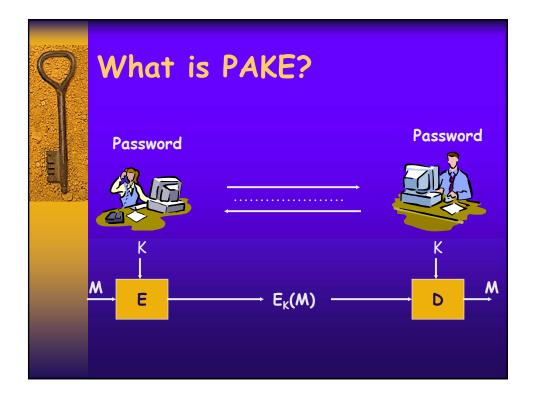
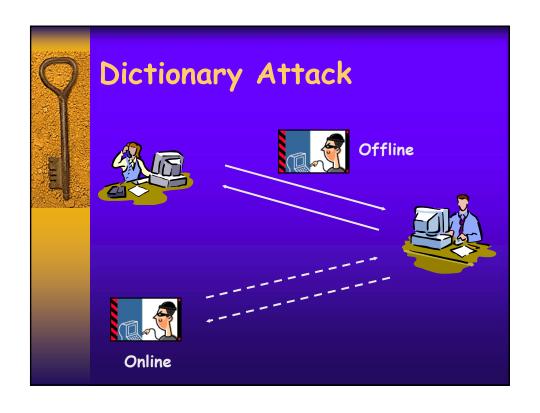


Password Authenticated Key Exchange Protocols

Xun Yi, Victoria University Raylin Tso, National Cheng Chi University Eiji Okamoto, University of Tsukuba

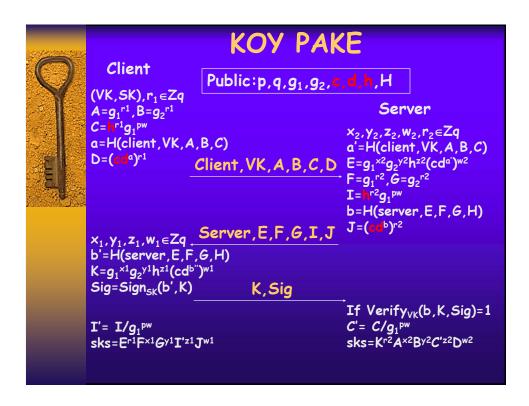

Abstract


- Scenario: client/server model
- Application: password-authenticated key exchange (PAKE)
- Proposals: client/server PAKE protocol from IBE, group PAKE protocol from IBE and IBS

Outline

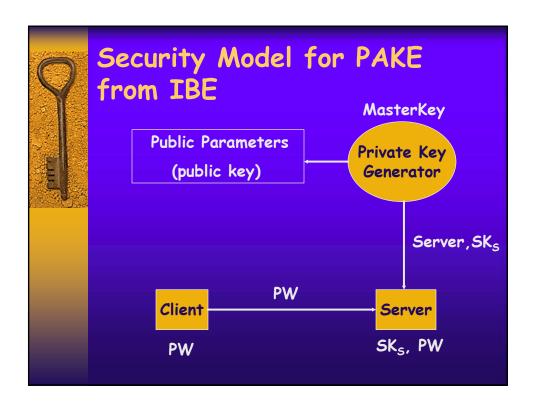
- Backgrounds
- Client/server PAKE from IBE
- Group PAKE from IBE and IBS
- Security and performance analysis
- Conclusion

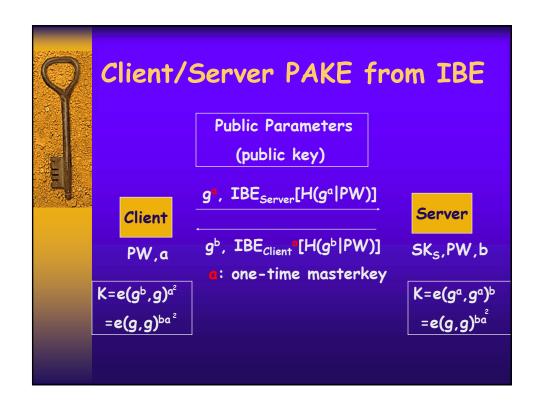
First Formal Model of Security for PAKE


- M. Bellare, D. Pointcheval, and P. Rogaway: Authenticated key exchange secure against dictionary attacks (Eurocrypt 2000).
- V. Boyko, P. Mackenzie, and S. Patel: Provably secure password-authenticated key exchange using Diffie-Hellman (Eurocrypt 2000).
- Random oracle model versus standard model

$$Adv_{AP}(k) \leq Q(k)/N + \varepsilon(k)$$

First Practical PAKE without Random Oracles


- J. Katz, R. Ostrovsky and M. Yung: Efficient password-authenticated key exchange using human-memorable passwords (Eurocrypt 2001).
- Built on Cramer-Shoup cryptosystem (1998)



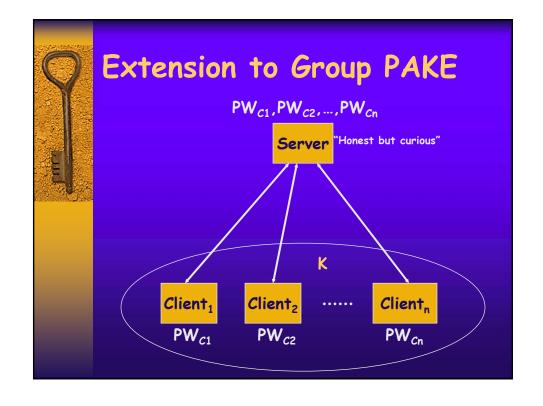
Motivations

- Common reference model versus IBE
- Implicit authentication versus explicit authentication
- PAKE security model versus IDbased PAKE security model

Practical IBE without Random Oracles

- C. Gentry: Practical identity-based encryption without random oracles (Eurocrypt 2006).
- Truncated decisional augmented bilinear Diffie-Hellman exponent (ABDHE) assumption


q,g,g₁=g^a,h1,h2,h3,H, a: MasterKey


```
\begin{array}{c} \text{SecretKey} \\ \text{d}_{\text{ID}} = \{ (r_{\text{ID},i}, h_{\text{ID},i}) : i = 1, 2, 3 \} \\ \text{E:s} \in \text{Zq u} = g^s g_1^{-s\text{ID}} \\ \text{v} = (g,g)^s \\ \text{w=m} \cdot e(g,h_1)^{-s} \\ \text{b} = H(u,v,w) \\ \text{Y= e}(g,h_2)^s e(g,h_3)^{sb} \\ \text{D: b} = H(u,v,w) \\ \text{e}(u,h_{\text{ID},2}h_{\text{ID},3}^{b}) v^{\text{rid},2} + \text{rid},3b} = y? \\ \text{m=w} \cdot e(u,h_{\text{ID},1}) v^{\text{rid},1} \\ \end{array}
```


Security of Client/Server PAKE from IBE without Random Oracles

- IBE is secure against the adaptive chosen ciphertext attack.
- A new decisional Diffie-Hellman (NDDH)
 assumption: given g,g^a,g^b,Z∈G, it is hard
 to decide if Z=e(g,g)^{ba²}
- ABDHE: $(g', g'_{q+2}, g, g_1, ..., g_q, Z)$, it is hard to decide if $Z=e(g_{q+1}, g')$ where $g_i=g^{a^i}$
- NDDH is harder than ABDHE because let $g_{(q+1)/2}=g^x$, $g'=g^y$, then $e(g_{q+1},g')=e(g,g)^{y\times^2}$

Group PAKE from IBE

- Broadcasting communication model
- Clients run a group key exchange protocol P to obtain K
- Authentication

$IBE_{Server}[H(msg K)*H(msg PW_{Ci})]$			
Client _i		Server	
Sign _{Server} [H(msg clients,server),SK ₅]			
PW_{c_i}		$SK_{s},PW_{c_{i}}$	

Security of Group PAKE from IBE and IBS

- Trust model
- * IBE is secure against the adaptive chosen ciphertext attack.
- IBS is existential unforgeability under the chosen message attack.
- Group PAKE from IBE and IBS has been proved to be secure without random oracles.

Abdalla et al's Group PAKE versus ID-based Group PAKE

	Abdalla et al.	УТО-2
Compiler	2-party PAKE, Burmester- Desmedt KE	Group KE, Client/server PAKE
Trusted model	Each user is honest	Server is honest
Auth model	n pairs of users	All clients to server
Rounds	5	4

Conclusion

- Client/server model
- Client/server PAKE from IBE is more efficient than existing 2party PAKE without random oracles.
- Group PAKE from IBE and IBS is a new way to construct group PAKE protocols.

References

- M. Abdalla, J. M. Bohli, M. I. G. Vasco, R. Steinwandt. (Password) authenticated key establishment: From 2-party to group. In Proc. TCC'07, pages 499-514, 2007.
- M. Abdalla, P. A. Fouque, and D. Pointcheval. Password-based authenticated key exchange in the three-party setting. IEE Proceedings in Information Security, 153(1): 27-39, Mar. 2006.

 M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks. In Proc. Eurocrypt'00, pages 139-155, May 2000.
- S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocol secure against dictionary attack. In Proc. 1992 IEEE Symposium on Research in Security and Privacy, pages 72–84, May 1992.

- D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In Proc. Crypto'01, pages 213-229, 2001.
 M. Burmester and Y. Desmedt. A secure and efficient conference key distribution system. In Proc. Eurocrypt'94, pages 275-286, 1995.
 R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In Proc. Crypto'98, pages 13-25, 1998.
 C. Gentmy Practical identity-based encryption without random anacle.
- C. Gentry. Practical identity-based encryption without random oracle. In Proc. Eurocrypt'06, pages 445-464, 2006.
 J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using human-memorable passwords. In Proc. Eurocrypt'01, pages 457-494, 2001.
 J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. In Proc. Crypt0'03, pages 110-125, 2003.