
WHEN JAVA WAS ONE: THREATS
FROM HOSTILE BYTE CODE

MARK D. LADUE

ABSTRACT. In Java’s first year it has become clear that many of the
problems posed by executable content have not been solved. The almost
exclusive focus of the Java community on executable content has left
numerous avenues unexplored for threats. It has been observed that there
is no one-to-one correspondence between Java source code (programs)
and Java byte code (class files). While every program written in Java can
be compiled to byte code by a Java compiler, it is possible to create class
files which no Java compiler can produce, and yet, which pass the Java
Verifier with flying colors. This fact has one very serious implication -
No matter what claims are made, and even formally demonstrated, for
the security of the Java language, all bets are off when it comes to byte
code running in the Java Virtual Machine. This paper will explore some
of the implications of this curious lack of coherence between Java source
code and byte code. It will also illustrate how easy it is to alter Java class
files for malicious purposes.

1. THE STATE OF JAVA SECURITY

The Java programming language has recently turned one year old. In
its first year, Java has had a number of spectacular holes punched in its
security model by Ed Felten and the Safe Internet Programming Team at
Princeton University [McGF]. Since February of 1996 the Hostile Applets
Home Page at the Georgia Institute of Technology’s School of Mathematics
has featured a collection of evil applets (with complete source code), and yet
Sun Microsystems and its corporate partners have shown little progress in
combatting hostile applets [LaD1, LaD2]. A year ago, when Java was first
gaining notoriety, few people imagined that so many serious flaws would
surface so quickly, and even fewer believed that threats from hostile applets
would persist. In Java’s first year it has become clear that many of the
problems posed by executable content have not been solved. The power
and complexity of the language make it extremely likely that security holes
will continue to appear in years to come.

It has been observed that there is no one-to-one correspondence between
Java source code (programs) and Java byte code (class files) [McGF, LaD4].
While every program written in Java can be compiled to byte code by a
Java compiler, it is possible to create class files which no Java compiler



WHEN JAVA WAS ONE: THREATS FROM HOSTILE BYTE CODE

can produce, and yet, which pass the Java Verifier with flying colors. Such
class files are said to be deviant. Not only is it possible to create deviant
class files, it is a simple matter to do so, and the number of these non-
compiler class files greatly exceeds the number of those producible by Java
compilers. This fact has one very serious implication - No matter what
claims are made, and even formally demonstrated, for the security of the
Java language, all bets are off when it comes to byte code running in the
Java Virtual Machine. Deviant class files that pass the Verifier and exploit
unenforced, or improperly implemented, Verifier rules have the potential to
reduce Java Security to rubble.

Note that this applies as well to the most untrusted of applets (which are
Java programs downloaded and run automatically by most browsers) as it
does to applications (which are programs set up and run in more traditional
ways). While inadvertently trusting a hostile application can lead to ruin,
so can accidentally downloading a hostile applet that exploits the increased
power of Java byte code over Java source code. Thus the distinction be-
tween applications and applets is unimportant in the present context. Until
this new threat posed by Java applets is more fully understood and explored,
it is wise to regard applets with more suspicion than ever before.

This paper will explore some of the implications of this curious lack of
coherence between Java source code and byte code. It will also illustrate
how easy it is to alter Java class files for malicious purposes. Section 2
contains an overview of some salient facts about the Java class file for-
mat. It highlights the ease with which class files can be altered to become
deviant and do things beyond the power of Java source code. Section 3
describes the problem of incoherence between Java source code and byte
code. It points out several surprising properties of byte code as well as
several rules unenforced by the Java Verifier, all of which could lead to se-
curity breaches. Section 4 then introduces a number of examples in order
to illustrate the threats. One particularly interesting example that will be
considered at length is the application HoseMocha.java, which can be ap-
plied to applications and applets, making them impervious to the celebrated
Mocha decompiler. Finally, Section 5 recounts recent experience with some
rudimentary Java Platform viruses, and it assesses the possibility of more
virulent threats from hostile byte code.

2. AN OVERVIEW OF THE JAVA CLASS FILE FORMAT

When Java source code is compiled, the result is a class file, having a
.class extension and containing platform-independent byte code in a very
specific format. A class file should be regarded as a stream of 8-bit bytes,
with 16-bit, 32-bit, and 64-bit quantities being constructed in big-endian
order from two, four, and eight consecutive 8-bit bytes, respectively. The



WHEN JAVA WAS ONE: THREATS FROM HOSTILE BYTE CODE

Java Virtual Machine (JVM) Specification represents a class file in a C-like
structure notation as follows [Lind]:

ClassFile
u4 magic;
u2 minor version;
u2 major version;
u2 constant pool count;
cp info constant pool[constant pool count - 1];
u2 access flags;
u2 this class;
u2 super class;
u2 interfaces count;
u2 interfaces[interfaces count];
u2 fields count;
field info fields[fields count];
u2 methods count;
method info methods[methods count];
u2 attributes count;
attribute info attributes[attributes count];

Here the notation un refers to an unsigned n-byte quantity. While this
structure gives some idea of the nature of Java class files, it will be helpful
to take a closer look at a few of the details.

The 4-byte quantity magic has the value 0xCAFEBABE and identifies
the class file as such. The 2-byte quantities minor version and
major version specify which version of the Java compiler produced
the class file. The constant pool is a table of structures that repre-
sent an assortment of class, field, and method names as well as string and
other constants used within the class file. The constant pool count
specifies how many entries are present in the constant pool, while
each cp info structure is one of eleven different types that may appear
in the constant pool. The 2-byte quantity access flags is a mask
of modifiers used to specify class and interface accessibility. An extended
form of access flags also occurs in the field info and method info
structures, where it serves the same purpose. The 2-byte quantitiesthis class
and super class refer to the constant pool entries containing pre-
cisely what their names indicate.

The remainder of the class file consists of four tables, with one table each
for interfaces, fields, methods, and attributes. Each table is
preceded by a 2-byte quantity specifying the number of entries in that table,
and each entry in a particular table is a structure of a type appropriate for
that table. While each of these tables is an integral part of the class file, the



WHEN JAVA WAS ONE: THREATS FROM HOSTILE BYTE CODE

methods table contains the byte code to be run in the JVM, and so a closer
look at it is in order.

The methods table of a Java class file contains methods count en-
tries, and each entry is a structure of type method info, which has the
following format:

method info
u2 access flags;
u2 name index;
u2 descriptor index;
u2 attributes count;
attribute info attributes[attributes count];

The JVM class file specification offers six predefined types of
attribute info structures:

1. Code
2. ConstantValue
3. Exceptions
4. LineNumberTable
5. LocalVariableTable
6. SourceFile

The most important of these attribute info structures is the Code
attribute, which contains the JVM instructions for a single Java method and
has the following format:

Code attribute
u2 attribute name index;
u4 attribute length;
u2 max stack;
u2 max locals;
u4 code length;
u1 code[code length];
u2 exception table length;
table info exception table[exception table length];
u2 attributes count;
attribute info attributes[attributes count];

The code array contains the bytes of code actually run by the JVM.
Each byte of the code array is either a legal Java opcode, of which there
are 201 at the present time, or an operand of an opcode. The code array,
like the class file as a whole, is subject to a multitude of static and structural
constraints, all of which must be checked by the Java Verifier [Lind].



WHEN JAVA WAS ONE: THREATS FROM HOSTILE BYTE CODE

While the class file format greatly enhances Java’s security by making
the verification process much more tractable, it also raises some security
concerns of its own [McGF]. The well-defined format and level of detail
present in class files make it a straightforward, though tedious, task to re-
cover source code from them. The justly celebrated Mocha decompiler
does precisely that. Using the Mocha decompiler, for example, it is an easy
matter for one to decompile class files to source code and scour them for
security weaknesses, and it is just as easy for a Java developer to decompile
a business competitor’s work and search for trade secrets. What can be read
can often be rewritten, but one need not go to all of the effort of decompil-
ing class files to source code, editing that source code, and re-compiling it
to obtain hacked class files.

The hacker who knows a bit of Java programming, the class file for-
mat, and Java opcodes can easily insert, delete, or otherwise alter code in
class files, all without effect on the class files’ verifiability. To insert some
code, for instance, one need only append entries to the constant pool,
append the appropriate opcodes to a suitable method’s code array, and
use the goto instruction (167 or 0xa7) to jump to and from the inserted
code. One has only to be careful and adjust the appropriate counts in the
class file to maintain its verifiability. When the class file attacked happens
to be SecurityManager.classor AppletClassLoader.class,
more dire consequences would be sure to follow. The class
java.io.RandomAccessFilehas handy methods for reading and writ-
ing Java primitive data types, including unsigned 1-, 2-, and 4-byte quan-
tities, at arbitrary locations in files. With Java’s power and ease of use, it
takes a scant few hours to develop the knowledge and skills required for the
task.

Thus it is extremely simple to read and manipulate Java class files for evil
purposes. In particular, it is very easy to take byte code produced by a Java
compiler and alter it to produce deviant class files. It is quite possible that
deviant class files will provide a new avenue for the attack applets that the
Princeton team developed last year. But one need not be so sophisticated in
order to develop a devastating attack applet. An industrious hacker could
just as easily produce and test randomly generated deviant classes until a
suitably destructive one appears. Moreover, what can be done by a hacker
can just as easily be done by a virus. In the future we should expect class
files to become tempting targets for hackers and virus writers.

3. JAVA SOURCE CODE VERSUS BYTE CODE

The overview of the class file format in the previous section revealed how
simple it is to systematically inspect and tamper with Java class files. That
alone is cause for concern. But the lack of a one-to-one correspondence



WHEN JAVA WAS ONE: THREATS FROM HOSTILE BYTE CODE

between Java source code and class files which pass the Java Verifier is
cause for much greater concern. There is fundamental incoherence between
the Java programming language and the byte code passed by the Verifier.

A Java compiler will take any valid Java program and produce a class file
which will pass the Verifier, yet there are class files which pass the Verifier
but correspond to no valid Java program. Such deviant class files contain
code not derived from legitimate programming constructs. Thus the JVM
allows byte code to extend the Java language far beyond its official bound-
aries. Since some of Java’s security policies depend upon the language
itself, this is a potential source of serious security breaches. To make mat-
ters worse, the ease with which class files can be altered entails that it is
utterly simple to produce deviant byte code. It also entails that the quantity
of deviant byte code is vastly greater than that of the legitimate byte code
produced by Java compilers.

One source of the problem is that the class file format is entirely inde-
pendent of the Java language. While the Java Verifier can check with 100%
certainty whether or not a given file is a bona fide class file, the Verifier does
not, and most likely cannot, determine whether or not that file was produced
by a Java compiler. The Verifier’s function is to perform a multitude of tests
to make sure that a potentially hostile file is consistent with some of the
Java language’s most important constraints. Thus it should be no surprise
that byte code is more powerful than source code. The words of the Sun
programmer who wrote check code.c, the heart of the Java Verifier, are
particularly apt: “All currently existing code passes the test, but so does lots
of bad code.” How true.

To compound the problems, a number of significant constraints are not
enforced by the Verifier, and some opcodes possess more functionality than
is apparently used by Sun’s Java compiler. Examples of this abound. The
Java Virtual Machine Specification lists three specific properties of excep-
tion handlers which byte code produced by Sun’s Java compiler always pos-
sesses, but which are not checked by its Verifier:

1. The ranges of instructions protected by distinct exception handlers
must be disjoint, or one must contain the other;

2. An exception handler cannot occur in code protected by itself;
3. Control cannot be passed to an exception handler’s code by any means

other than an exception.

These constraints are not enforced because supposedly “they do not pose a
threat to the integrity of the Java Virtual Machine” [Lind, p.133]. It remains
to be seen whether or not such a cavalier view of Java’s security is justified.

One need not rest content with such officially documented examples; oth-
ers are readily found. An apparently harmless example is that arbitrary



WHEN JAVA WAS ONE: THREATS FROM HOSTILE BYTE CODE

bytes can be appended to class files without effecting their verifiability,
contradicting the JVM Specification [Lind, p.125]. A more interesting case
study is the goto instruction (167 or 0xa7). While the Java language
studiously avoided the goto statement, one is built into the JVM instruc-
tion set. Although Sun’s Java compiler seems to always employ it in the
forward direction, passing goto a sufficiently large offset allows it to pass
control backwards. This allows deviant byte code to achieve arbitrary trans-
fer of control within a method. In particular, arbitrary branches into and out
of catch and finally blocks work perfectly well, and the better con-
trolled jsr (168 or 0xa8) and ret (169 or 0xa9) instructions can be by-
passed. It is quite possible that a deviant use of goto together with highly
non-standard exception handling could open the back door of the JVM for
attack applets to enter. In any event, deviant byte code running in the JVM
is unpredictable and makes a mockery of Java’s claims to security.

The surprising flexibility of the goto instruction has another interesting
use. It is especially easy to append opcodes to any code array, execute that
code, and return. This is very good news indeed for virus writers. Moreover,
the existence of such appended code exposes another weakness in the Veri-
fier - appended code is not consistently verified. If control is transferred to
it at some point, it almost certainly is, but dead opcodes appended are some-
times inspected and sometimes not. This is troubling and further raises the
prospects of deviant byte code harboring nasty surprises. This combination
of language-dependent security, rules not enforced by the Verifier, undocu-
mented behavior of opcodes, and inconsisent code checking entails a great
deal of risk. At the very least it implies that very little can be asserted with
certainty about Java Security. Clearly much more work remains to be done
before Java can be declared safe.

4. BATTLE OF THE BYTE CODE

The plea to ponder potential security threats always seems less convinc-
ing in the absence of concrete examples. In order to illustrate the threats
posed by deviant and subversive byte code, the author created a number
of examples. Some are lighthearted, while others are more serious. All of
these examples are readily obtained over the World Wide Web [LaD5]. The
main point of these examples is that it is very easy to alter Java class files
and just as easy to create deviant byte code, but a corollary is that Java class
files are also tempting targets for hackers and virus writers. In pondering
these examples, one should recall Frederick Cohen’s amusing tale of an ex-
pert’s reaction to one of his early demonstrations [Coh2, pp.35-36]:

... and he got really upset. He said “I don’t know why we had you here, you’re
the worst programmer I have ever seen. In 15 minutes, I could write a program to



WHEN JAVA WAS ONE: THREATS FROM HOSTILE BYTE CODE

do this, it would go through the system like a hot knife through butter, and nobody
would even notice it.” So I said, “That’s the point!” He finally got the point.

As a first example, the author wrote and then attacked Beginner.java,
which was contrived to try reading a nonexistent file, catch the result-
ing
IOException and print an error message (“Oops!”), and finally print
one last message (“Help!”). After inspecting Beginner.class, the author
wrote Attacker.java, which inserted 3 bytes of code into Beginner.class at
the end of its finally block: goto followed by the 2-byte offset nec-
essary to return control to the beginning of the program. Attacker also ad-
justed the attribute length and code length of the proper
Code attribute structure to maintain verifiability. The altered Begin-
ner.class readily passed the Verifier, and when run, it proceeded into an
infinite loop of printing “Oops!” and “Help!” messages, as expected. This
deviant class file could not have been produced by a Java compiler, and the
Mocha decompiler failed to decompile it. A second version of Attacker.java
was able to insert similar code into the catch block and achieved a sim-
ilar effect, though it also had to alter the Exceptions table to preserve
verifiability.

A more interesting example is PublicEnemy.java. Given a target direc-
tory, this Java application searches it and all of its subdirectories for Java
class files. Once a class file is located, PublicEnemy alters the contents of
its access flags for the class, its fields, and its methods. The results are
the following:

The class becomes public.
Anyfinal fields and methods become non-final; any non-public
fields and methods becomepublic; and all public fields and meth-
ods remain so.

Attacked classes pass the Verifier and continue to run just as before, and
their sizes do not change. But they are then open to the maximum amount
of inspection and abuse by other Java classes. The system whose
netscape.applet.* classes fell prey to PublicEnemy would allow
Java applets to rampage through it. Thus PublicEnemy would be a fear-
some payload for a Java Trojan horse or virus to carry. It also makes an
important point about the dangers of trust for Java - Inadvertently trusting
a single hostile class a single time can lead to a swift, silent, and thorough
compromise of all Java-related security.

In the examples considered so far, Java class files have altered other class
files to achieve dubious ends. But a class file is certainly capable of inducing
mutations in itself, while remaining acceptable to the Verifier, and taking



WHEN JAVA WAS ONE: THREATS FROM HOSTILE BYTE CODE

actions based upon its history. A very simple application, Mutator.java, was
created to illustrate this capability. By altering a single byte of its own class
file each time it runs, Mutator keeps track of the number of times it has been
run and deletes itself, together with its source code, if present, on the sixth
attempted run. This example shows that even simple class files are capable
of adaptation and learning. The power of the Java language, and the greater
power of byte code, when combined with the transparency of the class file
format, make it feasible to create armies of intelligent class files that can
attack, defend, and maneuver in file systems by exploiting the Java Virtual
Machine.

The main point of these examples is not the obvious one, that Java class
files are easy prey for Trojan horses (destructive programs that appear to
be benign) and viruses (programs that reproduce and may or may not be
overtly destructive). Rather the points here are that Java class files are easy
to alter, that deviant class files are simple to manufacture, and that the power
of byte code extends well beyond that of the Java language. These points
are perhaps better illustrated by the application HoseMocha.java.

It has been observed that the Java class file format makes it a simple mat-
ter to recover valid source code using decompilers such as Mocha. As was
the case with the altered Beginner.class, deviant byte code resists decom-
pilation because it corresponds to no Java source code. This suggests that
class files could be protected from decompilation by making them deviant,
while preserving their functioning. The Java application HoseMocha.java
does precisely that, and it protects the class files of both applications and
applets equally well. Its operation is simple. It sifts through a given class
file until it arrives at the methods table. Once there, it inspects each
method’s attributes and looks for the method’s Code attribute. Af-
ter finding that, it increases the attribute length by 1, increases the
code length by 1, and inserts a dead opcode (for the pop instruction
in this case) at the end of the code array. It so happens that the incon-
sistent Verifier ignores this frivolous pop, so that the altered class files are
successfully verified and continue to function as designed. But the Mocha
decompiler, trying desperately to do the impossible, gets a segmentation
violation and dies when fed such deviant class files. If a future release of
Mocha were to start defending itself, new strategies could be devised to
protect class files from decompilation into source code. More sophisticated
tools could rewrite most byte code in non-standard ways and make class
files much more resistant to decompilation. It should now be clear that the
power of byte code greatly exceeds the power of Java source code.



WHEN JAVA WAS ONE: THREATS FROM HOSTILE BYTE CODE

5. MORE VIRULENT THREATS

From the preceding examples it is but a short step to the realm of the
virus. The threats posed by PC viruses are well understood, and ample
tools for their prevention, detection, and elimination are readily available.
There is a widely held myth, however, that UNIX systems are somehow
immune to viruses [Rada]. Of course some of Frederick Cohen’s pioneering
work on viruses was carried out on UNIX systems [Coh1, Coh2], and in the
late 1980’s Tom Duff and M. Douglas McIlroy developed several strains of
UNIX viruses at AT&T Bell Laboratories [Duf1, Duf2, McIl]. Java’s “write
once, run anywhere” capability offers the possibility of universal computer
viruses, which would lay to rest the myth by putting UNIX systems on a par
with DOS machines as havens for viruses. The examples of the preceding
section illustrate numerous skills useful to Java Platform Viruses, and class
files can offer fine mobile homes for them.

As proof-of-concept the author created several applications, which, when
inadvertently trusted and run, infect the unfortunate user’s system with mal-
ware or viruses:

Homer.java generates and executes homer.sh, a Bourne shell script
virus which would work on any UNIX platform by appending itself
to all Bourne shell scripts in a user’s home directory. It would be just
as easy to write a Java Trojan horse to detect the user’s platform and
infect it with an appropriate virus.
Hijacker.java is a Java Trojan that subverts Sun’s javac by adding a
hostile main class to the user’s CLASSPATH ahead of classes.zip.
In this case the subverted compiler simply announces its presence and
appends the string “Hijacked!” to class files that it produces, but it
could just as easily infect them with a Java Platform virus.
CopyCat.java attacks Java source code in a user’s home directory by
inserting the necessary code to make it viral. When compiled and run,
infected applications do likewise.
VAppMaker.java also attacks Java source code. It compiles the in-
fected source code and restores it to its original state, leaving only
infected class files, which do likewise. It also makes applets able to
run as applications, increasing the odds of further infection.

Of course these last two Java viruses are necessarily slow in their activities
and obvious in their effects; they stand no chance of being successful in the
wild and simply serve to illustrate the possibilities.

A more realistic example is provided by ClassHacker.java. This appli-
cation attacks Java class files directly, inserting the necessary byte code
to make them viral and making all of the adjustments needed to insure
that infected class files continue to pass the Verifier and run as before.



WHEN JAVA WAS ONE: THREATS FROM HOSTILE BYTE CODE

ClassHacker uses the same techniques for manipulating class files as the
examples of the preceding section, and the amount of code that it inserts is
about 2K bytes. Though it acts swiftly, the viral code makes no effort to
conceal or defend itself, and so it is unlikely to be very successful.

While the examples of Java Platform viruses considered here are not par-
ticularly threatening, more virulent threats are sure to arise in the future.
The evil that hostile byte code can perpetrate is limited only by the power
of the Java Virtual Machine and human ingenuity. At the very least, the
JVM will require integrity maintenance mechanisms to defend its crucial
classes from tampering, and users will need to be enabled to better defend
the files in their CLASSPATHs. Additional levels of trusted code in the Java
programming environment will complicate matters and may create more
problems than they solve. Key management is sure to come under attack by
hostile byte code, and the stakes will be higher. One misapplication of trust
can open a back door to attack applets and lead to a total breakdown of all
Java-related security.

What does this tell us about Java Security? As long as there remains
such a vast gulf between the Java programming language and the byte code
accepted by the Java Verifier, very little can be asserted with any certainty
about Java Security. Given the complete independence of the Java language
and the class file format, bridging this gulf is going to be a very difficult
task. The power of byte code beyond the Java language and the ease with
which class files can be attacked may become a source of recurring prob-
lems for Java Security. This entails that Java applications and applets should
be accorded little if any trust until the problems are better understood and
solutions are found. Thus it seems extremely likely that the problems will
continue as Java grows up and moves from its childhood sandbox to a much
harsher adulthood.



WHEN JAVA WAS ONE: THREATS FROM HOSTILE BYTE CODE

6. REFERENCES

[Coh1 ] Frederick B Cohen. Computer Viruses - Theory and Experiments.
Computers & Security, Volume 6, Number 1, pp.22-35. Elsevier Ad-
vanced Technology, Oxford, 1987.

[Coh2 ] Frederick B. Cohen. A Short Course on Computer Viruses, 2nd Edi-
tion. John Wiley & Sons, New York, 1994.

[Duf1 ] Tom Duff. Viral Attacks on UNIX Systems. Proceedings of the Winter
1989 USENIX Conference, pp.165-171. USENIX Association, Janu-
ary, 1989.

[Duf2 ] Tom Duff. Experience with Viruses on UNIX Systems. Computing
Systems, Volume 2, Number 2, pp.155-171. USENIX Association,
Spring, 1989.

[Gosl ] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci-
fication. Addison-Wesley, Reading, MA, 1996.

[LaD1 ] Mark D. LaDue. Pushing the Limits of Java Security. Tricks of the
Java Programming Gurus, Chapter 23. SAMS.net Publishing, Indi-
anapolis, 1996.
Available at http://www.math.gatech.edu/ mladue/HostileArticle.html.

[LaD2 ] Mark D. LaDue. Java Security: Whose Business is it? The Online
Business Consultant. May, 1996.
Available at http://www.math.gatech.edu/ mladue/OBCArticle/Article.html.

[LaD3 ] Mark D. LaDue. Java Insecurity. Computer Security Journal. Com-
puter Security Institute, San Francisco. Spring 1997.
Available at http://www.math.gatech.edu/ mladue/Java insecurity.html.

[LaD4 ] Mark D. LaDue. Java Security: From Eggs to Applets.
Available at http://www.math.gatech.edu/ mladue/eggs to applets.html.

[LaD5 ] Mark D. LaDue. Hostile Java Source Code.
Available at http://www.math.gatech.edu/ mladue/SourceCode.html.

[Lind ] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifi-
cation. Addison-Wesley, Reading, MA, 1997.

[McGF ] Gary McGraw and Edward Felten. Java Security: Hostile Applets,
Holes and Antidotes. John Wiley & Sons, New York, 1996.

[McIl ] M. Douglas McIlroy. Virology 101. Computing Systems, Volume 2,
Number 2, pp.173-181. USENIX Association, Spring, 1989.

[Rada ] Peter V. Radatti. The Plausibility of UNIX Virus Attacks. CyberSoft,
Incorporated. April, 1996.

[Thom ] Ken Thompson. Reflections on Trusting Trust. Communications of
the ACM, Volume 27, Number 8, pp.761-763. August, 1984.

SCHOOL OF MATHEMATICS, GEORGIA INSTITUE OF TECHNOLOGY, ATLANTA, GA
30332-0160

E-mail address: mladue@math.gatech.edu


