Submitted by: _Idaho National Laboratory Date: December 12, 2013__

#	Organization	Commentor	Туре	Page #	Line #	Section	Comment (Include rationale for comment)	Suggested change
1	Idaho National Laboratory	Rita Wells	G	all			If the intent is to work with asset owners and operators of critical infrastructure, use protection instead of target. Targets are attacked while assets are protected. Otherwise sounds like the Military wrote the framework.	Change 'Target' profile to 'Protection' profile
	Idaho National Laboratory	Rita Wells	T		74		Threat information sharing is required (Sections 1.2 Likelihood of risk event, and 2.1 assessing threats). The U.S. Government does not have a good track record on sharing threat information with asset owners and operators. The problems are many. A) Normally dissemination of adversaries and their capabilities in threat characterization requires security clearances rarely found in industry. B) If temporary clearances are granted to asset owners and operators for information sharing rarely is that information more than what is available open source. C) If open source critical infrastructure threat providers are used, the threat does not correlate to asset owner architectures (which would create actionable information sharing) - this is the same problem USG has in communicating with industry. Focusing on code and not the adversary can provide value to the asset owner. Capabilities of the exploit, potentially exploitable newly discovered vulnerabilities or techniques used for either can be tied to asset owner architectures or components creating more actionable threat information.	Focus on emerging exploits, vulnerability discovery and new attack techniques with impact to asset owner architectures.
\vdash^2		Kita wells	1		/4	+	No evidence that process laid out will be	Feedback to process improvement is missing.
3	Idaho National Laboratory	Rita Wells	Т	1		Section 1.0	repeatable, timely enough to match the dynamic nature of the cyber threats.	Addressing cyclical nature of ongoing process would address issue.

Idaho National 4 Laboratory	Rita Wells	T	8	315	Section 2.3		Focus on the ability to use the impact assessment for continual process improvement.
Idaho National 5 Laboratory	Rita Wells	T	11	397	Section	Implementation on high level functions will vary greatly between IT systems and different ICS configurations. Ensure the implementation is not forced to be rank order sequential. For example, protecting data in transit may be more feasible than protecting data at rest on mid to end devices in an ICS	Implementation needs to be tailored to architecture and not forced step sequential layers to accommodate ICS.
Idaho National 6 Laboratory	Rita Wells	Т	3	177	Section 1.1	Cybersecurity Capability Maturity Model (ES- C2M2) would be valuable.	Including the Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) would be valuable.
Idaho National 7 Laboratory	Rita Wells	Т	6	242	Section 2.1	Apply to both IT and ICS – at different levels and between ICS configurations to different levels as well.	Apply to both IT and ICS – at different levels and between ICS configurations to different levels as well.
Idaho National 8 Laboratory	Rita Wells	Т	7	294-296	Section 2.2	Gaps between the Current profile and the Target profile allows for creation of prioritized roadmapis too government based. The goal for industry is to focus limited cyber protection resources to the most likely exploitable components and configurations that could impact the most critical assets.	Remove roadmap, industry doesn't need roadmaps.

_	1		-					
							The desired tier will be based on feasibility to	
							implement protections. The threat analysis will	
							fall mainly on the industry processes since	Refocus section to acknowledge that industry
							they understand the impact to their systems	has the greatest understanding of impact to
							better than anyone and information sharing	their systems from any threat.
	Idaho National					Section	centers are getting better but do not correlate	
9	Laboratory	Rita Wells	Т	11	386-389	2.4	to asset owner configurations.	
							discern the likelihood of a cybersecurity	Refocus this section on the capabilities of the
							eventprobability of the adversary attacking is	exploit or vulnerability on asset owner's
						a .:	difficult to share with industry due to lack of	configurations will provide probability
	Idaho National		_			Section	classified threat intelligence.	factors without the problematic classified
10	Laboratory	Rita Wells	Т	11	418-420	3.2		information sharing.
							Adding other informative references such as	Adding other informative references such as
						~ .	the Electricity Subsector Cybersecurity	the Electricity Subsector Cybersecurity
	Idaho National					Section	Capability Maturity Model (ES-C2M2) would	
11	Laboratory	Rita Wells	Т	12	451	3.4	be valuable.	would be valuable.
							Identifying the potential problematic areas for	
							ICS would be beneficial for industry to accept.	
							For example ID-AM-3 organizational	
							communications mappedis more	
	Idaho National					Appendix	challenging when moving between the	
12	Laboratory	Rita Wells	G	13		A	corporate and operational environment.	
							ID-RA-3 Threats to assets are difficult for	
							tailored configurations in critical	
								Refocus this need for industry to understand
	Idaho National					Appendix	to inform them of threats, critical	the parts of threats such as impact to exploits
13	Laboratory	Rita Wells	Т	16		А	infrastructure will not be protected.	and vulnerabilities.
							ID-RM-2 Organization risk tolerance is	
							determined and clearly expressedthis is	
	Idaho National					Appendix	difficult to do with the dynamic nature of	Refocus need for continual cyber protection
14	Laboratory	Rita Wells	Т	16		А	cyber threat.	process improvement.
							PR.AC-1 Identities and credentials managed	
							for authorized devices and users is rare for mid	
							and end devices in ICS and PR.AC-2 physical	
	Idaho National					Appendix	access secure is rare for geographically	
15	Laboratory	Rita Wells	Т	16		А	dispersed assets.	
							PR.AC-3 3rd party stakeholders understand	
	Idaho National					Appendix	roles - rare agreements for contractual access	
16	Laboratory	Rita Wells	Т	17		А	in ICS exist	
	Idaho National					Appendix	PR.DS-1 Data at rest is protected is rare for	
17	Laboratory	Rita Wells	Т	18		А	mid and end devices in ICS	

Comments template for Preliminary

	Idaho National					Appendix	PR.DS-5 Protection against data leaks is rare	
18	Laboratory	Rita Wells	Т	19		A	in ICS	
	2							
							PR.DS-7 Unneccessary assets are eliminated is	5
							rare in ICS since vendors allow for asset owers	
	Idaho National					Appendix	and operators maximum flexibility and default	
19	Laboratory	Rita Wells	Т	19		A	enabled processes to allow ease of installation	
	Luccrutory		-				PR.IP-3 Configuration change control	
							processes are in place is rare due to embedded	
	Idaho National					Appendix	code and commodity of component end	
	Laboratory	Rita Wells	Т	20		A	devices	
20	Laboratory		1	20		11	PR.IP-9 response plans are very well exercised	1
	Idaho National					Appendix	in more critical infrastructure but rarely	
	Laboratory	Rita Wells	Т	20		Appendix	include cyber.	
	Idaho National	Kita wells	1	20		Appendix	PR.PT-1 audit logs are very heterogenious in	
	Laboratory	Rita Wells	Т	21		Appendix	the ICS configurations	
	Idaho National	Kita wells	1	21		Appendix	PR.PT-3 Geographically dispurse assets in ICS	
		D:4- W-11-	T	21				
23	Laboratory	Rita Wells	Т	21		A	are common	
	T 1 1 NT /* 1					4 1'	PR.PT-4 key management issues with the	
	Idaho National	D' 11	-			Appendix	multiple mid and end devices in ICS is	
	Laboratory	Rita Wells	Т	21		A	problematic	
	Idaho National		-			Appendix	DE.AE-3 correlated cyber data is almost non-	
	Laboratory	Rita Wells	Т	22		A	existent in ICS	
	Idaho National					Appendix	DE.CM-2 physical environment monitored is	
	Laboratory	Rita Wells	Т	22		A	difficult in the geographically dispurse ICS	
	Idaho National					Appendix	DE.CM-4 Malicious code detected is rare on	
	Laboratory	Rita Wells	Т	22		A	tailored ICS configurations	
	Idaho National					Appendix	RS.AN-3 Forensics are prefomed - limited	
28	Laboratory	Rita Wells	Т	24		A	forensics capabilities in ICS	
							RS.MI-2 incidents are eradicated is	
	Idaho National					Appendix	problematic to prove a negative 'the malware	
29	Laboratory	Rita Wells	Т	25		A	is gone'	
					Ī		Privacy and Civil liberties have limited	
							applications in ICS - exception being billing	
	Idaho National					Appendix	systems connected to ICS or identification	
30	Laboratory	Rita Wells	Т	28		B	numbers for communication services	
- /	,						Portable Devices and Media are a significant	
							concern in ICS operations: hand-held	
	Idaho National	Marlene				Appendix	calibration equipment, thumb drives, external	Add portable devices and media to the
	Laboratory	Ladendorff	Т	36	501-508		hard drives, laptops and tablets	bulleted list on page 36

32	Idaho National Laboratory	Bri Rolston	G		For the ICS world, there is a need for processes that address risk factors to include threat in an unclassified and useable environment. Linking those risk characteristics to asset owner and operator configurations is another detailed and time consuming process. This CIP Framework is high level and does not address the need to develop these to make the risk analysis useful in an operational setting.	