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The Setting 

• Client stores (long) file with server 

- Wants to be sure it’s actually there 

• Motivation: online backup; SaaS 

• Long-term reliable storage is expensive 
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Kotla,Alvisi, Dahlin, Usenix 2007: 



How do we evaluate 
protocols of this sort? 



  

Systems Criteria 

• Efficiency: 

- Storage overhead 

- Computation (including # block reads) 

- Communication 

• Unlimited use 

• Stateless verifiers 

• Who can verify? File owner? anyone? 



  

 

Crypto criterion 
• Only an adversary storing the file can 

pass the verification test 

• Possible to extract M from any prover P' 
via black-box access 

• (Cf. ZK proof-of-knowledge) 

• Insight due to Naor, Rothblum, FOCS 2005 
and Juels, Kaliski, CCS 2007 



Security Model — I 
• Keygen: output secret key sk 

• Store (sk, file M): 
output tag t, encoded file M* 

• Proof-of-storage protocol: 

• Public verifiability: 

- Keygen outputs keypair (pk,sk) 

- Verifier algorithm takes only pk 

{0, 1} ←

(

V(sk, t) ! P(t, M∗)
)



 

  

Security Model — II 

• Challenger generates sk 

• Adversary makes queries: 

- “store Mi” ⇒ get ti, Mi* 

- “protocol on ti” ⇒ interact w/ V(sk,ti). 

• Finally, adversary outputs: 

- challenge tag t from among {ti} 

- description of cheating prover P' for t 



 

Security Model — III 

• Security guarantee: 

∃ extractor algorithm Extr st. when 

we have 

except with negligible probability 

[

(

V(sk, t) ! P ′
)

= 1
]

≥ ε

Extr(sk, t,P ′) = M



   

Probabilistic Sampling 
• Want to check 80 blocks at random, 

not entire file 

• Pr[ detect 1-in-106 erasure ]: < 0.01% 

• Pr[ detect 50% erasure ]: 1 - (1/2)80 

• So: encode M ⇒ M* st. any 1/2 of blocks 

suffice to recover M: erasure code 

• Due to Naor, Rothblum, FOCS 2005 



  

 

The Simple Solution 
• Store: 

- erasure encode M ⇒ M* 

- for each block mi of M*, 
store authenticator σi = MACk(i,mi) 

• Proof of storage: 

V P
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I ⊆ [1, n] (|I| = 80)

σi
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 Lower communication 
using homomorphic 

authenticators 



• Downside to simple solution: 
response is 80 blocks, 80 authenticators 

• Let’s send Σmi instead! 

Improved Solution (Try #1) 
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• Downside to simple solution: 
response is 80 blocks, 80 authenticators 

• Let’s send Σmi instead! 

Improved Solution (Try #1) 
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Homomorphic Authenticators 

• Problem: have linear combination of 
messages mi 

• Need to authenticate via some function 
of {σi} 

• Ateniese et al., CCS 2007: 
RSA-based homomorphic authenticators;
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Our Contributions 

1. Efficient homomorphic authenticators 
based on PRFs and on bilinear groups 

2. A full proof for (improved) simple 
protocol, against arbitrary adversaries 



  

  

PRF Authenticator 
• PRF f: {0,1}*→K; mi ∈ K; K: GF(280) or Zp 

• Keygen: PRF key k; α ∈ K 

• Authenticate: 

• Aggregate: 

• Verify: 

σi ← fk(i) + α · mi

σ ←
∑
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σ
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BLS Authenticator 
• Bilinear map e: G1×G2→GT, 〈u〉= G1. 

• Keygen: sk: x ∈ Zp; pk: v = g2x ∈ G2. 

• Authenticate: 

• Aggregate: 

• Verify: 
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Improved Solution (Try #2) 
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Communication & storage 
• PRF solution: 80-bit µ, 80-bit σ 

• BLS solution: 160-bit µ, 160-bit σ 

• But: 100% storage overhead 

• Storage/communication tradeoff: 

- split each block into s sectors 

- one authenticator per block: 

- response: (1+s)×80 bits [or ×160 bits] 

- storage overhead: 1/s 



The proof of security 



 

 

Security Proof Outline 

1. “Straitening”: whenever (µ,σ) verify 
correctly, µ was computed as Σνimi 

2. “Extraction”: can extract 1/2 of blocks 
from prover P' that outputs µ=Σνimi on 
ε-fraction of queries, ⊥ otherwise 

3. “Decoding”: recover M from any 1/2 of 
M* blocks 



 

Attack on Improved 
Solution Try #1 

• Attacker picks index i* 

• For i≠i*, sets ai ← ±1, stores m' ← mi + aimi* 

• for query I st. i*∉I, compute 

• this is correct if #(+1) = #(-1) in Σai: 
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Attack (cont.) 
Attacker knows dim (n-1) subspace: 

But he doesn’t know any single block! 
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Conclusion 

• Homomorphic authenticators from PRFs, BLS 

• “Improved Solution, Try #2”: 

- compact response (& query in r.o. model) 

- secure against arbitrary adversarial behavior 

• Security requires proof — some okay-looking 
schemes are insecure 

http://cs.ucsd.edu/~hovav/papers/sw08.html 


