An Overview of Draft SP 800-157 Derived PIV Credentials and Draft NISTIR 7981 Mobile, PIV, and Authentication

Hildegard Ferraiolo
PIV Project Lead
NIST ITL - Computer Security Division
hildegard.ferraiolo@nist.gov

Federal Computer Security Program Managers’ Forum Meeting
Bethesda North Marriott Hotel and Conference Center
August 19th, 2014
Draft SP 800-157 – Derived PIV Credential for Mobile Devices

Scope:

– The Derived PIV Credential is an additional PIV Credential to satisfy HSPD-12’s ‘Common Identification‘ mandate
Draft SP 800-157: Addressing a Gap for Remote Authentication with Mobile

<table>
<thead>
<tr>
<th>PIV Assurance Level Required by Application/Resource</th>
<th>PACS</th>
<th>LACS Local Workstation Environment</th>
<th>LACS Remote/Network System Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LITTLE or NO confidence</td>
<td>VIS, CHUID</td>
<td>CHUID*</td>
<td></td>
</tr>
<tr>
<td>SOME confidence</td>
<td>PKI-CAK, SYM-CAK</td>
<td>PKI-CAK</td>
<td>PKI-CAK</td>
</tr>
<tr>
<td>HIGH confidence</td>
<td>BIO</td>
<td>BIO</td>
<td>PKI-Derived</td>
</tr>
<tr>
<td>VERY HIGH confidence</td>
<td>BIO-A, OCC-AUTH, PKI-AUTH</td>
<td>BIO-A, OCC-AUTH, PKI-AUTH</td>
<td>PKI-AUTH, PKI-Derived</td>
</tr>
</tbody>
</table>

Yellow font indicates the environments for the PIV Card Credentials and their authentication mechanisms.
Red indicates the environments where the new Derived PIV credential’s “PKI Derived” authentication mechanism for Mobile Devices applies.
Draft SP 800-157 – Derived PIV Credential for Mobile Devices

Motivation:

– PIV Cards have been geared towards traditional computing platforms (laptop, desktop)
– For newer computing devices (mobile devices), the use of the PIV Card for e-authentication is challenging and requires bulky add-on readers

Goal: To provide alternative approaches to PIV-enabled e-authentication with mobile device - without PIV Card and add-on readers.
Goal (continued):

- While leveraging the PIV Infrastructure for:
 - Interoperability: Take advantage of the same PKI infrastructure
 - Cost-savings: Leverage the trust and identity-proofing performed for 5 million issued PIV cards via SP 800-63 concept of credential derivation
Mobile devices and their capabilities vary by:

- Mobile device manufacturers, platforms, ports, Mobile Network Operators and have capabilities that are often different in focus (e.g., tablet vs smart phone).

- One technical approach is not sufficient to cover the various mobile devices deployed by USG.

- Draft SP 800-157 is flexible and offers a spectrum of approaches to electronic authentication on mobile devices.
Integrated Security Tokens for Mobile Devices:
- Mobile Device Software tokens (current)
- MicroSD tokens (current)
- USB security tokens (near term)
- UICC tokens (near term)
- Embedded Hardware (near term)

Benefits:
- Derived PIV Credential - leverages identity proofing and vetting processes of PIV cardholder
- It’s integrated -> better user experience

Considerations:
- Provisioning and management of mobile device specific credential
- Limited mobile OS and application support (MicroSD, USB, UICC)
Draft SP 800-157 – Derived PIV Credential for Mobile Devices

SP 800-157 defines a Derived PIV Credentials for the Security Tokens:

- Define the Derived PIV Credential (a PKI-based credential)
- Both LoA-3 (software) and LoA-4 (hardware) Derived PIV Credential are possible
- Key size and algorithm options are the same as for the PIV Authentication private key
- Defines Derived PIV Credential Lifecycles:

Draft SP 800-157 also includes:

- How to include an optional Digital Signature Key and the Encryption Key in the Derived PIV Credential’s security token (Appendix A)
Draft SP 800-157 – Derived PIV Credential for Mobile Devices – Lifecycle Processes

Derivation & Initial issuance:
- Derivation of Derived PIV Credential is based on proof of possession of the PIV card
- Issuance of a LoA-4 credential is in person, while issuance of an LoA-3 allows for remote issuance

Maintenance (rekey and re-issuance):
- Remote rekey to a LoA-3 Derived PIV Credential token
- Remote rekey to a LoA-4 Derived PIV Credential token when rekeying to the same token
- Derived PIV Credential is unaffected by loss, theft or damage to the Subscriber’s PIV Card.

Termination:
- The subscriber is no longer eligible for a PIV Card or is no longer in need of a Derived PIV Credentials
- Subscriber does not need a Derived PIV Credential anymore
- If token can be collected, then zeroize the private key or destroying the token. Otherwise, revoke the PIV Derived Authentication certificate.
Draft SP 800-157 – Derived PIV Credential for Mobile Devices

Appendix C -- Derived PIV Credentials in Relation to OMB Memoranda

With integrated tokens, authentication factors are not provided by a separate token

“Future guidance will be made available by OMB to provide an alternative to the remote authentication policy in M-06-16 and M-07-16.”

<table>
<thead>
<tr>
<th>Credential Type</th>
<th>Token Type</th>
<th>PIV Assurance Level</th>
<th>Comparable OMB E-Auth Level</th>
<th>Target Guidance:</th>
<th>Future Alternate OMB Guidance for Integrated Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIV Derived Authentication certificate</td>
<td>MicroSD Token</td>
<td>Very High</td>
<td>4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>USB Security Token</td>
<td>Very High</td>
<td>4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Software Token</td>
<td>High</td>
<td>3</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Embedded Hardware Token</td>
<td>Very High</td>
<td>4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>UICC Token</td>
<td>Very High</td>
<td>4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>PIV Card’s PIV Authentication certificate credential</td>
<td>PIV Card (via attached reader or NFC)</td>
<td>Very High</td>
<td>4</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Draft NIST IR 7981
Mobile, PIV, and Authentication

A Companion Document to Draft SP 800-157

- Analyzes different approaches to PIV-enable mobile devices
 - Includes the use of PIV Cards with mobile devices in addition to Derived PIV Credentials
- Points out benefits and considerations (pros/cons) for each approach
 - Example: UICC approach requires cooperation with MNO
- Approximates when these approach might become available
 - Categorized approaches in ‘current’ and ‘near term’ solutions
- Includes Recommendations
 - Hardware rooted solutions provide better security
 - Software solution are available now – NIST IR 7981 recommends complementing these by hardware-backed mechanism to protect the private key of the Derived PIV Credential when not in use (the hybrid solution)
 - In the longer-term, NIST IR recommends adoption of hardware-supported security mechanisms in mobile devices, such as the Roots of Trust (SP 800-164) to support stronger assurance of identity
What’s Next?

• Resolve public comments and produce final SP 800-157

• Draft SP 800-166 Derived PIV Credential Test Requirements for
 - Derived PIV Credential Data Model and Interface and
 - Portability: Removable security tokens ((USB, microSD, UICC) should be
 portable from one device to another.

• SP 800-79-2 Guidelines for the Accreditation of PIV Card Issuers and
 Derived PIV Credential Issuers (under development)
The Author Team (from A to Z)

Draft SP 800-157:
- Bill Burr (william.burr@nist.gov)
- David Cooper (david.cooper@nist.gov)
- Hildegard Ferraiolo (hildegard.ferraiolo@nist.gov)
- Salvatore Francomacaro (salfra@nist.gov)
- Sarbari Gupta (sarbari@electrosoft-inc.com)
- Jason Mohler (jmohler@electrosoft-inc.com)
- Andrew Regenscheid (andrew.regenscheid@nist.gov)

Draft NIST IR 7981:
- Bill Burr (william.burr@nist.gov)
- David Cooper (david.cooper@nist.gov)
- Hildegard Ferraiolo (hildegard.ferraiolo@nist.gov)
- Salvatore Francomacaro (salfra@nist.gov)
- Andrew Regenscheid (andrew.regenscheid@nist.gov)
Thank you!

Reviewers:
- Mobile Technology Tiger Team (MTTT)
- FICAM Logical Access Working Group (LAWG)
- Federal Chief Information Officer (CIO) Council
- Office of Management and Budget (OMB)

Commenters:
Questions?

Hildegard Ferraiolo
PIV Project Lead
NIST ITL Computer Security Division
hildegard.ferraiolo@nist.gov