
TOWARDS A FRAMEWORK FOR SECURITY MEASUREMENT

Chenxi Wang, William A. Wulf
Department of Computer Science

University of Virginia
cw2e@virginia.edu, wulf@virginia.edu

1. Introduction
We are living in an era when computer technology constantly
changes our lives. While placing unprecedented reliance on
computers and digital systems, we continue to have a very
poor grasp of the security aspects of the technology. As
security plays an increasingly important role in many
systems, it is essential that we have a better understanding
and management of computer security.

This work aims to devise a framework for measuring system
security. We can all agree that the ability to compare, to
contrast, and to make quantifiable statements about system
security is extremely valuable. It means that we will have a
basis to determine where to put our limited resources, where
to pay attention, and how to best secure our systems. We also
believe that one can obtain a more complete and thorough
understanding of a subject through measurements that may
not otherwise be possible. “When you can measure what you
are speaking about and express it in numbers you know
something about it,” wrote Lord Kelvin in 1883. “But when
you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory
kind.” This is exactly what motivated our research -- to
develop the theory and practice of security measurements.

Quantifying security, however, is a difficult problem. The
difficulties lie in that “computer security” is not a crisply
defined term. We tend to know approximately what we mean
by “security” and what we want it to do, but we seldom
clearly state what security really means to us and how secure
is “secure enough”. Moreover, as computing systems grow
larger and more complex, it is increasingly more difficult to
make statements about any system-wide properties, even
those better understood than security. The situation is worse
for systems built from commercial off-the-shelf products and
pre-existing components.

Despite these problems, we believe it is a worthy effort to
explore ways to measure attributes that are of interest to us.
In this paper, we propose a Security Measurement (SM)
framework to overcome some of the problems. This
framework should help us to:
• define the term of “computer security”

• define a measure that is acceptable to the definition of
computer security

• define a methodology to make useful if not rigorous
estimates of the measures

• validate the measures

This paper contains the first sketch of the framework. We
realize that we are not going to solve the problem of
quantifying security by proposing a universal measure. What
we hope to achieve through this work is a systematic way
which allows us to best approximate the security strength of
a system or a family of closely related ones.

The rest of the paper is structured as follows: Section 2
presents each element in the SM framework and explains
how it could be used to develop security measurements.
Section 3 describes future research direction, and section 4
summarizes the paper.

2. The SM framework
In this section, we present the elements and the structure of
the SM framework. Within this framework, one can define
his or her own notion of an adequate security measure and
evaluate the values of such measurements.

The SM framework is divided into the following elements:
1) Definition of computer security
2) Selection of units and scales
3) Definition of an estimation methodology
4) Validation of the measures

2.1 Definition of “Computer Security”
Different people will have different interpretations of what
“computer security” means. For example, what are
considered essential security issues for an academic
environment such as the University of Virginia will certainly
be different from the security issues of the CIA or that of a
medical database system. This observation suggests that it is
not sufficient to have a single definition of security.

Computer security is also a multi-dimensional attribute, and
its many dimensions are not necessarily commensurate

properties. For example, a financial stock exchange network
may define their security to be real-time availability and
information privacy while an on-line newspaper will be
primarily interested in the integrity of their information. In
measuring such a multi-dimensional attribute, the many
facets of the attribute must all be identified and adequately
addressed.

Definition of security thus will be system dependent; it must
identify a set of security-related attributes that are important
to the use of the system. It must also decide whether the
system security is to be represented as a vector or a single
value. If a single value is desired, a model to relate the
different attributes must also be defined. For example, when
measuring standard of living, one may wish to consider the
average salary level, the real estate prices, and the cost of
everyday necessities, etc. In some cases, a simple addition of
the various ratings can render a sufficient measure while
others may require a more sophisticated model such as
weighted sum to calculate the final measure.

In our framework, a security measure is represented as an n
tuple of real numbers, each representing an aspect of the
defined security. For example, if the system security is
defined as the combination of confidentiality, integrity and
availability, a possible security metric is the three tuple:

><)(),(int),(321 tyavailabilifegrityfalityconfidentif

The values in this three-tuple indicate the measured strength
of the confidentiality, integrity and availability of the system.

In the case that a single measure is desired, a model to derive
the final measure from the measures of the different aspects
must be defined. For example, the tuple

>

<

)3,2,1(

),(),(int),(321

fffg

tyavailabilifegrityfalityconfidentif

where 321321 1.025.065.0),,(ffffffg ++=

defines a measure whose value is dependent 65% on system
confidentiality, 25% on system integrity, and 10% on system
availability.

A good measure starts with knowing what to measure.
Selecting the relevant security properties is an important first
step. One of our ongoing efforts is to develop a set of
guidelines to help researchers and practitioners understand
and identify security-related concerns and translate them into
specific security properties that will be measured later.

2.2 Selection of Units and Scales
An attribute can be measured in many different units and
scale types. For example, length can be measured in feet and
inches as well as meters and centimeters. Temperatures can
be measured in interval scales [1] such as Celsius and
Fahrenheit, or in a ratio scale [1] such as Kelvin. Units and
scale types determine how we measure things as well as how
we interpret the measured values.

There are many different types of measurement scales.
Commonly used ones include nominal, ordinal, interval and
ratio scales. We are primarily interested in the latter three
because nominal scales do not establish orders hence are less
useful for our purposes.

Ordinal scale preserves the ordering among classes or
categories. The measured values are unique only up to
orders. Addition, subtraction, and other arithmetic operations
on the numerical values have no meaning. An example of
ordinal scale is the Mohs scale of hardness for minerals [1].

Interval scales preserve not only the ordering but also the
differences between classes. That is, we can compare the
differences between any two of the ordered classes in the
range of the mapping. Addition and subtraction are
acceptable, but not computing of ratios. The commonly used
Celsius and Fahrenheit scales are examples of interval scales.

Ratio scales preserve ordering, differences and ratios among
classes. The measurement mappings must start at an absolute
zero and increase at equal intervals, known as units. All
arithmetic operations are meaningful in a ratio scale. The
Kelvin scale for temperature is a ratio scale [1].

Units traditionally only apply to interval and ratio scales.
Researchers have expanded the meaning of units as
descriptions of categories for nominal and ordinal scales [2].
In the rest of the paper, we will use the broader definition of
units.

Units and scale types determine how measurements can be
achieved. For example, if we define the unit for availability
as “requests served per hour”, we effectively stated that the
measure of availability is to be derived from dividing the
number of requests by a specified time frame.

In choosing appropriate units and scale types, the following
issues must be considered:
• Plausibility: The richer the scale type, the more

information the measures represent. However,
sometimes it is simply not possible to use a rich scale.
For example, if sufficient information or measurement
tools are not available, a less ambitious scale may be
more appropriate.

• Accuracy: Accuracy is an important criterion in
selecting a unit and a scale type. Sometimes a good
reason to choose one unit or scale type over others is the
potential measurement errors caused by one measure as
opposed to others.

2.3 The estimation methodology
When we measure things, sometimes a direct measure is not
possible in which case a measuring instrument or an
estimation method should be used. For example, scientists
use the speed of light to measure distances between stars.
Whether it is as simple as applying one’s common sense to
estimate a person’s height, or as complex as measuring
distances between stars, the key is to select an appropriate
estimation method that best approximates the real value.

In the case of computer security, direct measurements of the
end-to-end security properties are made impossible because
of the scopes and structures of the modern computing
systems. In these systems, security attributes are no longer
functions of a single entity. They are more often functions of
a host of objects and their interactions. To best approximate
the security strength of large systems, an estimation method
must be used.

There may be many estimation methods. For example, one
can estimate system reliability by sampling the history of the
entire system or by doing so on each component and
integrate them in some manner. The following subsection
describes a sample estimation methodology for information
systems.

2.3.1 A Sample Estimation Methodology
In large systems, it is difficult to estimate system security. On
the other hand, analyzing small, standalone components of
the system is often an easier task. Assume that there is a way
to estimate the security attributes of the individual
components in a system. What we need is a model to relate
the high-level security attributes to that of the low-level,
more measurable components.

This methodology uses a decomposition method to develop
such models -- starting with high-level security properties of
the system, work our way down to the basic components of
the system and their interactions.

1. Decomposition

To see how it works, imagine we are analyzing the security
of a house and how its various constructs work together to
provide adequate services. The goal of the house is to
provide privacy and protect from unauthorized break-ins.
Starting from the goal, we will build a functional breakdown

of the house system, always asking the question: “what needs
to happen in order for the current goal not to fail?”.

To simplify the problem, we assume that the house itself is
perfectly constructed and is able to withstand arbitrary
attacks. Furthermore, the house only has one window and
one door.

Therefore, the main factors concerning the integrity and
privacy of the house are the door and the window. We then
repeat the decomposition process on the door and the
window -- breaking them down to their functional
contributions and, in this manner, a decomposition of the
house system is created (see Figure 1).

Figure 1: House Security breakdown

Structure Key Storage Lock

Door

Structure B lind

W indow

HO USE Security

It should be noted that there are many ways to decompose a
particular system. As long as they are faithful interpretations
of the original system, one isn’t necessarily better than the
others.

The decomposition process can be captured in the following
steps:

1. Identify a set of security-related goal(s) for the system as
the subject of the analysis.

2. Identify successive components that contribute to the
success of the goal. These are the functions which have
to succeed in order for the objective(s) not to fail.

3. Examine the subordinate nodes to see if further
decomposition is needed. If so, repeat the process with
the subordinate nodes as current goals, breaking them
down to their functional components.

4. Terminate the decomposition process when none of the
leaf nodes can be decomposed any further, or further
analysis of these components is no longer necessary. In
theory, when the decomposition terminates, all leaf
nodes should be measurable components that are
independent of each other.

Such a breakdown depicts the functional dependencies
among the various system components. A tree structure is
used to conveniently document the dependency relations.
Note that in such a breakdown, a component can be either a

physical subsystem or a logical function which consists of a
set of security properties.

2. Functional Relationships

Decomposing the system functions into their contributing
factors is only the first step in constructing a complete model
for the system. The many contributing factors must interact
with each other to provide adequate functionality. A more
important step is to analyze the relationships among the
interacting factors and their composite effects.

The kinds of interaction among system components are far
more complex than the classical logical relationships such as
those used in fault tree analysis [5]. To permit a methodical
building of representational models, we must be able to, at
least conceptually, categorize these relationships using a set
of well-defined rules.

The following list describes a set of logical relations among
system components and the composite rules associated with
them.

Weakest Link (WL): WL signifies that the functioning of the
parent is ultimately bounded by the weakest of its children.
“Weakest”, in this context, refers to the measured security
strength. In particular, a failure of any child node in a WL
relation will cause the failure of the goal function.
Mathematically, WL can be described as:

()())ild),...,S(ch,S(childchildSS(parent) n21min= ,

where S represents the assessment scores of the nodes and n
is the number of children nodes.

Example 1: Consider the house example. The security of the
house depends on two factors: the door and the window. It is
easily seen that compromise of either one of the two factors
may result in unauthorized break-ins and the consequences
are equally detrimental to the house. Hence a WL relation
exists between the door and the window (see Figure 2).

Supposing the assessment scores (either through direct
measurement or calculation) for the door and the window are
respectively 0.75 and 0.83. The score of the house is
calculated as the following:

75.0)83.0,75.0min()(==HouseS

Figure 2: House security in relation to its factors

S = 0.75 S = 0.83

S = min (0.75, 0.83)

Door W indow

House Security
<W L>

Weighted Weakest Link (WWL): WWL is a generalization of
WL. While WL does not differentiate between trivial and
important factors, WWL takes into account that different
children nodes can have various degrees of impact on the
parent node.

Example 2: Consider the functioning of the door in the house
example, it is decided that three factors are of importance:
the structure of the door, the key storage and the lock.
However, security provided by the door maybe more heavily
influenced by a subset of the factors than the rest. For
instance, depending on what kind of neighborhood the house
is located, it might be worthwhile to pay more attention to
the sturdiness of the door and strength of the lock rather than
the storage of the key. Hence, a WWL relation will appear to
be more appropriate (see Figure 3).

Figure 3: Functioning of the door in relation to its factors

S = 0.85
W = 0.5

S = 0.6 S = 0.2
W = 0 .05 W = 0.45

NW = 1 NW = 0.1 NW = 0 .9

S = 0.33

Structure Key Storage Lock

Door
<W W L>

Mathematically, the output of a WWL relation is calculated
following these steps:

1. Assumptions: each child node has an assessment score S
and a weight W where S is a number between 0 and 1
and the sum of weights among all siblings is 1. In Figure
3, the three leaf nodes are weighted 0.5, 0.05, and 0.45.
Their respective assessment scores are 0.85, 0.6 and
0.90.

2. Normalize the weights against the highest weight. The
Normalized Weights (NWs) for the three leaf nodes in
Figure 3 are 1, 0.1 and 0.9.

3. Select the weighted weakest child as

()min , ,...,S
NW

S
NW

Sn
NWn

1
1

2
2 , where n is the number of

children nodes. In Figure 3, the weighted weakest child

is the lock whose SNW = 0.222.

4. Compute the weighted sum of the children nodes

WeightedSum =)(
1

i

n

i
i WS ×∑

=

, where n is the number

of children nodes.

Continue with the example in Figure 3, the weighted
sum is:

 545.045.02.005.06.05.085.0 =×+×+×

5. The score of the WWL parent node is computed as the
square root of the product of the weighted sum with the
score of the weighted weakest child.

 0 545 0 2 0 33. . .× =

Prioritized Siblings (PS): This relation exists among siblings
each contributing to an independent aspect of the parent
function. For instance, the window element in the house
example is decomposed into the “structure” and the “blind”.
It is easily seen that the blind and the structure provide
independent functionality which collectively contribute to the
functioning of the window element. However, the failure of a
single element (e.g. the blind) will not necessarily cause the
functional failure of the window. A PS relation also
recognizes the relative importance among the sibling nodes
(see Figure 4). Formally, PS can be described as:

() ()∑
=

×=
n

i

WiSiparentS
1

, where S is the assessment score

and W is the weight percentile, and n is the number of
children nodes.

Supposing S(structure) is 0.98 and S (blind) is 0.63, and their
respective weights are 0.85 and 0.15 (see Figure 4). The
score of the window can be calculated as:

928.015.063.085.098.0)(=×+×=windowS

The above list of functional relationships captures only a few
types of component interactions. It should be noted that a
short list of relationships may never be enough to represent
all possible types of interactions among digital system
components. As a part of our ongoing research, we will
continue to define new functional relationships to handle the
most common cases.

3. Weighting and Priorities
While decompose, sometimes it is necessary to differentiate
the relative importance or weights among components. The
weights indicate the degrees with which children nodes
influence their parent.

A correct weight assignment is critical because the weights
are used to compute the combinatorial effect of the various
elements on the overall system. There are no general rules
for determining the relative priorities of the elements besides
careful use of one’s expertise and judgment. While it is not
possible to obtain completely objective weight assignments,
we recommend an exercise used in Analytic Hierarchy

Process (AHP) [3] to help identify the relative importance
among sibling components.

The technique of AHP is designed by Thomas Saaty. AHP
elicits judgments in the form of pair-wise comparisons. To
determine the weights among a set of n objects, AHP first
performs n (n-1)/2 pair-wise comparisons of the objects with
respect to a predefined ratio scale. Because the ratio scale is
reciprocal, the results of the comparisons can be used to fill
out an n n× matrix M where the entry Mij indicates the
relative importance object i is to object j.

Once the matrix is constructed, AHP computes the
eigenvalues of M and their corresponding eigenvectors.
Assume that the largest eigenvalue isλ max, Saaty has shown

that the eigenvector associated withλ maxcontains the most
consistent weight assignment for the set of objects. A
detailed description of AHP and the mathematics behind it
can be found in Thomas Saaty’s book “The Analytic
Hierarchy Process”[3].

We use an example to illustrate the AHP weight judgment
method. Example 4: A student wants to determine the
relative importance of four activities in his life: A part-time
job, study, personal activities and social activities. Using
AHP, he will first make six pair-wise comparisons according
to a pre-defined scale shown in Table 1. The results of the
comparisons are shown in a matrix given in Table 2.

Table 1: Scale of pair-wise comparisons

Numerical
Values

Definition

1 Equally important or preferred

3 Slightly more important or preferred

5 Strongly more important or preferred

7 Very strongly more important or
preferred

9 Extremely more important or preferred

F igu re4 : F u n ction in g of th e w in dow in rela tion to its fac tors

S = 0 .9 8
W = 0 .8 5

S= 0 .63
W = 0 .1 5

S = 0 .9 28

S truc tu re B lin d

W indow
< P S >

2, 4, 6, 8 Use as intermediate values to reflect
compromise

Table 2: Results of pair-wise comparisons

Job Study Personal Social weights

using
λ max

Job 1 1/2 4 5 0.324

Study 2 1 5 6 0.508

Personal ½ 1/5 1 2 0.103

Social 1/5 1/6 1/2 1 0.066

As indicated by the computation, the student considers
“study” the most important activity, followed in order by his
part-time job, personal activities and social activities.

Saaty’s eigenvector method also yields a consistency
measure, that is, it provides an indication of how consistent
the entries in the comparison matrix are. Saaty argues that if
the decision maker is perfectly consistent in making the pair-
wise comparisons, thenλ max, the largest eigenvalue of M,
should be equal to n. On the other hand, if he is inconsistent,
thenλ maxwill be greater than n. The more inconsistent he is,

the greater the value ofλ max. The proof behind Saaty’s
argument is beyond the scope of this paper. Interested
readers should refer to Saaty’s book [3].

AHP provides a way to formally deal with judgment errors
through the use of the consistency measure. It has been used
as a successful decision making tool in a wide range of
applications.

On a final note, constructing such a functional decomposition
requires a comprehensive and precise under-
standing of the system. Only when the functioning of the
system is fully understood, can one build a model that is

faithful to the system.

4. Basic Measurements
Previously, we posited that we could measure the end-to-end
security attributes of a complex system given that there are
ways to measure the security attributes of its basic
components. In this subsection, we will explore the
measurements of the basic components.

Measuring of the basic components are largely determined
by the units and scale types. For example: if the measure of
integrity is defined as “the probability of unauthorized
alteration of information”, then a potential basic measure of
integrity can be the deployment of statistical methods on
individual components to determine the value of such a
probability measure.

Most of the security attributes such as confidentiality and
integrity are terms of qualities. In measuring such quality
terms, an inherent difficulty is that there might be many
different interpretations of what they really mean. Therefore,
we must clearly articulate how these quality terms are to be
defined. One way to do this is to define a model associated
with the attribute to be measured.

For example, confidentiality of information has always
played a central role in computer security. Unauthorized
disclosure of information, if not prevented, may cause
catastrophic results. In general, good cryptography combined
with physical security is often considered to be our best
answer to the problem.

We use a factor-criteria model to describe confidentiality.
Figure 6 depicts such a model. It divides confidentiality into
three main factors: cryptographic protection, physical
security and software access control. These factors are then
further broken into a set of lower level criteria.

Some of the criteria can be directly measured while others
may need to be associated with a set of even lower level,
directly measurable terms. For instance, Figure 7 shows how
cryptographic protection can be described by two criteria and
four basic metrics.

F ig u re 6 . C on fid e n t ia lity M o d e l

a ttrib u te

fac to rs

c rite riaA lg orith m K eys & S ecre ts

C ryp tog rap h ic p ro tec tion

P h ys ic a l m ed ia A c ces s ib ility

P h ys ic a l S ec u rity

E ffec tive n es s R e liab ility

S o ftw are A c ce ss C on tro l

C on fid en tia lity

A questionnaire of conditions can be used to solicit
information about how rigorously the algorithm is tested,
how long it has been used and what kind of cryptoanalysis
was performed against it. A similar list of questions can be
used to assess the implementation of the algorithm and the
key storage mechanism.

There are many ways of transforming a questionnaire into a
metric. One possible method is to use only “Yes” and “No”
questions and assign a 1 to a “yes” answer and 0 to a “No”
answer. The measure can be derived by computing the
percentage of “yes” questions. For example, we can compute
the level of cryptographic protection as the following to
produce a measure that is a number between 0 and 1.

1
2

1
2((

Number of 1s for degree of testing
Total Number of questions

Number of 1s for implementation
Total number of questions)

+ 1
2 (

Key Length
M inimum Length infeasible to break

+
Number of 1s for key Storage

Total Number of questions))

+

Analogous measures can be calculated for physical security
and software access control. Finally, by taking the mean of
the three measures, we have the desired measure for
“confidentiality”:

Confidentiality = 1/3 (measure for cryptographic protection
+ physical security + software access control)

Because the overall estimate largely depends upon the basic
metrics. Care must be taken in implementing them. Whether
they are mathematical equations, diagrams, or
questionnaires, they must be stated in a clear and
unambiguous form to minimize the possibility of
misinterpretation. They must also look for known
weaknesses and security holes. Lastly, they should
incorporate what is considered important to the organization
or evaluator’s needs.

In this example, all the questions and factors are weighted
the same. Different weights should be used if special
priorities are to be reflected.

Models can come in many different forms. A few examples
of models are listed here for demonstration purposes. We
envision that a set of general models will be developed by
the community to handle the common cases. However, one
does not have to accept any given models in his or her
analysis, it is always a good exercise to develop one’s own
models to address specific concerns. We intent to lay out a
set of basic principles in the SM framework for developing
such models.

Integrity: The integrity model is similar to the one for
confidentiality. They both build upon the same key factors
which in turn depend on the same lower level criteria.

F ig u re 7 : C ryp tog rap h ic P ro tec tion

M etrics

C rite ria

F ac tor

D eg ree o f tes tin g Im p lem en ta tion

A lg orith m

K ey len g th K ey s torag e

K eys an d S ec re ts

C ryp tog rap h ic P ro tec tion

F ig u re 8 . In teg rity M od e l

A lg o rith m K eys & S ec re ts

C ryp tog rap h ic p ro tec tion

P h ys ica l m ed ia A ccess ib ility

P h ys ica l S ecu rity

E ffec tiven ess R e liab ility

A ccess C on tro l

In teg rity

Different questions may be used to assess the criteria in order
to reflect unique integrity concerns.

Availability: There are plenty of examples of real time
operations that can cause catastrophic results if denied of
critical services. However, we know less about denial-of-
service than the first two attributes. For example, how do one
distinguish between an intentional, malicious flooding of the
network from a simple degraded performance caused by
occasional overloading?

While we do not have answers to all the questions, we prefer
to study the subject through experimental measurement and
observe its characteristic behaviors. One possible way of
defining “Denial of service” in a measurable form is shown
below:

Availability = the probability of a service request gets
fulfilled

This probability can be determined through random
samplings, statistics over a period of time, or specific
testings. Using probabilistic measures are often useful in
amortizing the effect of extreme and random events. Note
that a maximum turnaround time should be defined for
service requests.

Non-repudiation: Non-repudiation has become increasingly
more important as electronic commerce quickly popularizes.
Computer security must provide adequate mechanisms to

support non-repudiation for security-related operations. We
define the model for non-repudiation as follows:

To achieve non-repudiation, there must be an adequate
proof-of-identify evidence and a robust underlying
mechanism. For example, if the proof-of-identity is merely a
four digit ATM PIN, the chance of that being compromised
is a magnitude greater than biometric data such as finger
prints or physical signatures. We must consider the integrity,
reliability and consistency issues for the mechanism and the
integrity, reliability of the evidence that is being used.

Authentication: In many modern computer systems,
authentication is an absolute necessity. Many security
services are based on successful authentication. A sample
model for authentication is defined in Figure 10.

It should be noted that high-level security attributes may also
depend on attributes that are not purely security-oriented,
such as reliability or predictability, in which case models for
these attributes also need to be defined.

5. Component Sensitivity analysis

The last element of the estimation methodology is a
component sensitivity analysis. A sensitivity analysis is
performed to assess the impact of variations to the individual
components. It allows us to identify a component or set of
components’ contribution to the overall system security.

If the overall measure varies dramatically with the change of

F ig u re 1 0 : A u th en tica tion M od el

U n iq u en ess S tru ctu re

E ffec tiven ess

In teg rity
M easu res

In teg rity

Id en tity

R eliab ility
M easu res

R eliab ility

In teg rity
M easu res

In teg rity

A u th en tication
m ech an ism

A u th en tication

F ig u re 9 : N on -R ep u d ia tion M od e l

on s is ten cy R eliab ility In teg rity

m ech an ism

In teg rity R e liab ility

P roof-o f-id en tity evid en ce

N on -R ep u d ia tion

a certain set of components, a closer second look should be
performed on this particular set of components.
Recommendations to improve the components’ security
strength can then be made based on the study.

Let us go back to the house example and briefly describe the
process of a component sensitivity analysis. Using the
composite rules defined by each functional relationship,
measures of the high-level security attributes can be
expressed in terms of that of the basic components. The
contribution of each component is then calculated as the
derivative of the high level measures with respect to the
score of the basic components.

Figure 11 shows the previous example of the house system.
The following list of equations is derived from the functional
relationships used in the decomposition tree.

1.))(,(min()(windowSdoorShouseS =
2.)(63.0)(98.0)(blindSstructureSwindowS +=

3. S(door)

))(),(),((min weighted

))(05.0)(45.0)(5.0(

keySlockSstructureS

keystorageSlockSstructureS

∗

++=

Once we have the basic measurements, the overall measure
can be expressed as:

)(05.0

)(45.0)(5.0()(

)()(

keystorageS

lockSstructureSlockS

doorShouseS

+

+∗
=

=

Now we can calculate the component sensitivity indexes.
Assuming that the other components’ scores are kept
constant, the Sensitivity Index (S.I.) of a particular
component is defined as the derivative of the overall score
with respect to the score of that component. For example, the
S.I. of the door structure is computed as follows:

S I
S house

S structuredoor structure. .
()

()_ =
∂

∂

4.2)(10

5.0

)6.005.02.045.0)(5.0(2.02

2.05.0

))(05.0)(45.0)(5.0()(2

)(5.0

+
=

∗+∗+∗

∗
=

++∗
=

structureS

structureS

keystorageSlockSstructureSlockS

lockS

Substituting the value for S (structure), we have that

1514.0.. _ =structuredoorIS . For every unit of change in the

performance of the door structure, the overall security
strength of the house will change 0.1514 units. Table 3
shows the sensitivity indexes for all the leaf components of
the house example:

Table 3: S.I.s of the basic components of the house

S.I. equation S.I. value

Door
Structure

0 5
10 2.4

.
()S strucute+

0.1514

Key
Storage

0 5
265

.
() .S keyStorage+

0.096

Lock 2.275 4.5

455 45 2

+

+

S lock

S lock

()

. ()

0.4617

Window
Structure

0* 0

Window
blind

0* 0

*: S.I. of the window structure and the blind is only zero under the
condition: S (window) >S (door)

The sensitivity analysis above shows us that improving the

F ig u re 1 1 : D ecom p os ition Tree fo r a h ou se

W =0 .5
S =0 .8 5

W =0 .0 5
S =0 .6

W =0 .4 5
S =0 .2

W =0 .8 5
S =0 .9 8

W =0 .1 5
S =0 .6 3

S tru c tu re K ey
S torag e

L oc k

D oor
<W W L >

S tru c tu re B lin d

W in d ow
<P S >

H ou se
<W L >

security strength of the lock has the biggest pay-off in
increasing the overall security strength of the house. A
component whose S.I. is greater than 0.1 is considered a
nontrivial component.

Sensitivity analysis can also perform as a sanity check for the
modeling effort. The decomposition may be with error if the
S.I. of some component is drastically higher than the others.
The decomposition process, coupled with adequate
sensitivity analysis, can provide useful guidance as how to
isolate the vulnerable areas of the system, identify the source
of the problem and ultimately lead to the discoveries of
security flaws or loopholes.

2.4 Validation of the measurement
If security measurement is to help us in our quest to better
secure our systems, it is imperative that the measurements
must be “valid”.

Classical measurement theory [1] tells us that a “valid”
measure is a mapping from an empirical domain to a
numerical range such that the empirical relations are
preserved and preserved by the numerical relations.

It is not always easy to prove the validity of a measurement,
especially when the empirical relations cannot be readily
identified. What we present here is a few thoughts toward
validation of the security measurements. We do not claim it
as a final solution, in stead, they are the research directions
towards a more formal validation of the measurements.

Validation based on measurement theory
This step is a sanity check for the definition of the
measurement. Once we have defined all the elements of the
measure, we need to make sure that the definitions do not
violate the basic axioms of the measurement theory.

If it is decided that the final measure of the system security is
to be represented as a scalar value, our earlier discussion
shows that a model to relate all the security aspects should be
defined. Efforts must be made to ensure that such a model is
justified. For example, any model utilizes arithmetic
operations such as addition, subtraction and multiplication
should not be used with ordinal-scaled measures.

In addition, care must be taken in interpreting the value of
the measures. For example, to assess the system availability,
one may use a probabilistic measure representing the average
probability of a request being served. Probabilistic measures
are ratio-scale measurements. A measured value of “0.8”
indicates twice as much availability as a value of “0.4”. On
the other hand, if the system availability is categorized as

low, medium and high, and the categories are mapped to the
numbers 0, 1 and 2, a system measured “2” does not
necessarily provide twice as much availability as one that is
measured at “1”.

Validation using empirical relations
It is true that in the context of computer security, extensive
empirical studies are not readily available. However, there
are still observed behaviors or relations that can be used to as
a potential method to validate our measures.

The authors are currently engaged in an effort to apply the
framework to a number of systems for which informal studies
have previously observed relationships between certain
system configurations and security flaws. Like the medical
researchers have observed relationships between certain
genes and obesity, similar correlations do exist in the context
of computer security. The challenge then lies in how to filter
out spurious correlations and discover meaningful
relationships.

Validation using formal experiments
Another potential validation method is through the use of
formal experiments. When carefully designed and executed,
formal experimentation can be a useful vehicle in validating
or disproving certain hypotheses.

First we have to carefully identify what the objectives or the
hypothesis we set out to prove or disprove through the
experiment. Then a meaningful plan must be designed to
achieve the objectives. The plan must include applying
different conditions and observing the change of behaviors in
the subject.

Data used in the experiments should be collected in a
carefully controlled environment. Statistical methods should
be used to look for characteristic changes in both the
experiment and the measurement. If the results indicate good
correlation, we can at least increase our confidence in the
measurement.

Besides careful, rigorous and complete experiment design,
we must learn how to minimize extreme events and
experiment errors. There are a host of studies on error
handling techniques [5, 6, and 7]. How to design and conduct
effective experiments is another ongoing effort of this
research.

The downside of formal experiments is that they could be
extremely time-consuming and costly to operate. In reality, it
is extremely difficult to conduct formal experimentation on
large systems. Therefore, it requires a great deal of design
and preparation.

3. Future Work
There is a great deal to be learned about security
measurements. In particular, the following issues need to be
addressed:

1. A user guideline is needed to help ordinary user (not
necessarily security-conscious ones) to identify and
determine the relevant security properties.

2. The estimation methodology must be further developed.
The near term tasks are:
a) Developing a set of guidelines to decompose a system

and make visible the interactions between individual
components

b) Further development of the functional relationships and
the models that translate the security strength of lower
level components into aggregated measures

c) Develop a set of automated tools for data gathering and
quantitative analysis.

We envision incorporating the research results of other well-
established areas such as software engineering and risk
analysis to help us develop a sound process in which the
assessment of complex, composite attributes can be
translated into the measurements of more well-understood
and measurable attributes.

3. A topic of great interest to us is vulnerability analysis in
which we will utilize the estimation methodology and
component sensitivity analysis to isolate and identify the
sources of security vulnerabilities. The decomposition
method lends itself well to a step-trace process, which can
potentially be used to identify the component or a set of
components that are the most responsible for the evaluation
result. Efforts will be made to present the information in a
descriptive form that is useful for risk identification and
analysis. In particular, we will explore the following issues:
Where and what things could go wrong? what is the
likelihood that they would go wrong?, and what are the
consequences?

4. Validation of the measurement is an interesting and
challenging research question. One of our near term tasks is
to identify suitable pilot systems on which a formal
experiment can be executed. We also expect to identify a set
of guidelines for running experiments as well as a procedure
to analyze the results of the experiments.

4. Conclusion
We proposed the concept of a security measurement
framework in this paper. The framework is based on the
theory and practice of formal measurements. It is the analytic
process of security measurement, not the final figures, that
interests us.

One should be careful in utilizing such measurements. A
study results in no visible security vulnerabilities does not
indicate risk free. It may increase our confidence in the
system if the study is conducted in a careful and adequate
manner. To better facilitate the use of the measurement, we
hope to develop a set of practical user guidelines in the near
future.

There are a great deal more to be learned about computer
security. We hope that this study is a step toward the right
direction. The author will continue to engage in efforts to
advance our knowledge of the subject. We need the support
and feedback from the community to help us refine and
improve the rigor of the measurements. We believe that
through measurements and other formal studies, we can
increase our understanding and ultimately lead to better
management and practice of computer security.

5. Acknowledgments
This research is in part supported by a grant from the
Corporate Information Security Office of Citicorp. The
authors wish to thank Micky Lo, Steve Katz and Jan Jonak
for their input and help with the project. Special thanks
should go to Dr. Yacov Haimes, Dr. John Knight and Dr.
Kevin Sullivan for stimulating conversations and useful
insights.

6. References
[1] F. Roberts, “Measurement Theory, with Applications to

Decision-Making, Utility, and the Social Sciences”,
Addison-Wesley, 1979.

[2] N. E. Fenton and S. L. Pfleeger, “Software Metrics”,
International Thomson Computer Press, 1996

[3] T. Saaty, “The Analytic Hierarchy Process”, McGraw-
Hill, 1980.

[4] B.L. Golden, E. A. Wasil, and P.T. Harder, “The
Analytic Hierarchy Process, Applications and Studies”,
Springer-Verlag, 1989.

[5] W. E. Vesely, F. F. Goldverg, N. H. Roberts and D. F.
Haasl, “Fault-tree handbook”. U.S. Nuclear Regulatory
Commission Rep. NUREG-0492, 1981.

[6] N. J. McCormick, “Reliability and Risk Analysis,
Methods and Nuclear Power Applications”, Academic
Press, INC. 1981

[7] Y. Haimes, “Risk: Its Modeling, Assessment, And
Management”, McGraw-Hill, 1998.

[8] J. R. Dunham, E. Kruesi, “The measurement task area”
IEEE Computer, pp. 47-54, November 1983.

[9] S. MacDonnell, “Rigor in software complexity
measurement experimentation”, Journal of Systems and
Software, Vol 16, pp. 141-149, 1991.

[10]E. J. Weyuker, “Evaluating software complexity
measures” IEEE transactions on Software Engineering,
SE-14(9), pp. 1357-1365, 1988.

[11]Department of Defense, “Trusted Computer System
Evaluation Criteria”, Department of Defense Standard,
December 1985.

