
astran.io @astran hello@astran.io

AONT:
an essential gadget for Multi-Party

Threshold Cryptography.

presented by Gilles Seghaier, Cofounder & CTPO of Astran
during Session 3c (13:20 EDT) Thursday, September 28th, 2023

MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023

Copyright Astran 2023OPENING

Astran Scientific Committee
Professor Nigel Smart - Cryptographer and professor of computer science at the University of Leuven in Belgium,
renowned for his work on elliptic curve cryptography and matching-based cryptography. He co-founded Unbound
Security, a company specializing in the deployment of distributed cryptographic solutions based on multiparty
computation (MPC).

Professor Ludovic Perret - Cryptography expert and lecturer at Sorbonne University, specializing in the
standardization of post-quantum cryptography. Co-author of the GeMSS digital signature scheme and involved in
several standardization bodies.

THANK
YOU

Astran Academic Partners

Copyright Astran 2023INTRODUCTION

Simple
Storage
Service

Secret
Shared

S3

MULTI-PARTY
STORAGE

THRESHOLD
CRYPTOGRAPHY

Zero Trust & Zero Knowledge Cloud Services

Copyright Astran 2023ASTRAN MODEL FOR MULTI-PARTY STORAGE (MPS)

Multi-cloud storage with a proxy

Data
fragment 1

Data
fragment 2

Data
fragment 3

Copyright Astran 2023THREAT MODELS

MPS and threshold modeling possibilities

n storage
providers

i
k out of n
fragments
threshold

Frag
A single
proxy

n+1 adversaries

Independent dishonest attackers

N-Collusion attacks < threshold

Copyright Astran 2023ALL OR NOTHING TRANSFORM GENESIS

● All-Or-Nothing transform was introduced by
Rivest[1] back in 1997.

● One must decrypt the entire ciphertext before one
can determine even one message block.

● Original motivation: slowing down brute-force
searches against all-or-nothing encryption blocks.

Message

AONT

enc enc enc enc enc

Ciphertext

[1] R. L. Rivest. All-or-nothing encryption and the package transform. In E. Biham, editor, Fast Software Encryption, 4th International Workshop, FSE ’97, LNCS. Springer, 1997.

AONT

Copyright Astran 2023ALL OR NOTHING TRANSFORM IN PRACTICE

Random key (k) XOR

HashCipher

Hash value (h)

Difference (d)

Message
m

Ciphertext
c

Can be used in conjunction with error coding, secret sharing, IDA or others threshold schemes

AONT(m) = Enc(m,k) || XOR(k,h)
where h = HASH(Enc(m,k))

Copyright Astran 2023OTHER BUILDING BLOCKS

Secret Sharing Scheme (SSS)
We use Shamir’s secret sharing [2]. It exploits the Lagrange
interpolation theorem, specifically that k values suffice to
uniquely determine a polynomial of degree ≤ k − 1. Shamir’s
secret sharing has perfect secrecy.

Information Dispersal Algorithm
(IDA)

Unlike secret sharing, an IDA does not provide perfect-secrecy.
However, an IDA is very memory-efficient. We are using
algorithms similar to Rabin’s IDA using erasure codes.

Proxy Re-Encryption Scheme (PRE)
We use in our protocols the fully homomorphic encryption
scheme BGV [3]. Since BGV is fully homomorphic, it
commutes with the secret sharing described above. It can
perform proxy re-encryption by using the key-switching method
described in [3].

Multikey Encryption Scheme (MKE)
We use multi-key homomorphic encryption [4] scheme. That
way, the providers can also each decrypt their own share, this
time with the participation of the others.

[2] A. Shamir. How to share a secret. Commun. ACM, 1979.
[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping. In S. Goldwasser, editor, Innovations in Theoretical Computer Science 2012. ACM, 2012
[4] A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. IACR Cryptol. ePrint Arch., 2013.

Copyright Astran 2023

i

MPS USING HOMOMORPHIC PROXY RE-ENCRYPTION

(pki ,ski) ← PRE.KeyGen(λ)(pkU, skU) ← PRE.UKeyGen(λ)
rki ← PRE.ReKey(skU, pki)

h0, d1

rk1, . . . ,rkn

s1, . . . , sn ← SS.Split(h0, n, k)
hi ← PRE.ReEnc(si, rki)
r1, . . . , rn ← IDA.Split(d1, n, k)

Fragmentation
+ Re-encryption

ri, hi

Dispersal

yi ← PRE.Dec(hi, ski)

Decryption

store yi, ri

Storage

d0||d1 ← AONT.Hide(m)
h0 ← PRE.Enc(d0, pkU)

Transformation
+ Homomorphic Encryption

m

h0

d1

Copyright Astran 2023THREAT MODELS

2-collusion : dishonest proxy and provider

storage
provider

i
A single
proxy

h0i

d1

h0i ← PRE.ReEnc(h0, rki)

h0

d1

d0

d1

d0 ← PRE.Dec(h0i, ski) m ← AONT.Reveal(d0||d1)

Copyright Astran 2023MPS USING HOMOMORPHIC MULTIKEY ENCRYPTION

i

(pki ,ski) ← MKE.KeyGen(λ)

h0, d1

h1, . . . , hn ← SS.Split(h0, n, k)
r1, . . . , rn ← IDA.Split(d1, n, k)

Fragmentation Dispersal

d0||d1 ← AONT.Hide(m)
h0 ← MKE.Enc(d0, {pki})

Transformation
+ Homomorphic Encryption

m

h0

d1

ri, {hij} (j≠i)

Storage

store yi, ri

{hij} ← MKE.PartDec(hi, ski)
{hij} (i≠j)

hi

Partial Decryption
+ Decryption

yi ← MKE.FinDec(hij)

Copyright Astran 2023THREAT MODELS

k-collusion :
dishonest proxy and k-1 providers

n storage
providers

i
k out of n
fragments
threshold

Frag
A single
proxy

Copyright Astran 2023CONCLUSION

All-or-nothing Transform (AONT)

n out of n is a threshold!

Brings strong secrecy and integrity garanties

Memory-efficient for large volumes of data compared to SS

An essential building block in our current Multiparty Storage use case

A great and flexible gadget when combined with other schemes and algorithms

A generic scheme that can be implemented in many ways to provide additional threshold capabilities

Interested in our tech?

hello@astran.io

Ask Me (Almost)
Anything

Appendices

Copyright Astran 2023THREAT MODELS

Provider-Secrecy The data’s confidentiality is preserved
against cloud storage providers
individually

The adversary plays the roles of a
provider alone.

Proxy-Secrecy The data’s confidentiality is preserved
against cloud proxy individually

The adversary plays the role of the proxy
alone..

Provider-Collusion-Secrecy The data’s confidentiality is preserved
against cloud storage providers collusion
to a given threshold

The adversary plays the role of k
colluding providers. k-provider-secrecy
assumes the proxy is a trusted party.

Proxy-Provider-Collusion-Secrecy The data’s confidentiality is preserved
against the proxy colluding with a given
number of cloud storage provider

The adversary plays the role of the proxy
and k colluding providers.

n storage
providers

i
k out of n
fragments
threshold

Frag
A single
proxy

