
THE USE OF BELIEF LOGICS

IN THE PRESENCE OF CAUSAL CONSISTENCY ATTACKS
�

Jim Alves-Foss

Laboratory for Applied Logic

Department of Computer Science

University of Idaho

Moscow, ID 83844-1010 USA

jimaf@cs.uidaho.edu

Abstract

This paper discusses a class of attacks against cryptographic protocols that have not been previously rep-

resentable using BAN-style logics. This problem has resulted in the generation of proofs of these protocols

that validate �nal beliefs of the protocol participants even when successful attacks against these protocols

have been demonstrated. The failings of the BAN-style proofs of these protocols does not arise from failings

of the logics, as alluded to by others, but rather in the use of the logics. This paper looks at the Needham

Schroeder public key protocol which has recently been demonstrated 
awed, the analysis of the protocol,

where the use of the logic failed in the proofs of this protocol and suggests a speci�c approach for using the

logics that avoids these problems.

Keywords: Belief Logics, Authentication Protocols, BAN

Introduction

This paper discusses a class of attacks against cryptographic protocols that have not been previously

representable using BAN-style logics [4, 5]. This problem has resulted in the generation of proofs of these

protocols that validate �nal beliefs of the protocol participants even when successful attacks against these

protocols have been demonstrated. This has brought forth questions about the validity of BAN-style proofs.

There have been several papers describing this class of attacks, including [3, 6, 13, 15]. The common

theme in these attacks is the existence of an intruder inserted in the middle of the protocol exchange who

uses information from entities on both sides to either obtain shared secret information or to masquerade as

one of the entities. This paper looks at the Needham Schroeder (NS) public key protocol [11] which has

recently been demonstrated 
awed [9, 10], the analysis of the protocol, where the use of the logic failed in

the proofs of this protocol and suggests a speci�c approach for using the logics that avoids these problems.

The realization that proofs using BAN-style logics have failed to successfully guard against this class of

attack has been discussed in the literature including in [10, 13, 14, 15]. Syverson [15] calls such attacks,

causal consistency attacks since they arise when the participant's beliefs in the causality of events is not

consistent with the reality of the events. Approaches to overcoming the problems at the implementation

level have been discussed by Gong and Syverson in [8] while the use of formal logics with respect to this

�Project sponsored by the National Security Agency under Grant Number MDA904-96-1-0108. The United States Govern-

ment is authorized to reproduce and distribute reprints notwithstanding any copyright notation hereon.



Message 1 A! S : A;B

Message 2 S ! A : fKb; BgK�1s

Message 3 A! B : fNa; AgKb

Message 4 B ! S : B;A

Message 5 S ! B : fKa; AgK�1s

Message 6 B ! A : fNa; NbgKa

Message 7 A! B : fNbgKb

Figure 1: Needham Schroeder Public Key Protocol.

class of attack have been discussed in [10, 13, 15]. Unlike the approach presented in this paper, these formal

approaches focus on semantic analysis of the system or on the use of model checkers.

In this paper we demonstrate that the failings of the BAN-style proofs of these protocols does not

arise from failings of the logics, but rather in the use of the logics. The validity of this demonstration is

strengthened by the argument presented by Syverson [15]. Syverson discusses a cryptographic protocol that

is subject to a causal consistency attack yet can be proven correct using a BAN-style logic, AT. The AT logic

has been proven sound with respect to a semantic model [2], a model which Syverson successfully argues

is rich enough to reason about such attacks. If the logic is sound with respect to such a semantic model,

then the faulty proofs must be the result of either invalid initial assumptions or invalid application of the

logic and not the result of inherent failings of the logics. This paper discusses where the use of the logic

failed in the proofs of these protocols and suggests a speci�c approach for using the logics that avoids these

problems. Note, we only discuss the syntactic analysis of the protocol, as is common in these logics, and

defer the discussion of semantic analysis to another paper.

The remainder of this paper assumes a working knowledge of cryptography and cryptographic protocols in

terms of shared-key and public-key systems, session keys, nonces, and eavesdropping. The paper is outlined

as follows. First we provide a brief discussion of the proven NS protocol and a causal consistency attack

against it. We then provide a brief discussion of BAN-style logics, followed by a discussion of the failed formal

analysis of the NS protocol using the BAN logic and why it failed. Next, we present a speci�c approach for

the use of the BAN logic that avoids these problems and demonstrate its use on the NS protocol. Finally

we present some conclusions and discuss limitations of our approach and potential future investigations.

Susceptible Cryptographic Protocols

In this section we present the NS protocol and a causal consistency attack against it. In this discussion

we use K to denote keys, N to denote nonces, A, B and S to denote valid participants in the protocol (where

S is a trusted server) and E to denote the intruder with Ex indicating E masquerading as x. To follow

tradition we will use the names Alice, Bob and Eve to refer to A, B, and E, respectively. We use the notation

A ! B :X to indicate that A is sending the speci�ed message to B; fMgK to indicate the encryption of

message M with key K (we do not specify what type of encryption is employed); Kab to indicate a key

shared by A and B; and Ka to indicate a public key for A with K�1a as the corresponding private key.

Needham-Schroeder Public-Key Protocol (NS)

In their original paper, Needham and Schroeder proposed a public-key protocol that allows the partic-

ipants to exchange two independent, secret numbers [11] (this protocol should not be confused with their

more famous shared key protocol). The protocol progresses as shown in Figure 1. Alice and Bob communi-

cate with a trusted server S to obtain each other's public keys. Alice sends a nonce, Na to Bob, Bob sends

a nonce Nb to Alice along with Na, and Alice responds with Nb. This is suppose to permit both parties to

be assured that they are currently communicating with the other party with no tampering. The nonces can

subsequently be used to generate a shared key.



Message 1 A! S : A;E

Message 2 S ! A : fKe; EgK�1s

Message 3 A! E : fNa; AgKe

Message 1' E ! S : E;B

Message 2' S ! E : fKb; BgK�1s

Message 3' Ea ! B : fNa; AgKb

Message 4' B ! S : B;A

Message 5' S ! B : fKa; AgK�1s

Message 6' B ! Ea : fNa; NbgKa

Message 4 Ignored by E

Message 5 Ignored by E

Message 6 E ! A : fNa; NbgKa

Message 7 A! E : fNbgKe

Message 7' Ea ! B : fNbgKb

Figure 2: An Attack on the NS protocol

Lowe [9] found a 
aw in the protocol using a CSP-based tool, FDR. The attack compromises NS using a

man-in-the-middle attack. Meadows [10] independently veri�ed this attack using the NRL tool. We follow

Meadows' presentation of the attack in Figure 2. In this attack, Eve waits until Alice attempts to establish

valid communication with Eve. Eve then uses information from this session (Alice's secret number) to begin

a session with Bob, claiming to be Alice. Eve forwards Bob's response (including his secret number) to Alice

as Eve's own response. Alice returns the secret number to Eve as a �nal veri�cation check. Unfortunately,

this response is Bob's secret number which Eve can now use to fool Bob into believing that Eve is actually

Alice. In other words, Eve tricked Alice into decrypting Bob's secret and giving it back to Eve. Lowe

suggests changing message 6 from fNa; NbgKa
to fNa; Nb; BgKa

so that the originator of the message is not

ambiguous.

Causal Consistency Attacks

In general, the problem with protocols susceptible to causal consistency attacks is that they allow the

existence of ambiguity in the encrypted messages. An intruder is able to utilize these ambiguities to replay

messages from the same, or di�erent, runs of the protocol, thus giving the impression that they created a

message for which they do not know the appropriate secrets or keys.

Approaches to avoiding this type of attack have been discussed in the literature [8, 15, 16]. They include

the use of direction bits (which indicate the direction of the message to prevent re
ection of a message back

to the sender), encrypted participant �elds (as used above), strict type checking (to avoid the use of a nonce

or other value in place of a key), protocol step encoding (inclusion of the protocol name and step number in

each encrypted message), and unique protocol sequence numbers. Note that the encryption of participant

�elds and the use of unique sequence numbers are the only techniques that work to prevent the above attack

on the NS protocol, and unique protocol sequence numbers require a more complex implementation. In the

following sections we discuss the use of formal logics in the analysis of this protocol with and without the

encrypted participant �elds.

Belief Logics

In the late 1980s, Burrows, Abadi and Needham [4, 5] introduced a methodology for the formal analysis

of cryptographic protocols, now known as the BAN logic. The intent of the logic is to provide a mechanism

for protocol developers to determine the beliefs held by participants throughout a protocol run. At the end

of an analysis, we know not only what beliefs are held by the participants, but on what initial assumptions



these beliefs are based. This BAN-style reasoning has given rise to other belief logics based on the same

premises. We discuss BAN and these other logics in the remainder of this section.

Notation

In addition to the cryptographic notation mentioned previously, belief logics introduce other symbols and

notations. We will follow the notation of [5] in this discussion (this notation is very similar to the notation

used by most authors). The following is a discussion of a subset of the notation used in BAN that is su�cient

for the discussions in this paper.

� A
Kab

$ B is used to indicate that the key Kab is a shared key between participants A and B; as before,

fMgKab
is used to denote encryption of the message M with the key Kab. We assume that this is a

valid key that can not be determined by any other participant.

�
Ka

7! A is used to indicate that the key Ka is a public key for A. We assume that this is a good public

key and that the matching private key K�1a can not be determined by any other participant.

� A
S
*) B is used to indicate that the value S is a shared secret between participants A and B; hMiS is

used to denote composition of the message M with the secret S. This composition typically involves

pairing of M and S within an encrypted message.

� A believes F is used to indicate that participant A believes in the validity of F .

� A said F is used to indicate that participant A sent the message F . The term says is used to indicate

that the message was sent in the current protocol run (i.e., it is fresh).

� A sees F is used to indicate that participant A received the message F and can read and repeat it

(possibly after decryption).

� A controls F is used to indicate that participant A is a trusted authority with respect to the message

F ; such that if we can be sure that A recently said F , then we can believe F to be valid. For example,

S controls
K
7! B indicates that S is trusted to distributed public keys for B.

� fresh(F ) is used to indicate that the message F was recently (within the current protocol run) gener-

ated.

The BAN Logic

In the BAN logic, there exist several axioms and rules of inference that allow us to combine the assump-

tions of the protocol into statements about participants beliefs. Although there are several inference rules,

we outline only those most relevant to our discussion.

1. Message-meaning rules. These rules are used to help in the interpretation of messages

P believes Q
K
$ P; P sees fXgK

P believes Q said X

P believes
K
7! Q; P sees fXgK�1

P believes Q said X

P believes Q
S
*) P; P sees hXiS

P believes Q said X



2. Nonce-veri�cation rule. This is used to determine senders current beliefs. (Note we have to assume

that a participant will only send what it believes to be true).

P believes fresh(X); P believes Q said X

P believes Q believes X

3. Jurisdiction Rules. This is used to transfer belief between participants.

P believes Q controls(X); P believes Q believes X

P believes X

Other BAN-style Logics

Since the publishing of the BAN logics there have been proposed extensions and modi�cations of the

logics. The most notable of these are the logics we denote as GNY, AT, and SVO. In the analysis in the

following section we stick to the BAN logic, since it is the logic used in the original analysis. A mapping of

the proof to another logic such as SVO or GNY would result in the same beliefs and invalid proof (assuming

an extension of SVO that allows shared secrets). For completeness, we provide a brief discussion of each of

these other logics.

GNY The GNY logic, as presented by Gong, Needham and Yahalom [7], modi�es the BAN logic to separate

what is possessed from what is believed and de�nes a notion of recognizability. This enables participants

to forward messages that they possess, but not necessarily believe; enabling the analysis of a wider

class of protocols.

AT The AT logic, as presented by Abadi and Tuttle [2], provides a subset of the BAN logic (for example,

it does not provide a mechanism for reasoning about public keys) that encorporates the separation of

belief and possession as developed in GNY. In addition, the AT logic includes a formal semantics for

the logic, against which the inference rules are proved sound.

SVO The SVO logic, as presented by Syverson and van Oorschot [18], follows an approach very similar to

the AT logic but also enables reasoning about protocols that encorporate public keys and requires a

discussion of message comprehension. However, it does not provide rules for shared secrets, although

this is a straight-forward extension of the logic. SVO also encorporates a formal semantics of the logic.

Protocol Analysis

The analysis of a cryptographic protocol, using any of the above logics, requires a sequence of four steps.

These steps are:

1. Idealization of the protocol. This involves transformation of the protocol from the standard notation

(such as that used in Figure 1) to a more formalized notation. In [4], idealization involves removal of all

plain text components of a message, transformation of keys into statements of the intended use of the

key (e.g., A
Kab

$ B), explicit statements relating to beliefs (e.g., A believes A
Kab

$ B), and composition

with shared secrets (e.g., hA
Nb

*) BiNa
). A recent paper by Syverson [17] suggests abandoning the

idealization step and instead increasing the set of initial assumptions. This is similar to the approach

we take in the next section and further discussion is deferred until then.

2. State initial assumptions. At the beginning of each protocol run there are a set of initial assumptions

that are made by participants, such as beliefs in the validity of a shared key, or the freshness of

generated nonces. Each of these assumptions must be explicitly stated.



3. Annotation of the protocol. This involves enumerating, for each protocol step, the changes in the state

of the system. For example, after A! B :X , we can infer that B sees X .

4. Analysis of beliefs. After completion of the above steps we have a set of assumptions (both initial and

those following each protocol step). We now use these assumptions and the inference rules from the

logic to develop conclusions related to participants beliefs.

The following provides an outline of this style of analysis for the NS protocol as de�ned in Figure 1.

Recall, that although we are using the BAN logic, similar approaches and results can be obtained using

other logics. However, this would require some minor modi�cations to the logics. As presented in the

literature, AT can not reason about the use of public keys in NS and SVO can not reason about the use of

shared keys in NS.

Original Analysis of NS

Details of this analysis are provided in [4], so we will only outline them here due to space constraints.

1. Protocol Idealization. Burrows, et.al. provide the following idealization of the protocol:

Message 2 S ! A : f
Kb

7! Bg
K
�1

s

Message 3 A! B : fNAgKb

Message 5 S ! B : f
Ka

7! Ag
K
�1

s

Message 6 B ! A : fhA
Nb

*) BiNa
gKa

Message 7 A! B : fhA
Na

*) B;B believes (A
Nb

*) B)iNb
gKb

This is not the only possible idealization, but it is consistent with techniques demonstrated in the

literature. Additional �elds could be added to the idealization to enforce conditions on the message

transport (see [7] for further explanation) or to indicate that a previous participant said something.

Since these additional �elds are not necessary for the proof outlined below we do not use them1. Note

the di�erences between the idealization and the original protocol description. We have removed all plain

text message components, and we have included the notation A
Nb

*) B in message 6 and similar notation

in message 7 as well as a �eld in message 7 about Bob's beliefs. The purpose of these messages is to

indicate and transfer beliefs between Alice and Bob. The annotation about Bob's belief will provide

Bob with slightly more information which will be demonstrated in the conclusions. Without such

notation there is no explicit intent or meaning associated with the protocol messages. Syverson [17]

argues that this meaning should be tied to the receiver, not the sender, but still agrees that the notation

must be used to indicate meaning. This all arises from the fact that we are performing a pure syntactic

analysis, and must syntactically demonstrate meaning.

2. Initial Assumptions. The initial assumptions outlined in [4] are:

A believes
Ka

7! A B believes
Kb

7! B

A believes
Ks

7! S B believes
Ks

7! S

S believes
Ka

7! A S believes
Kb

7! B

S believes
Ks

7! S

A believes S controls
K
7! B B believes S controls

K
7! A

A believes fresh(Na) B believes fresh(Nb)

A believes A
Na

*) B B believes A
Nb

*) B

A believes fresh(
Kb

7! B) B believes fresh(
Ka

7! A)

1Although one could argue that the message extensions of GNY would be useful here, we will defer discussion of these to a

later Section of this paper.



These assumptions highlight participants beliefs in their public keys and freshness of shared secrets

and the server's ability to distribute public keys.

3. Annotations. Speci�c annotations are not demonstrated in [4], but consist only of adding the assump-

tions that recipients can see the messages sent to them.

4. Proof. Through uses of message meaning, nonce-veri�cation and jurisdiction, the participants end up

with a �nal set of beliefs containing:

A believes
Kb

7! B B believes
Ka

7! A

A believes B believes A
Nb

*) B B believes A believes A
Na

*) B

B believes A believes B believes A
Nb

*) B

Note that the �nal belief is the result of message 7, where Bob obtains information about Alices's beliefs

regarding Bob's beliefs. We have thus obtained a set of participant's beliefs that are in contradiction with

demonstrated attacks on the system. In the following section we discuss how such faulty proofs have come

about and what we can do to avoid them.

A New Approach

If we look back at the attack on NS and on the proof of the protocol, it becomes apparent where the

problem occurs. The attack on NS took message 6 from one protocol run and used it as message 6 in another

run. The real and idealized message 6 from the runs are:

Real Message 6 (NS) B ! A : fNa; NbgKa

Idealized Message 6 (NS) B ! A : fhA
Nb

*) BiNa
gKa

Notice that this idealization involves the injection of a statement about validity of a shared secret into

the message. The problem occurs where upon receipt of this message the recipient believes that the sender

believes in the validity of the shared secret. However, in the actual protocol, there is nothing that speci�cally

justi�es this belief. Thus it is the idealization that is wrong, and not the logic. The logic correctly validated

the idealized protocol, but the idealized protocol is not consistent with the original protocol.

In NS, the situation is easy to explain and remedy. The message sent from the intruder, Eve, to Alice

is actually message 6 of the protocol sent from Bob to Eve masquerading as Alice. The problem is that in

the attack, Alice decrypts message 6, believing it to be sent from Eve and responds with the nonce Nb that

Eve can then use as a response to Bob. This occurs because upon receipt of message 6, Alice believes that

the message states that Eve believes that Nb is a valid shared secret for use between Alice and Eve; when

in fact the message stated that Bob believes that this is a valid shared secret between Alice and Bob. The

original message contained no reference to Bob, in violation of Abadi and Needham's principle 3 [1], which

states that if the identity of a principal is essential to the meaning of a message, then it should be speci�cally

encoded in the message. The lack of a reference to the source allows Eve to forward the message to Alice

and then take Alice's response to convince Bob that Eve is in fact Alice.

In other words, the idealization of the protocol is incorrect; since we can not be sure that the message

received by Alice as message 6 is actually Bob's validation of Na and Nb as shared keys between Alice and

Bob. Using this idealization forces us to assume that this can be detected by Alice and allows the veri�cation

to proceed. The problems that arise from the analysis of this and other protocols can be summarized as

follows (the �rst two of which are addressed in [1, 8]):

� Su�cient information must be encoded in a message to determine the intended source, recipient and

other participants relevant to the protocol step.

� Su�cient information must be encoded in a message to distinguish it from other messages in the

protocol run.



� Annotations of the protocol should speci�cally state the conditions that must be met before a protocol

step is taken. This is similar to the use of message extensions of GNY2. A similar approach, termed

faithfulness requirements, is presented in [15], but is used in terms of the semantics of the logic and

not with the annotations or protocol idealization. Syverson also presents another approach in [17] that

we discuss later.

What is needed is an approach to using the logic that speci�cally addresses these problems. The following

section presents such an approach and then demonstrates how it can be applied to the NS protocol.

The Approach

In this section we present an approach for analyzing of cryptographic protocols using BAN-style logics

which avoids the problems outline above. Speci�cally, we suggest changes to the annotation and protocol

idealization phases of the analysis so that we may more accurately represent the assumptions made by the

participants and the encoding of those assumptions in the protocol messages. There are two parts of this

approach, the �rst consists of the idealization of the protocol, the second consists of adding inference rules

in place of standard annotations suggested in [4].

� Idealization. The idealization of the protocol involves the following:

1. Remove all plain text components of the messages.

2. Insert A
Kab

$ B in the message in place of the key Kab only if

(a) For public-key encryption, A and B are explicitly stated in the encrypted portion of the

message, and the message explicitly indicates who is sending the message (A, B or S). Note:

if B is sending the message to A using A's public key, A's name need not be speci�cally

included in the body of the encryption.

(b) For shared-key encryption, A and B are explicitly stated in the encrypted portion of the

message (with the same exception as above).

(c) There exists a precise mechanism for determining that the intent of the sender is to use

this �eld of the message as a key. This could be a speci�c encoding in the message, type

enforcement, inclusion of a shared secret, or uniqueness of the message format. If two messages

in the protocol are encrypted by the same sender, using the same key, with the same number

of �elds, there must be a secure mechanism in place for the recipient to di�erentiate the

messages (note that the use of plain text identi�ers is not su�cient).

3. Insert A
S
*) B in the message in place of the �eld S only if the same conditions for shared key

insertion hold.

4. Insert A believes X or other formula of the logic not speci�cally tied to a �eld of the message

into the message only if the sender believes in the truth of this statement (e.g., in the inference

rules discussed below, a precondition to sending this message must be that the sender believes

that A believes X). Syverson [17] argues that only the recipient should be able to assert these

beliefs and that these assertions should only occur in the premises of the protocol, and not in the

messages of the protocol. This is due to the fact that it is the recipient that is determining its

own beliefs about other's beliefs. Although this is a reasonable point, Syverson does not explicitly

state any constraints on the premises similar to those we have stated here.

� Annotation. The annotation of the protocol involves the following:

1. For each step of the protocol determine precisely what needs to happen before the sending of a

message. In other words, highlight what the protocol participant needs to see and believe before

sending a response.

2Note that this problem also resolves the issues of out-of-order protocol runs presented in [12], as it ensures that protocol

steps are not seen as an unordered list of messages but rather with speci�c dependencies.



For message 3:

A believes S said f
Kb

7! Bg
K
�1

s

B sees fNagKb
; A believes A said fNagKb

For message 6:

B sees fNagKb
; B believes S said f

Ka

7! Ag
K
�1

s

A sees fhA
Nb

*) BiNa
gKa

; B believes B said fhA
Nb

*) BiNa
gKa

For message 7:

A believes A said fNagKb
; A believes S said f

Kb

7! Bg
K
�1

s

A believes B said fhA
Nb

*) BiNa
gKa

; A believes B believes A
Nb

*) B

B sees fhA
Na

*) B;B believes A
Nb

*) BiNb
gKb

A believes A said fhA
Na

*) B;B believes A
Nb

*) BiNb
gKb

Figure 3: Inference rule annotations for the NS protocol.

2. Annotate each step of the protocol with inference rules that indicate the preconditions of sending

a message as premises of the inference, and both the recipients seeing the idealized message and

the sender believing they said the message as the conclusion of the inference. This corresponds

to explicitly de�ning the decisions being made by the participants before sending a message, and

allows us to specify a participant's beliefs in its own actions3.

� Additional Notes. The following must be taken into consideration when developing protocol assump-

tions:

1. A key or shared secret can not be believed to be a secret unless it is transmitted encrypted under

a key K, where K is not the private key of a public-key pair, and K has not been compromised.

2. A key, or shared secret, is shared by all of those participants who share the key under which it is

encrypted.

3. A participant Alice can not believe in the freshness of a nonce, or other value unless Alice created

the nonce or a component of a composite message.

Analysis of NS Using the New Approach

We have to modify the physical protocol to enable us to generate the idealized protocol. To do this, we

add a reference to B in message 6. This enables us to justify the claim in the idealization that Nb is a shared

secret between Alice and Bob. Figure 3 shows the inference rules generated in this protocol analysis.

Some may argue that this style of inference rule is unwieldy and contains too many preconditions. We

have tried to remedy this by removing all initial assumptions from the preconditions (e.g., assumptions about

nonce freshness, shared keys, control, etc.). Since we have done this, the inference rules for messages 2 and

5 can be considered as axioms, where Alice and Bob see the message from the server containing the other's

public key. These axioms are in the same form as BAN annotations. Writing down the inferences in their full

form explicitly reveals the assumptions being made by the sender. Good practice involves writing down all

the inference rules �rst, and then create the initial assumptions from the preconditions that are not derived

from inference rules. These assumptions can then be removed from the statements of the preconditions as

we have done in Figure 3.

3Although beyond the scope of this paper, a formal analysis of the soundness of these inference rules would provide stronger

evidence for the correctness of the protocol.



The analysis proceeds as de�ned in [4], except that now we must ensure that all of the preconditions of

sending a message are met before we can add the annotation that the recipient sees the message. These

preconditions include previous messages sent by the same participant and those received by the participant,

as well as other assumptions. We can still derive all the conclusions in the original analysis; but with the

actual protocol conditions explicitly de�ned. Speci�cally:

� From message 2, message meaning and jurisdiction rules we get:

A believes
Kb

7! B

� From message 3, since Alice has received message 2 from the server, we can use the above conditions

for message 3 and allow Bob to decrypt the message to get:

B sees Na

Note that we use the initial assumptions that Na is fresh and believed by Alice to be a shared secret

with Bob.

� Message 5 is similar to message 2 giving us:

B believes
Ka

7! A

� Message 6 will be sent if Bob has received an encrypted nonce, Nb, and Bob believes that Nb is fresh

and a shared secret with Alice. Given the inclusion of Na in the message, along with Alice's beliefs

about the freshness and shared secret status of Na, Alice can deduce:

A believes B believes A
Nb

*) B

� Message 7 can now be sent back to Bob. That is, only if Alice believes she has sent all the correct

previous messages in the protocol, and received appropriate responses from Bob, as outline in the above

inference rule for message 7. Bob, given his beliefs in the freshness and shared secret status of Nb and

in messages received over the current protocol run, can deduce the remaining two beliefs:

B believes A believes A
Na

*) B

B believes A believes B believes A
Nb

*) B

Applying our approach to the NS protocol, with the understanding that message 6 must be physically

changed to include a reference to Bob as sender, we have derived the same set of �nal beliefs as in [4]. This

is a correct protocol, as long as the physical representation of the messages correspond to the idealized form

of the protocol.

Conclusion

Causal consistency attacks, in the form of man-in-the-middle attacks, against cryptographic protocols

have resulted in the breaking of some published protocols. Some of these protocols have been previously

shown to be correct with respect to a BAN-style belief logic. The soundness of some of these belief logics

(i.e., AT [2] and SVO [18]) has been proven with respect to a formal semantics which is rich enough to reason

about this class of attack [15]. It is therefore only logical to assume that it is the use of the logic, and not

the logic itself that is at fault.



We have presented an approach for using BAN-style logics that will not incorrectly prove the correctness

of protocols susceptible to this type of attack. In addition, our approach also overcomes a limitation of the

use of belief logics �rst presented by Snekkenes [12]. The use of this approach also provides a cleaner format

for mapping protocol comments and conditional steps into the annotations.

Our approach helps overcome some of the published limitations of cryptographic protocols, but does not

overcome all of them. The inability of these protocols to reason about secrecy, the possibility of imple-

mentation dependent 
aws being introduced has not been addressed. There are limits to the expressibility

of any of the published logics when it comes to actual implementations. Along with formal speci�cation

and analysis we recommend that protocol designers also follow the implementation advice in the literature

[1, 8]. In addition, we have not provided a formal analysis of the use of this approach with respect to a

formal semantics of a belief logic. Although we feel that such an analysis would be useful and could help

demonstrate the similarity between this approach and those proposed by Syverson [15, 17], we leave such

analysis for future discussion.

Related Work

There is some commonality between our approach and others presented in the literature. The inherent

di�culty of the problem domain and the lack of formalism in the speci�cation of the protocols has lead

to several investigations in this area. As we mentioned previously several authors, most notably Gong and

Syverson [8] have discussed approaches to the development of correct protocol implementations. In addition

there has been work related to the logics themselves.

Snekkenes [12] pointed out that proofs of protocol correctness are usually based on a �nal state of a proto-

col run. In other words, all assumptions about messages said and beliefs held are established as assumptions

prior to the proof, and thus casual relationships between messages may be inadvertently removed. This may

lead to proofs of invalid protocols by rearranging the order of messages sent. Our approach requires that

dependent messages be sent only if the dependencies have already been established, thus maintaining the

causal link between messages. Syverson [15] discusses a di�erent solution to this problem, through the use

of a semantic model of the protocol.

Syverson [17] also discusses a new approach to the syntactic analysis of authentication protocols using

SVO, an approach which discards the concepts of idealization, in contrast to the original SVO paper [18].

In this approach, only brie
y outlined, the user adds assumptions such as:

A believes (B says fNa; NbgKa
� B believes hA

Nb

*) BiNa
)

In the original protocol, message 6 is fNa; NbgKa
which was idealized to fhA

Nb

*) BiNa
gKa

. Syverson avoids

this style of idealization through the use of the above assumption. If we extend SVO using the axioms of

Abadi and Tuttle [2] to allow for reasoning with shared secrets and use Syverson's new approach we will still

have problems. In the new approach, upon receipt of the original message, Alice can reason that Bob sent the

message since Alice believes that Na is a shared secret with Bob. From this conclusion we conclude the Alice

believes that Bob believes that Nb is a shared secret. This is exactly the belief that the attack successfully

defeats. Our approach prohibits this attack by preventing any use of the notation hA
Nb

*) BiNa
unless the

identities of Alice and Bob are included in the message. However, using Syverson's approach instead of

idealization of the protocol does have a certain appeal and deserves further investigation in conjunction with

the work presented here.

References

[1] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols. In Proc. IEEE

Symposium on Research in Security and Privacy, pages 122{136, May 1994.



[2] M. Abadi and M Tuttle. A semantics for a logic of authentication. In Proc. Tenth ACM Symposium on

Principles of Distributed Computing, pages 201{216, August 1991.

[3] R. Bird, I. Gopal, A. Herzberg, P. Jason, S. Kutten, R. Molva, and M. Yung. Systematic design of

two-party authentication protocols. In Advances in Cryptology | CRYPTO `91, 1991.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical Report 39, DEC Systems

Research Center, Palo Alto, CA, February 1989.

[5] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions on Computer

Systems, 8(1):18{36, February 1990.

[6] W. Di�e, P. van Oorschot, and M. Wiener. Authentication and authenticated key exchanges. Design

Codes and Cryptograhpy, 2:107{125, 1992.

[7] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic protocols. In Proc.

IEEE Symposium on Research in Security and Privacy, pages 234{248, 1990.

[8] L. Gong and P. Syverson. Fail-stop protocols: An approach to designing secure protocols. In Interna-

tional Conference on Dependable Computing for Critical Applications, pages 44{55, 1995.

[9] G. Lowe. Breaking and �xing the Needham-Shroeder public-key protocol using FDR. In Proc. TACAS,

pages 147{166. Springer-Verlag, 1996.

[10] C Meadows. Analyzing the Needham-Schroeder public key protocol: A comparison of two approaches.

In Proc. ESORICS 96. Springer Verlag, 1996.

[11] R.M. Needham and M.D. Schroder. Using encryption for authentication in large networks of computers.

Communications of the ACM, 21(12):993{999, 1978.

[12] E. Snekkenes. Exploring the BAN approach to protocol analysis. In Proc. IEEE Symposium on Research

in Security and Privacy, pages 171{181, 1991.

[13] E. Snekkenes. Roles in cryptographic protocols. In Proc. IEEE Symposium on Research in Security and

Privacy, pages 105{119, 1992.

[14] P. Syverson. The use of logic in the analysis of cryptographic protocols. In Proc. IEEE Symposium on

Research in Security and Privacy, pages 156{170, 1991.

[15] P. Syverson. Adding time to a logic of authentication. In Proc. First ACM Conference on Computer

and Communications Security, pages 97{101. ACM Press, 1993.

[16] P. Syverson. On key distribution protocols for repeated authentication. Operating Systems Review,

27(4):24{30, October 1993.

[17] P. Syverson. A new look at an old protocol. Operating Systems Review, 30(3):1{4, July 1996.

[18] P. Syverson and P. van Oorschot. On unifying some cryptographic protocol logics. In Proc. IEEE

Symposium on Research in Security and Privacy, pages 14{28, 1994.


