{T}$ whose security depends on the bilinear Diffie-Hellman problem, we assume that you need to calculate a discrete \log in G_{1}, G_{2}, or G_{T}
- Just like we assume that calculating discrete logs is the only way to solve the Diffie-Hellman problem
v G_{1} and G_{2} are easy to understand if they're elliptic curve groups of prime order
- Just look at SP 800-57 to see how big they need to be for a particular security level
- G_{T} is slightly more complicated
- It's the same order as G_{1} and G_{2}, but it's in a finite field
* We can find discrete logs in G_{T} in two different ways

Security in G_{T}

- If $e: G_{1} \times G_{2} \rightarrow G_{T}$ is a pairing, the output is in $G F\left(q^{k}\right)^{*}$
- We can calculate discrete logs in G_{T} in two ways
- Pollard's rho in G_{T}
- Index calculus in $G F\left(q^{k}\right)^{*}$
- We need to pick parameters so that both of these are difficult enough
- Just like with Diffie-Hellman with $G F(p)$ replaced by $G F\left(q^{k}\right)$

Parameter sizes

- Example: 80 bits of security
- Need $p=\left|G_{1}\right| \geq 2^{160}$
- Need $\left|G F\left(q^{k}\right)^{*}\right| \geq 2^{1024}$ or $\left|G F(q)^{*}\right| \geq 2^{1024 / k}$
- If $k=2$, need 512 -bit q (1024 $=2 \times 512$)
- A supersingular curve can be used to implement this
- If $k=6$, need 171-bit q (rounded up from 1024 / 6 $=170.67)$ and $\left|G F\left(q^{k}\right)^{*}\right|=2^{1026}(6 \times 171=1026)$
- An MNT curve can be used to implement this

Parameter sizes

- Example: 128 bits of security
- $\left|G_{1}\right| \geq 2^{256}$, need $\left|G F\left(q^{k}\right)^{*}\right| \geq 2^{3072}$
- If $k=12$, need 256 -bit $q(3072=12 \times 256)$
- A BN curve can be used to implement this

Parameters to get comparable stirengths

Bits of security	FFC	ECC	PBC
80	$L=1024$ $N=160$	$f=160-223$	$f=160-223$ $k \times L \geq 1024$
112	$L=2048$ $N=224$	$f=224-255$	$f=224-255$ $k \times L \geq 2048$
128	$L=3072$ $N=256$	$f=256-333$	$F=256-333$ $k \times L \geq 3072$
192	$L=7680$ $N=334$	$f=384-511$	$F=384-511$ $k \times L \geq 7680$
256	$L=15360$ $N=512$	$f=512+$	$F=512+$
$k \times L \geq 15360$			

Selecting parameters

- Select bit security level
- Determines size of $p, k \times \log _{2} q$
- Select curve type
- Supersingular curve or ordinary curve
- Select curve family if ordinary
- Select curve
- Select appropriate pairing
- Select q
- Find p so that $E(G F(q))$ has a subgroup of order p
- Should be a Solinas prime for best efficiency

Summary

- What is the Tate pairing?
- What types of elliptic curves can be used to calculate pairings?
- How can we calculate pairings faster?
, What is the ate pairing?
-What are the security implications for this?

