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MPS and threshold modeling possibilities

n storage 
providers

i
k out of n 
fragments 
threshold

Frag
A single 
proxy

n+1 adversaries

Independent dishonest attackers

N-Collusion attacks < threshold
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● All-Or-Nothing transform was introduced by 
Rivest[1] back in 1997.

● One must decrypt the entire ciphertext before one 
can determine even one message block.

● Original motivation: slowing down brute-force 
searches against all-or-nothing encryption blocks.

Message

AONT

enc enc enc enc enc

Ciphertext

[1] R. L. Rivest. All-or-nothing encryption and the package transform. In E. Biham, editor, Fast Software Encryption, 4th International Workshop, FSE ’97, LNCS. Springer, 1997.

AONT
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Random key (k) XOR

HashCipher

Hash value (h)

Difference (d)

Message
m

Ciphertext
c

Can be used in conjunction with error coding, secret sharing, IDA or others threshold schemes 

AONT(m) = Enc(m,k) || XOR(k,h)
where h = HASH(Enc(m,k))



Copyright Astran 2023OTHER BUILDING BLOCKS

Secret Sharing Scheme (SSS)
We use Shamir’s secret sharing [2]. It exploits the Lagrange 
interpolation theorem, specifically that k values suffice to 
uniquely determine a polynomial of degree ≤ k − 1. Shamir’s 
secret sharing has perfect secrecy.

Information Dispersal Algorithm 
(IDA)

Unlike secret sharing, an IDA does not provide perfect-secrecy. 
However, an IDA is very memory-efficient. We are using 
algorithms similar to Rabin’s IDA using erasure codes.

Proxy Re-Encryption Scheme (PRE)
We use in our protocols the fully homomorphic encryption 
scheme BGV [3]. Since BGV is fully homomorphic, it 
commutes with the secret sharing described above. It can 
perform proxy re-encryption by using the key-switching method 
described in [3].

Multikey Encryption Scheme (MKE)
We use multi-key homomorphic encryption [4] scheme. That 
way, the providers can also each decrypt their own share, this 
time with the participation of the others.

[2] A. Shamir. How to share a secret. Commun. ACM, 1979.
[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping. In S. Goldwasser, editor, Innovations in Theoretical Computer Science 2012. ACM, 2012
[4] A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. IACR Cryptol. ePrint Arch., 2013.



Copyright Astran 2023

i

MPS USING HOMOMORPHIC PROXY RE-ENCRYPTION

(pki ,ski ) ← PRE.KeyGen(λ)(pkU, skU) ← PRE.UKeyGen(λ) 
rki ← PRE.ReKey(skU, pki) 

h0, d1

rk1, . . . ,rkn

s1, . . . , sn ← SS.Split(h0, n, k) 
hi  ← PRE.ReEnc(si, rki) 
r1, . . . , rn ← IDA.Split(d1, n, k) 

Fragmentation
+ Re-encryption

ri, hi

Dispersal

yi ← PRE.Dec(hi, ski)

Decryption

store yi, ri

Storage

d0||d1 ← AONT.Hide(m) 
h0 ← PRE.Enc(d0, pkU)

Transformation 
+ Homomorphic Encryption

m

h0

d1
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2-collusion : dishonest proxy and provider

storage 
provider

i
A single 
proxy

h0i

d1

h0i  ← PRE.ReEnc(h0, rki) 

h0

d1

d0

d1

d0  ← PRE.Dec(h0i, ski) m ← AONT.Reveal(d0||d1)
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i

(pki ,ski ) ← MKE.KeyGen(λ)

h0, d1

h1, . . . , hn ← SS.Split(h0, n, k)
r1, . . . , rn ← IDA.Split(d1, n, k) 

Fragmentation Dispersal

d0||d1 ← AONT.Hide(m) 
h0 ← MKE.Enc(d0, {pki})

Transformation 
+ Homomorphic Encryption

m

h0

d1

ri, {hij} (j≠i)

Storage

store yi, ri

{hij} ← MKE.PartDec(hi, ski)
{hij} (i≠j)

hi

Partial Decryption
+ Decryption

yi ← MKE.FinDec(hij)
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k-collusion : 
dishonest proxy and k-1 providers
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All-or-nothing Transform (AONT)

n out of n is a threshold!

Brings strong secrecy and integrity garanties

Memory-efficient for large volumes of data compared to SS

An essential building block in our current Multiparty Storage use case

A great and flexible gadget when combined with other schemes and algorithms

A generic scheme that can be implemented in many ways to provide additional threshold capabilities
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Provider-Secrecy The data’s confidentiality is preserved 
against cloud storage providers 
individually

The adversary plays the roles of a 
provider alone.

Proxy-Secrecy The data’s confidentiality is preserved 
against cloud proxy individually

The adversary plays the role of the proxy 
alone..

Provider-Collusion-Secrecy The data’s confidentiality is preserved 
against cloud storage providers collusion 
to a given threshold

The adversary plays the role of k 
colluding providers. k-provider-secrecy 
assumes the proxy is a trusted party.

Proxy-Provider-Collusion-Secrecy The data’s confidentiality is preserved 
against the proxy colluding with a given 
number of cloud storage provider

The adversary plays the role of the proxy 
and k colluding providers.

n storage 
providers

i
k out of n 
fragments 
threshold

Frag
A single 
proxy


