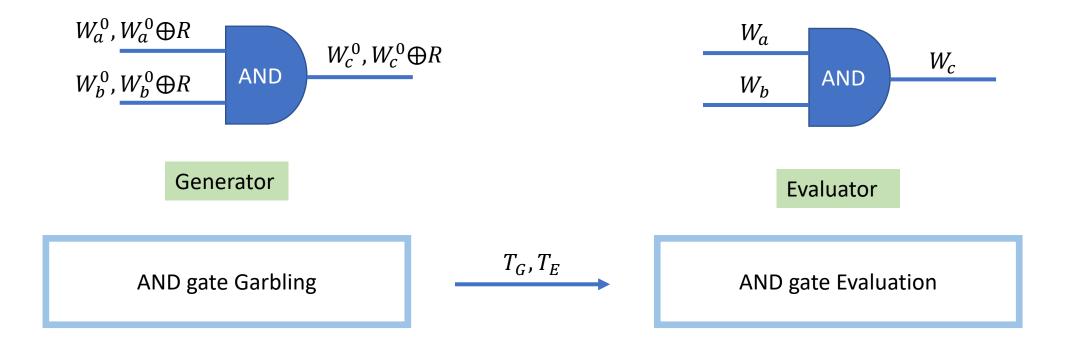
MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023

Gadgets for Threshold AES: Correlation Robust Hash and Authenticated Garbling

Hongrui Cui Chenkai Weng

09/28/2023



Correlation Robust Hash Functions

Overview

- Previous half-gates implementation.
 - Weakness.
 - Attack.
- A new design of correlation robust hash.
 - Concrete security.
 - Performance.

Half-gates: Garble an AND gate

 $T_{G} = H(W_{a}^{0}, j) \oplus H(W_{a}^{1}, j) \oplus p_{b}R$ $T_{E} = H(W_{b}^{0}, j') \oplus H(W_{b}^{1}, j') \oplus W_{a}^{0}$

Attack overview

Designed for better performance (compared to SHA)

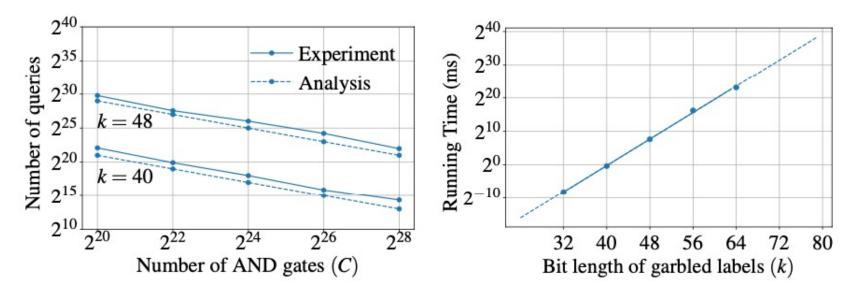
- Exploit the weakness when H() is instantiated by fixed-key AES.
 - π modeled as a random permutation.

 $H(x,i) = \pi(2x \oplus i) \oplus 2x \oplus i.$

Attack overview

Exploit the weakness when H() is instantiated by fixed-key AES.
π modeled as a random permutation.

 $H(x,i) = \pi(2x \oplus i) \oplus 2x \oplus i.$

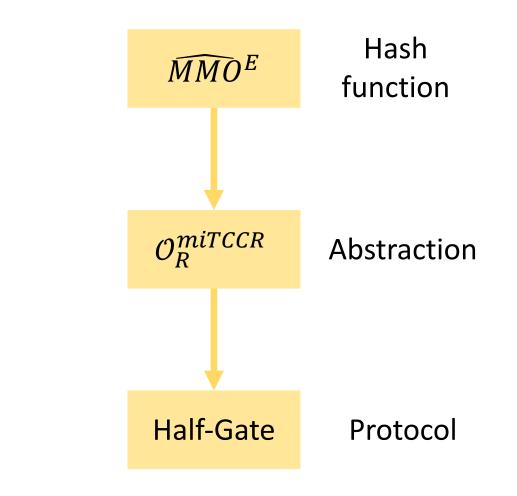

- Attacker succeed in running time $O(2^k/C)$.
 - Circuit with k = 80 and $C = 2^{40}$ would be completely broken.
 - Circuit with k = 128 and $C = 2^{40}$ has only ~80 bit security.

k: bit length of the labelsC: # of AND gates

• Extend to multi-instance case: Attack is effective when *C* is the total size of multiple circuits.

Attack overview

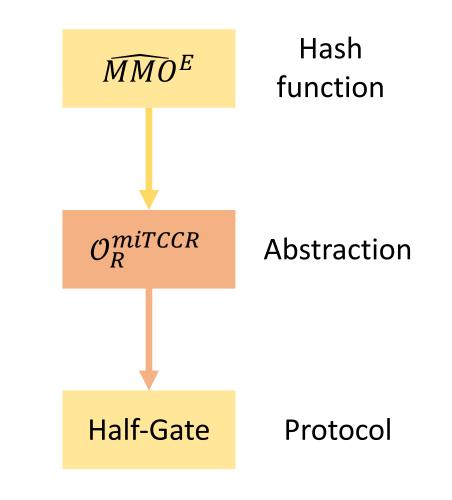
Implementation of the attack is consistent with analysis.



Interpolate: When k=80, $C = 2^{30}$ attack needs 267 machinemonths and \$3500.

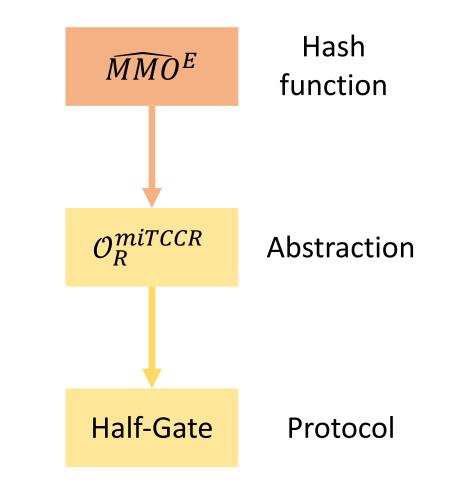
(a) Number of π -queries for the attack to succeed, on a log/log scale.

(b) The running time of our attack with $C = 2^{30}$ and different values of k.

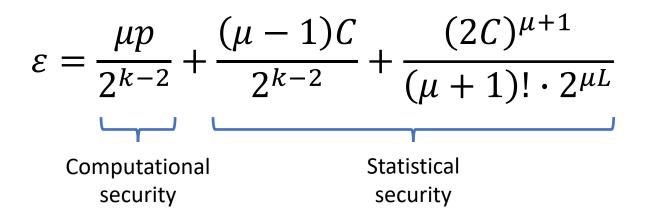

Better concrete security

Abstraction

$$\mathcal{O}_R^{miTCCR}(w, i, b) \stackrel{\text{\tiny def}}{=} H(w \oplus R, i) \oplus b \cdot R$$


- Adversary is given *u* oracle instances.
- Never queries both (w, i, 0), (w, i, 1).
- Same i is used at most μ times.

The Hash Function


$$\widehat{MMO}^{E}(x,i) \stackrel{\text{\tiny def}}{=} E(i,\sigma(x)) \oplus \sigma(x)$$

- $\sigma(x)$: a linear orthomorphism.
 - $\sigma(x_L \parallel x_R) = x_R \oplus x_L \parallel x_L$
- *E* : modeled as an ideal cipher.
 - Key scheduling for each *i*.
 - *i* starts at a random value.

Concrete Security

• Concrete security of Half-Gates.

μ: reuse of tweak *i*.p: #queries to *E*.L: in/output length of E.

• Examples.

<i>k</i> (bit)	С	Comp. sec. (bit)	Sta. sec. (bit)
80	$\leq 2^{43.5}$	78	40
128	$\leq 2^{61}$	125	64

Implementation & optimization

• Performance with different hash functions

Hash function	NI support?	k	Comp. sec. (bits)	$100 \\ \mathrm{Mbps}$	$2 \\ \mathrm{Gbps}$	localhost	
Zahur et al.	Y	128	89	0.4	7.8	23	
SHA-3	Ν	128	125	0.27	0.27	0.28	
SHA-256	Ν	128	125	0.4	1.1	1.2	
SHA-256	Y	128	125	0.4	2.1	2.45	We optimized it
\widehat{MMO}_{E}^{E}	Y	128	125	0.4	7.8	15	to 20 since then
\widehat{MMO}^E	Y	88	86	0.63	12	15	

Extra Note

• Correlation robust hash function is also important to other MPC protocols, e.g. oblivious transfers.

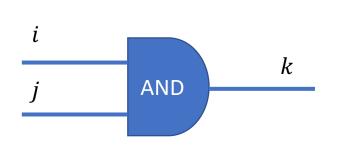
C. Guo, J. Katz, X. Wang and Y. Yu, "Efficient and Secure Multiparty Computation from Fixed-Key Block Ciphers," 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2020, pp. 825-841, doi: 10.1109/SP40000.2020.00016.

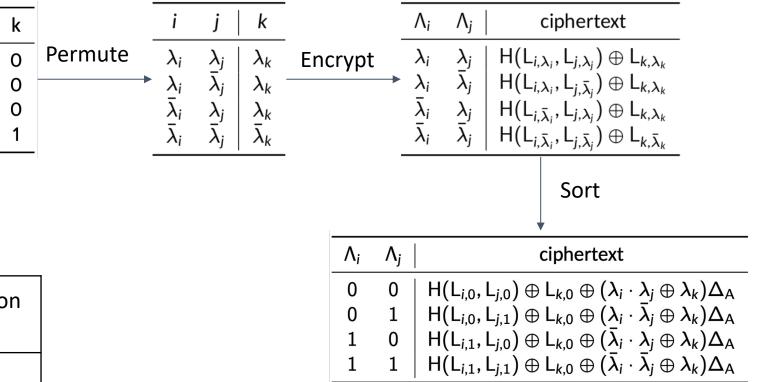
Authenticated Garbling

Overview

- Semi-honest GC flaws against active adversary
 - Selective failure attack against privacy
 - Inconsistent circuit attack against correctness
- How to use authenticated garbling to fix those attacks
 - Selective Failure -> Distributed Garbling
 - Inconsistent Circuit -> IT-MAC Authentication
- Further improvements

Semi-honest Garbled Circuit


0


0

0

1

0

Wire Index	False Label	Label	Permutation Bit
i	L _{i,0}	$L_{i,1}=L_{i,0}\oplus\Delta_A$	λ_{i}
j	L _{j,0}	$L_{j,1}=L_{j,0}\bigoplus\Delta_A$	λ_{j}
k	L _{k,0}	$L_{k,1} = L_{k,0} \bigoplus \Delta_A$	λ_k

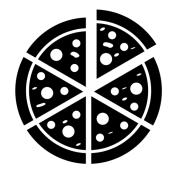
- . I

- $\Lambda_i = \lambda_i \oplus z_i \rightarrow Masked wire value$
- $\Delta_A \rightarrow$ Garbler's key in Free-XOR

Security Issues against Active Adversaries

- Attack 1: Selective Failure
- Suppose *P_B* decrypts \$\$\$ and failed

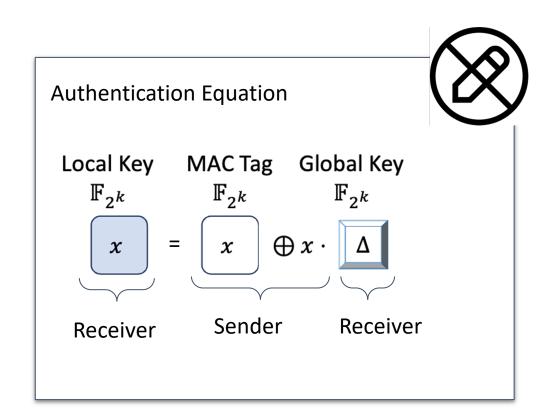
•
$$P_A$$
 learns $z_i = \Lambda_i$, $z_j = \overline{\Lambda_j}$


۸ _i	Λ_j	ciphertext
0	0	$H(L_{i,0},L_{j,0})\oplusL_{k,0}\oplus(\lambda_i\cdot\lambda_j\oplus\lambda_k)\Delta_{A}$
0		$\psi \psi \psi$
1	0	$H(L_{i,1},L_{j,0})\oplusL_{k,0}\oplus(ar\lambda_i\cdot\lambda_j\oplus\lambda_k)\Delta_A$
1	1	$ \begin{array}{l} H(L_{i,1},L_{j,0}) \oplus L_{k,0} \oplus (\bar{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_{A} \\ H(L_{i,1},L_{j,1}) \oplus L_{k,0} \oplus (\bar{\lambda}_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_{A} \end{array} $

- Attack 2: Circuit Logic Inconsistency
- P_A flips each AND gate output
- AND -> NAND

Λ _i	Λ_j	ciphertext
0	0	$H(L_{i,0},L_{j,0})\oplusL_{k,0}\oplus(\lambda_i\cdot\lambda_j\oplusar\lambda_k)\Delta_A$
0	1	$H(L_{i,0},L_{j,1})\oplusL_{k,0}\oplus(\lambda_i\cdot\bar\lambda_j\oplus\bar\lambda_k)\Delta_A$
1		$H(L_{i,1},L_{j,0})\oplusL_{k,0}\oplus(ar\lambda_i\cdot\lambda_j\oplusar\lambda_k)\Delta_A$
1	1	$H(L_{i,1},L_{j,1})\oplusL_{k,0}\oplus(\bar{\lambda}_i\cdot\bar{\lambda}_j\oplus\bar{\lambda}_k)\Delta_A$

Previous Solutions


- Cut-and-choose [LP07, NO09, HKE13, NST17...]
- P_A prepares ρ different garbled circuits/gates
- P_B checks $\frac{\rho}{2}$ of them (by requesting random seeds)

To achieve statistical soundness of $2^{-\rho}$ P_A needs to garble ρ circuits

IT-MAC

- TinyOT-style bit authentication
- Open(x) -> Sending $\begin{bmatrix} x, \\ x \end{bmatrix}$
- Opening to $\bar{x} <->$ Sending $x \oplus \Delta$ <-> Guessing Δ

- Efficient Instantiation:
 - Base OT + Extension [IKNP03, KOS15, Roy22, ...]
 - COT PCG [BCGI18, BCGIKS19, YWLZW20, CRR21, RRT23...]

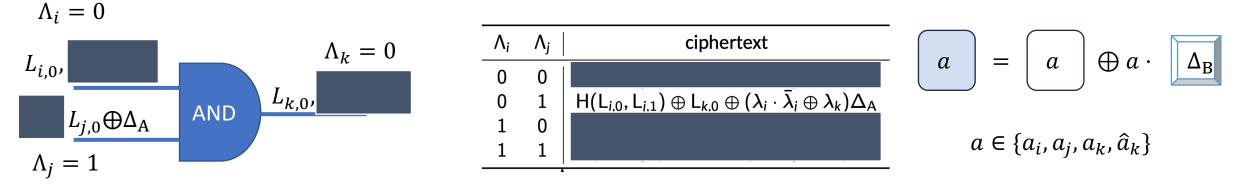
Distributed Garbling

- P_A needs to know λ_i , λ_j to launch selective failure attack
- The attack fails if we share

•
$$\lambda_i = a_i \bigoplus b_i$$

• $\lambda_j = a_j \bigoplus b_j$ • $\lambda_i \cdot \lambda_j = \hat{a}_k \bigoplus \hat{b}_k$

 P_A can still garble if b_i , b_j , b_k , \hat{b}_k are authenticated by Δ_A


Λ _i	Λ_j	ciphertext
0	0	$H(L_{i,0},L_{j,0})\oplusL_{k,0}\oplus(\lambda_i\cdot\lambda_j\oplus\lambda_k)\Delta_{A}\ \$\$$
0	1	\$\$\$
1	0	$H(L_{i,1},L_{i,0})\oplusL_{k,0}\oplus(ar\lambda_i\cdot\lambda_i\oplus\lambda_k)\Delta_A$
1	1	$H(L_{i,1},L_{j,0})\oplusL_{k,0}\oplus(ar\lambda_i\cdot\lambda_j\oplus\lambda_k)\Delta_A\ H(L_{i,1},L_{j,1})\oplusL_{k,0}\oplus(ar\lambda_i\cdotar\lambda_j\oplus\lambda_k)\Delta_A$

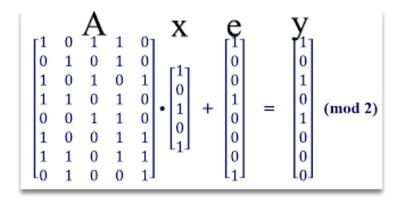
•
$$(\lambda_i \cdot \lambda_j \bigoplus \lambda_k) \cdot \Delta_A =$$

 $(\hat{a}_k \bigoplus \hat{b}_k \bigoplus a_k \bigoplus b_k) \cdot \Delta_A$

$$b = b \oplus b \cdot \Delta_{A}$$

 $b \in \{b_i, b_j, b_k, \hat{b}_k\}$

Consistency Checking


- P_B wants to ensure that $(\lambda_i \oplus \Lambda_i) \cdot (\lambda_j \oplus \Lambda_j) = \lambda_k \oplus \Lambda_k$
 - Use an additional AuthGC to let P_B learn the correct Λ_k [WRK17, DILO22]
 - Add an additional round and let P_B publish $\Lambda_i, \Lambda_j, \Lambda_k$

۸ _i	Λ_j	Alice's AuthGC	Bob's AuthGC
0	0	$L_{k,0} \oplus M[\Lambda_{00}]$	K[Λ ₀₀]
0	1	$L_{k,0} \oplus M[\Lambda_{01}]$	$K[\Lambda_{01}]$
1	0	$L_{k,0} \oplus M[\Lambda_{10}]$	$K[\Lambda_{10}]$
1	1	$L_{k,0} \oplus M[\Lambda_{11}]$	$K[\Lambda_{11}]$

Linear relation on Δ_B -authenticated values $\hat{a}_k \oplus \hat{b}_k \oplus \Lambda_j (a_i \oplus b_i) \oplus \Lambda_i (a_j \oplus b_j) \oplus \Lambda_i \Lambda_j$ $= a_k \oplus b_k \oplus \Lambda_k$

- TinyOT-style protocol [NNOB12, WRK17, KRRW18]
- Ring-LPN based PCG [BCGIKS20]

Compressed Preprocessing

- Actually, $H_{\infty}(\boldsymbol{b})$ only needs to be $ilde{O}(
 ho)$ -bit [DILO22]
- **b** only prevents selective failure-resilience
- Together with efficient COTs, this brings constant amortized communication in preprocessing [**C**WXY23]

2PC	Rounds		Communication per AND gate		
	Prep.	Online	one-way (bits)	two-way (bits)	
Half-gates	1	2	2κ	2κ	
HSS-PCG [28]	8	2	$8\kappa + 11 \; (4.04 \times)$	$16\kappa + 22 \; (8.09 \times)$	
KRRW-PCG [32]	4	4	$5\kappa + 7~(2.53 imes)$	$8\kappa + 14 \ (4.05 \times)$	
DILO [18]	7	2	$2\kappa + 8\rho + 1 \ (2.25\times)$	$2\kappa + 8 ho + 5~(2.27 imes)$	
DILOv2 [18]	3	4	$2\kappa + 2 ho + 2$ (1.32×)	$2\kappa + 4\rho + 2 \ (1.63 \times)$	
This work, v.1	8	3	$2\kappa + 5 \ (1.02 \times)$	$4\kappa + 10 \; (2.04 \times)$	
This work, v.2	8	2	$2\kappa + ho + 3~(1.17 imes)$	$2\kappa + ho + 4$ (1.17×)	

Q & A