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Syndrome Decoding Problem (SDP)

Code-based crypto McEliece, BIKE, HQC, etc.
Secure Computation (“LPN”) Indistinguishability obfuscation

G ←↩ U(Fk×n
q ) full-rank, m ←↩ U(Fk

q)
Error e, t def= HW(e) small

m G

+
e

≈

y ←↩ U(Fn
q)

Parity-check H ←↩ U(F(n−k)×n
q ) full-rank

e

HT

≈

s ←↩ U(Fn−k
q )
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SDP variants

What to change ?

• Public code: sparse, quasi-cyclic, . . .

• Error distribution

• Metric: ���HHHHW → rank metric, Lee metric

Goal
Efficiency gain ! (at least)
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Known attacks

On plain version
Information Set Decoding (ISD), Statistical Decoding → combinatorial

More structure here !

• Improve generic solvers ?

• Other attack types ?
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This talk

Algebraic cryptanalysis

• Reduction to polynomial system solving
• Applies to some variants

Regular Syndrome Decoding [BØ23] + Ongoing work

[BØ23] Briaud and Øygarden. “A New Algebraic Approach to the Regular Syndrome Decoding Problem and Implications for PCG Constructions”.

Advances in Cryptology – EUROCRYPT 2023.
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Solving S = {s1, . . . , sm}

1) × monomials: (Homogeneous) Macaulay matrix Md

mons µ̃, deg(µ̃) = d

polys µsi ,
deg(µsi ) = d coef(µ̃, µsi )

2) Linear algebra: RowEchelon(Md ) for d ≤ D, solving degree
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Regular Syndrome Decoding



Error distribution

Regular noise [AFS05]
Assume n = N × t for some N ∈ N

• For 1 ≤ i ≤ t, random e i ∈ FN
q , HW(e i ) = 1

• Error is e def= (e1, . . . , et) ∈ Fn
q

Secure Computation

Pseudorandom Correlation Generators (PCGs) [Boy+19]

[AFS05] Augot, Finiasz, and Sendrier. “A Family of Fast Syndrome Based Cryptographic Hash Functions”. MYCRYPT 2005.

[Boy+19] Boyle et al. Compressing Vector OLE.
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PCG for Vector OLE [Boy+19]

Want shares of long pseudorandom u

1. Function Secret Sharing (FSS) → t-sparse vector e
2. Decoding Problem → final u

2 ways !

Code rate R def= k/n

Primal Dual
u = mG + e u = eHT

Very low R Constant R

Regular e → reduce FSS cost
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Contribution

Algebraic attack on Reg-SDP

• Tailored to noise distribution
• Can beat ISDs for low code rates (Primal)
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Algebraic system for Reg-SDP



Modeling regular structure (q = 2)

Polynomial ring R def= F2[(ei ,j)i ,j ], n variables, block e i
def= (ei ,1, . . . , ei ,N) ∈ FN

2

Coordinates ∈ F2 (field equations)

∀i , ∀j , e2
i ,j − ei ,j = 0 (1)

One 6= 0 coordinate per block

∀i , ∀j1 6= j2, ei ,j1ei ,j2 = 0 (2)

Over F2, this coordinate is 1

∀i ,
∑N

j=1 ei ,j = 1 (3)

We consider Q def= (1) ∪ (2) ∪ (3)
B., Øygarden SDP variants and algebraic cryptanalysis Crypto Reading Club meeting 10 / 21



Parity-checks eHT = s

Linear equations (hi i-th row in H)

Parity-checks

P def= {∀i ∈ {1..n − k}, 〈hi , e〉 − si}

More when R small:
#P = n − k = n(1− R)

Final system S def= P ∪Q
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Estimating solving degree



Hilbert series (HS)

Homogeneous ideal I, Rd
def= span{µ, deg(µ) = d}, Id

def= I ∩ Rd

HR/I(z) def=
∑
d∈N

dim (Rd/Id )zd =
∑
d∈N

dim (Rd )zd −
∑
d∈N

Rank(Md )zd

Typical case in crypto: I zero-dimensional

Consequence

HS polynomial of degree D − 1

• Recover solving degree from HS !
• HS unknown in general :( → need to estimate it
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Structural part Q

Easy to handle

Q(h) = {∀i ∈ {1..t}, ∀j ∈ {1..N}, e2
i ,j}︸ ︷︷ ︸

(1)

∪{∀i , ∀j1 6= j2, ei ,j1ei ,j2}︸ ︷︷ ︸
(2)

∪{∀i ,
∑N

j=1 ei ,j}︸ ︷︷ ︸
(3)

HS 1
Combinatorics:

dim(Rd/〈Q(h)〉d ) =
(t

d
)
(N − 1)d

HR/〈Q(h)〉(z) = (1 + (N − 1)z)t
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Parity-checks P

Require assumption. Hope: HS known for random systems
Assumption (≈ semi-regularity)

P(h) behaves randomly in quotient R/〈Q(h)〉

We have 〈S(h)〉 = 〈P(h)〉+ 〈Q(h)〉. Under Assumption, we get

HR/〈S(h)〉(z) =
[
HR/〈Q(h)〉(z)
(1 + z)n−k

]
+
,

[.]+: truncation after first < 0 coef
HS 2 (under Assumption + using HS 1)

HR/〈S(h)〉(z) =
[(1 + (N − 1)z)t

(1 + z)n−k

]
+
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Cost

Solving degree D
We had D = deg(HR/〈S(h)〉) + 1

→ First < 0 coef in (1 + (N − 1)z)t

(1 + z)n−k

• Linear algebra on Macaulay matrix MD, 2 ≤ ω < 3

Tsolve(S) = O(#cols(MD)ω) = O
(( t

D
)ω(N − 1)ωD

)
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Improvements

• Hybrid approach
→ fix variables (here, in a structured way)

• XL-Wiedemann
→ exploit sparse Macaulay matrix
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Cost with improvements

Parameters from Boyle et al. [Boy+19], updated analysis by Liu et al. [Liu+22]

n k t F2 [Liu+22] This work F2 F2128 [Liu+22] This work F2128

222 64770 4788 147 104 156 111
220 32771 2467 143 126 155 131
218 15336 1312 139 123 153 133
216 7391 667 135 141 151 151
214 3482 338 132 140 150 152
212 1589 172 131 136 155 152
210 652 106 176 146 194 180

[Liu+22] Liu et al. The Hardness of LPN over Any Integer Ring and Field for PCG Applications.
B., Øygarden SDP variants and algebraic cryptanalysis Crypto Reading Club meeting 17 / 21



Other SDP variants



Restricted Syndrome Decoding Problem (R-SDP)

CROSS signature scheme [Bal+23] → new NIST call

Constrained coefs

• Full Hamming weight
HW(e) = n

• Coefs ei ∈ F×q restricted to subgroup

E = 〈g〉, g ∈ F×q of order z

Level 1 parameters q = 127, n = 127, k = 76, z = 7

[Bal+23] Baldi et al. Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem.
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Permuted Kernel Problem (PKP)

Introduced by Shamir in 1989

• PKP-DSS [Beu+18] → Chinese PQC competition
• PERK → new NIST call

Formulation

Parity-check H ∈ F(n−k)×n
q , public vector y ∈ Fn

q.
Find secret σ ∈ Sn s.t.

yσHT = 0, where yσ = (yσ(1), . . . , yσ(n))

Level 1 PKP-DSS q = 251, n = 69, n − k = 41 (n! ≈ qn−k)

[Beu+18] Beullens et al. PKP-Based Signature Scheme.
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Algebraic systems ?

Parity-checks

→ n − k linear eqs

Extra structure
→ higher degree eqs

• R-SDP:
∀i ∈ {1..n}, ei

z − 1 = 0

• PKP:
Model permutation matrix Pσ = (pi ,j)
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Ongoing work

Same approach for Hilbert series ?

• Seems fine for R-SDP

• Much more complicated for PKP
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