
Outsourced Storage &
Proofs of Retrievability

Hovav Shacham, UC San Diego
Brent Waters, SRI International

The Setting

• Client stores (long) file with server

- Wants to be sure it’s actually there

• Motivation: online backup; SaaS

• Long-term reliable storage is expensive

Example Protocols

V P (M)

M

V P (M)(M)

c

h(c‖M)
h(c‖M)

?
= ·

(h = h(M))

h
?
= h(·)

Kotla,Alvisi, Dahlin, Usenix 2007:

How do we evaluate
protocols of this sort?

Systems Criteria

• Efficiency:

- Storage overhead

- Computation (including # block reads)

- Communication

• Unlimited use

• Stateless verifiers

• Who can verify? File owner? anyone?

Crypto criterion
• Only an adversary storing the file can

pass the verification test

• Possible to extract M from any prover P'
via black-box access

• (Cf. ZK proof-of-knowledge)

• Insight due to Naor, Rothblum, FOCS 2005
and Juels, Kaliski, CCS 2007

Security Model — I
• Keygen: output secret key sk

• Store (sk, file M):
output tag t, encoded file M*

• Proof-of-storage protocol:

• Public verifiability:

- Keygen outputs keypair (pk,sk)

- Verifier algorithm takes only pk

{0, 1} ←

(

V(sk, t) ! P(t, M∗)
)

Security Model — II

• Challenger generates sk

• Adversary makes queries:

- “store Mi” ⇒ get ti, Mi*

- “protocol on ti” ⇒ interact w/ V(sk,ti).

• Finally, adversary outputs:

- challenge tag t from among {ti}

- description of cheating prover P' for t

Security Model — III

• Security guarantee:

∃ extractor algorithm Extr st. when

we have

except with negligible probability

[

(

V(sk, t) ! P ′
)

= 1
]

≥ ε

Extr(sk, t,P ′) = M

Probabilistic Sampling
• Want to check 80 blocks at random,

not entire file

• Pr[detect 1-in-106 erasure]: < 0.01%

• Pr[detect 50% erasure]: 1 - (1/2)80

• So: encode M ⇒ M* st. any 1/2 of blocks

suffice to recover M: erasure code

• Due to Naor, Rothblum, FOCS 2005

The Simple Solution
• Store:

- erasure encode M ⇒ M*

- for each block mi of M*,
store authenticator σi = MACk(i,mi)

• Proof of storage:

V P

{(mi, σi)}i∈I

I ⊆ [1, n] (|I| = 80)

σi

?
= MACk(i, mi)

(

{(mi, σi)}
n
i=1

)

(k)

 Lower communication
using homomorphic

authenticators

• Downside to simple solution:
response is 80 blocks, 80 authenticators

• Let’s send Σmi instead!

Improved Solution (Try #1)

V P

I ⊆ [1, n] (|I| = 80)

(

{(mi, σi)}
n
i=1

)

(k)

µ =

∑
i∈I

mi σ =

∑
i∈I

σi

• Downside to simple solution:
response is 80 blocks, 80 authenticators

• Let’s send Σmi instead!

Improved Solution (Try #1)

V P

I ⊆ [1, n] (|I| = 80)

(

{(mi, σi)}
n
i=1

)

(k)

µ =

∑
i∈I

mi σ =

∑
i∈I

σi

???

Homomorphic Authenticators

• Problem: have linear combination of
messages mi

• Need to authenticate via some function
of {σi}

• Ateniese et al., CCS 2007:
RSA-based homomorphic authenticators;

 authenticates
∑

i
νimi

∏
i
σ

νi

i

Our Contributions

1. Efficient homomorphic authenticators
based on PRFs and on bilinear groups

2. A full proof for (improved) simple
protocol, against arbitrary adversaries

PRF Authenticator
• PRF f: {0,1}*→K; mi ∈ K; K: GF(280) or Zp

• Keygen: PRF key k; α ∈ K

• Authenticate:

• Aggregate:

• Verify:

σi ← fk(i) + α · mi

σ ←
∑

νiσi µ ←
∑

νimi

σ
?
=

∑
νifk(i) + αµ

BLS Authenticator
• Bilinear map e: G1×G2→GT, 〈u〉= G1.

• Keygen: sk: x ∈ Zp; pk: v = g2x ∈ G2.

• Authenticate:

• Aggregate:

• Verify:

σi ←

[

H(i)umi

]x

σ ←
∏

σ
νi

i
µ ←

∑
νimi

e(σ, g)
?
= e

(

uµ
·

∏
H(i)νi , v

)

Improved Solution (Try #2)

V P
(

{(mi, σi)}
n
i=1

)

I ⊆ [1, n] (|I| = 80)

νi ← K i ∈ I

Q = {(i, νi)}

µ, σ

µ ←
∑

(i,νi)∈Q

νimi

σ ←
∑

(i,νi)∈Q

νiσi

σ
?
=

∑

(i,νi)∈Q

νifk(i) + αµ

(k, α)

Communication & storage
• PRF solution: 80-bit µ, 80-bit σ

• BLS solution: 160-bit µ, 160-bit σ

• But: 100% storage overhead

• Storage/communication tradeoff:

- split each block into s sectors

- one authenticator per block:

- response: (1+s)×80 bits [or ×160 bits]

- storage overhead: 1/s

The proof of security

Security Proof Outline

1. “Straitening”: whenever (µ,σ) verify
correctly, µ was computed as Σνimi

2. “Extraction”: can extract 1/2 of blocks
from prover P' that outputs µ=Σνimi on
ε-fraction of queries, ⊥ otherwise

3. “Decoding”: recover M from any 1/2 of
M* blocks

Attack on Improved
Solution Try #1

• Attacker picks index i*

• For i≠i*, sets ai ← ±1, stores m' ← mi + aimi*

• for query I st. i*∉I, compute

• this is correct if #(+1) = #(-1) in Σai:

µ
′ =

∑

i∈I

m
′

i =
∑

i∈I

(mi + aimi∗) = µ + mi∗

∑

i∈I

ai

Pr

[

0 =

∑
i∈I

ai

]

=

(

80

40

)

·

1

280
≈ 8.89

Attack (cont.)
Attacker knows dim (n-1) subspace:

But he doesn’t know any single block!

1 · · · 0 ±1

1 ±1

±1

1 ±1

0 · · · 1 ±1

Conclusion

• Homomorphic authenticators from PRFs, BLS

• “Improved Solution, Try #2”:

- compact response (& query in r.o. model)

- secure against arbitrary adversarial behavior

• Security requires proof — some okay-looking
schemes are insecure

http://cs.ucsd.edu/~hovav/papers/sw08.html

