Outsourced Storage & Proofs of Retrievability

Hovav Shacham, UC San Diego Brent Waters, SRI International

The Setting

- Client stores (long) file with server
 - Wants to be sure it's actually there
- Motivation: online backup; SaaS
- Long-term reliable storage is expensive

How do we evaluate protocols of this sort?

Systems Criteria

• Efficiency:

- Storage overhead
- Computation (including # block reads)
- Communication
- Unlimited use
- Stateless verifiers
- Who can verify? File owner? anyone?

Crypto criterion

- Only an adversary storing the file can pass the verification test
- Possible to extract *M* from any prover *P*' via black-box access
- (Cf. ZK proof-of-knowledge)

 Insight due to Naor, Rothblum, FOCS 2005 and Juels, Kaliski, CCS 2007

Security Model – I

- Keygen: output secret key sk
- Store (sk, file M): output tag t, encoded file M*
- Proof-of-storage protocol: $\{0,1\} \stackrel{R}{\leftarrow} (\mathcal{V}(sk,t) \rightleftharpoons \mathcal{P}(t, \mathcal{M}^*))$
- Public verifiability:
 - Keygen outputs keypair (pk,sk)
 - Verifier algorithm takes only *pk*

Security Model – II

- Challenger generates sk
- Adversary makes queries:
 - "store M_i " \Rightarrow get t_i , M_i *
 - "protocol on t_i " \Rightarrow interact w/ V(sk,t_i).
- Finally, adversary outputs:
 - challenge tag *t* from among {*t_i*}
 - description of cheating prover P' for t

Security Model – III

• Security guarantee: \exists extractor algorithm Extr st. when $\Pr[(\mathcal{V}(sk,t) \rightleftharpoons \mathcal{P}') = 1] \ge \epsilon$ we have $Extr(sk,t,\mathcal{P}') = M$ except with negligible probability

Probabilistic Sampling

- Want to check 80 blocks at random, not entire file
- Pr[detect 1-in-10⁶ erasure]: < 0.01%</p>
- Pr[detect 50% erasure]: 1 (1/2)⁸⁰
- So: encode M ⇒ M* st. any 1/2 of blocks suffice to recover M: erasure code
- Due to Naor, Rothblum, FOCS 2005

The Simple Solution

- Store:
 - erasure encode $M \Rightarrow M^*$
 - for each block m_i of M*,
 store authenticator σ_i = MAC_k(i,m_i)
- Proof of storage:

Lower communication using homomorphic authenticators

Improved Solution (Try #1)

- Downside to simple solution: response is 80 blocks, 80 authenticators
- Let's send Σm_i instead!

(k)
$$\mathcal{V}$$
 \mathcal{P} $(\{(m_i, \sigma_i)\}_{i=1}^n)$
 $I \stackrel{R}{\subseteq} [1, n] \quad (|I| = 80)$
 $\mu = \sum_{i \in I} m_i \quad \sigma = \sum_{i \in I} \sigma_i$

Improved Solution (Try #1)

- Downside to simple solution: response is 80 blocks, 80 authenticators
- Let's send Σm_i instead!

(k)
$$\mathcal{V}$$
 \mathcal{P} $(\{(\mathfrak{m}_{i}, \sigma_{i})\}_{i=1}^{n})$
 $I \subseteq [1, n]$ $(|I| = 80)$
 $\mu = \sum_{i \in I} \mathfrak{m}_{i}$ $\sigma = \sum_{i \in I} \sigma_{i}$
 \mathcal{P}

Homomorphic Authenticators

- Problem: have linear combination of messages m_i
- Need to authenticate via some function of {σ_i}
- Ateniese et al., CCS 2007: RSA-based homomorphic authenticators; $\prod_{i} \sigma_{i}^{\nu_{i}} \text{ authenticates } \sum_{i} \nu_{i} m_{i}$

Our Contributions

- 1. Efficient homomorphic authenticators based on PRFs and on bilinear groups
- 2. A full proof for (improved) simple protocol, against *arbitrary* adversaries

PRF Authenticator

- PRF $f: \{0,1\}^* \rightarrow K; m_i \in K; K: GF(2^{80}) \text{ or } Z_p$
- Keygen: PRF key k; $\alpha \in K$
- Authenticate: $\sigma_i \leftarrow f_k(i) + \alpha \cdot m_i$
- Aggregate:

 $\boldsymbol{\sigma} \leftarrow \sum \boldsymbol{\nu}_i \boldsymbol{\sigma}_i \quad \text{and} \quad \boldsymbol{\mu} \leftarrow \sum \boldsymbol{\nu}_i \boldsymbol{m}_i$

• Verify:

 $\sigma \stackrel{?}{=} \sum \nu_i f_k(i) + \alpha \mu$

BLS Authenticator

- Bilinear map $e: G_1 \times G_2 \rightarrow G_T$, $\langle u \rangle = G_1$.
- Keygen: sk: $x \in \mathbb{Z}_p$; pk: $v = g_2^x \in G_2$.
- Authenticate: $\sigma_i \leftarrow \left[H(i)u^{m_i}\right]^x$
- Aggregate:
 - $\boldsymbol{\sigma} \leftarrow \prod \boldsymbol{\sigma}_{i}^{\boldsymbol{\nu}_{i}} \quad \text{and} \quad \boldsymbol{\mu} \leftarrow \sum \boldsymbol{\nu}_{i} \boldsymbol{m}_{i}$
- Verify:

 $e(\sigma,g) \stackrel{?}{=} e\left(u^{\mu} \cdot \prod H(i)^{\nu_{i}}, \nu\right)$

Communication & storage

- PRF solution: 80-bit μ , 80-bit σ
- BLS solution: 160-bit μ , 160-bit σ
- But: 100% storage overhead
- Storage/communication tradeoff:
 - split each block into s sectors
 - one authenticator per block:
 - response: (1+s)×80 bits [or ×160 bits]
 - storage overhead: 1/s

The proof of security

Security Proof Outline

- **1. "Straitening":** whenever (μ , σ) verify correctly, μ was computed as $\Sigma v_i m_i$
- 2. "Extraction": can extract 1/2 of blocks from prover *P*' that outputs $\mu = \Sigma v_i m_i$ on ϵ -fraction of queries, \perp otherwise
- 3. "Decoding": recover M from any 1/2 of M* blocks

Attack on Improved Solution Try #1

- Attacker picks index *i**
- For $i \neq i^*$, sets $a_i \leftarrow \pm 1$, stores $m' \leftarrow m_i + a_i m_{i^*}$
- for query *I* st. *i**∉*I*, compute

$$\mu' = \sum_{i \in I} m'_i = \sum_{i \in I} (m_i + a_i m_{i^*}) = \mu + m_{i^*} \sum_{i \in I} a_i$$

• this is correct if #(+1) = #(-1) in Σa_i :

$$\Pr\left[0 = \sum_{i \in I} a_i\right] = \binom{80}{40} \cdot \frac{1}{2^{80}} \approx 8.89\%$$

Attack (cont.)

Attacker knows dim (n-1) subspace:

But he doesn't know any single block!

Conclusion

- Homomorphic authenticators from PRFs, BLS
- "Improved Solution, Try #2":
 - compact response (& query in r.o. model)
 - secure against arbitrary adversarial behavior
- Security requires proof some okay-looking schemes are insecure

http://cs.ucsd.edu/~hovav/papers/sw08.html