Security Technology Group – Cryptographic Standards, Authentication and Infrastructures

Bill Burr
william.burr@nist.gov
Dec. 16, 2003
Security Technology Group

• Cryptographic Standards Team
 – Elaine Barker leader
 – 5 FTE (one addition last FY)

• Authentication and Infrastructure Team
 – Tim Polk leader
 – 6.5 FTE (.5 addition last FY)

• Biometrics Standards
 – Fernando Podio leader
 – 1 FTE at the moment
NIST Cryptographic Standards

• First Federal Information Processing Standard (FIPS) in Cryptography in 1977
 – FIPS 46, The Data Encryption Standard (DES)

• Mandatory for Federal use of cryptography to protect unclassified, sensitive data
 – FIPS 140-2

• Standardize a set of strong cryptographic tools
 – Can’t test and approve every good algorithm/method
 • Too expensive to study each one
 – Too many would confound interoperability
Cryptographic Standards

Security Requirements for Cryptographic Modules
FIPS 140-2

Symmetric Key
* DES (FIPS 46-3)
* 3DES (FIPS 46-3, X9.52)
* AES (FIPS 197)
* Modes of operation
 - SP 800-38A
 - SP 800-38B, C (OMAC, CCM)
* HMAC (FIPS 198)

Public Key
* Dig. Sig. Std. (FIPS 186-2, FIPS 186-3)
 - DSA (X9.30) – bigger keys
 - RSA (X9.31) – PKCS1 pad
 - ECDSA (X9.62)
* Key Establishment Schemes
 - Diffie-Hellman - X9.42
 - RSA - X9.44
 - Elliptic Curves -X9.63
* Key Management Guideline
 - General Guidance
 - Key Management Organization
 - Application-Specific Guidance

Secure Hash
* SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 (FIPS 180-2)
Toolkit Advantages

- FIPS 140-2 product testing
 - CMVP Laboratory validation testing
 - Known answer testing for many of the tools
- Confidence in the security of the tools
 - Carefully evaluated and monitored
- Interoperability and acceptance
 - Tools very widely implemented and used
 - Seen as the safe choice
- Use by Federal agencies often required
Sources of Standards & Recommendations

- Public submissions with NIST selection
 - DES, AES, new crypto modes
- Standards Bodies
 - ANSI-X9
 - TDES, ECDSA, ECDH and ECMQV, FFDH and FFMQV, RSA variants
 - IETF
 - HMAC
 - perhaps eventually PKIX, TLS, S/MIME, IKE….
- NSA
 - DSA, SHAxxx, proposed AES Key Wrap
Crypto Standards Participation

• X9F1 has been main venue for NIST participation
 – Financial services industry
 – X9F1 standards used in FIPS
 • X9.52 (TDES), X9.62 (ECDSA), X9.31 (rDSA)
 – NIST did much of the work for several of these

• Other important cryptographic standards venues
 – ANSI INCITS T4 (ISO/IEC JCT1 SC27)
 – IEEE P1363 & IEEE 802.11 tgi (CCM)
 – IETF (HMAC for example comes from RFC 2104)

• NIST can’t afford to play everywhere
 – Which is the best place to participate?
 • Broadest & best participation & exposure
Modes of Operation
Recommendation

• SP 800-38A 2001 ED, Recommendation for Block Cipher Modes of Operation, 2001 (encryption modes)
 – update of FIPS 81
 – 5 modes
 • ECB – Electronic Code Book
 • CBC – Cipher Block Chaining
 • CFB – Cipher Feedback
 • OFB – Output Feedback
 • **Counter**

• Generalized for any block cipher
New Modes on Our Plate

• **Block Cipher Message Authentication Code**
 – Originally proposed RMAC
 • Blocks extension attacks
 • Blocks “birthday” attacks
 – At expense of more tag bits
 – Mainly a problem for TDES
 • Controversy
 – TDES Related key attack
 – Answer: OMAC
 • One key variation on XCBC MAC

• **Counter with CBC-MAC mode**
 – To be mandatory to implement in 802.11

• **AES Key Wrap**
 – TDES too?
802.11 WEP Debacle & CCM

• 802.11 wireless Ethernet is huge success, but
 – Wired Equivalency Protocol (WEP) was a disaster
 • Vulnerable to almost every attack known to cryptologists
 – Keystream is more or less guaranteed to repeat
 – “Side-channel” attack exploits non-cryptographic checksum
 – Weak RC4 encryption – can recover the key
 – Encryption but no authentication
 • Can do only so much to patch this
• This is fundamental infrastructure
 – it’s worth getting it right
• 802.11i and 802.1x are addressing the problem
 – NIST plans to adopt the CCM mode
Data Transfer

CCM Mode Overview

- Use CBC-MAC to compute a MIC (Message Integrity Code) on the plaintext header, length of the plaintext header, and the payload
- Use CTR mode to encrypt the payload
 - Counter values 1, 2, 3, …
- Use CTR mode to encrypt the MIC
 - Counter value 0
Key Management

• Most current drafts posted for comment
 – Key Establishment Schemes: NIST SP 800-56 Basic public key methods
 • RSA is still the missing piece
 – Guidance: NIST SP 800-57
 • General guidance
 • Best practice for key management organization
 • Application specific guidance (not posted yet)

• Proposed 80-bit crypto end of use date: 2010
 – Stop using 1024-bit RSA/DSA or 160-bit EC by 2010
Random Number Generation

• ANSI X9.82: Consists of three parts
 – Part 1: Overview and Basic Principles
 – Part 2: Non-deterministic Random Bit Generators
 – Part 3: Deterministic Random Bit Generators
• Workshop being planned for Summer 2004
• Draft to be made available prior to workshop
Comparable Strengths

<table>
<thead>
<tr>
<th></th>
<th>Sym. Key</th>
<th>Hash</th>
<th>MAC</th>
<th>RSA/DSA</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size in bits</td>
<td>56</td>
<td>160</td>
<td>64</td>
<td>512</td>
<td>160</td>
</tr>
<tr>
<td>Sym. Key</td>
<td>80</td>
<td>224</td>
<td>160</td>
<td>1k</td>
<td>224</td>
</tr>
<tr>
<td>Sym. Key</td>
<td>112</td>
<td>256</td>
<td></td>
<td>2k</td>
<td>256</td>
</tr>
<tr>
<td>Sym. Key</td>
<td>128</td>
<td>384</td>
<td></td>
<td>3k</td>
<td>384</td>
</tr>
<tr>
<td>Sym. Key</td>
<td>192</td>
<td></td>
<td></td>
<td>7.5k</td>
<td>512</td>
</tr>
<tr>
<td>Sym. Key</td>
<td>256</td>
<td></td>
<td></td>
<td>15k</td>
<td>512</td>
</tr>
</tbody>
</table>

Sym. Key: Symmetric key encryption algorithms
MAC: Message Authentication code
RSA/DSA: Factoring or discrete log based public key algorithms using FF arithmetic
EC: Elliptic Curve discrete log based public key algorithms
White background: currently approved FIPS
Yellow background: under development
Black background: not secure now
NIST Crypto Standards Status

<table>
<thead>
<tr>
<th>Sym. Key</th>
<th>56</th>
<th>80</th>
<th>112</th>
<th>128</th>
<th>192</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>46-3</td>
<td>185</td>
<td>46-3</td>
<td>FIPS 197 (AES)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modes</td>
<td>81</td>
<td></td>
<td></td>
<td>SP 800-38A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hash</td>
<td>180-1</td>
<td>180-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC</td>
<td>FIPS 198 (HMAC)/SP 800-38B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA, DSA, EC-DSA</td>
<td>186-2</td>
<td>186-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH/RSA</td>
<td></td>
<td></td>
<td></td>
<td>Key Management FIPS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC-DH</td>
<td></td>
<td></td>
<td></td>
<td>Scheme and Guidance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colors:
- White: FIPS approved
- Red: working draft phase
- Black: no longer secure
- Yellow: draft in progress
- Gray: initial recommendation published, more to come
Authentication & Infrastructure Team: Scope of Current Efforts

- Three overlapping technology areas:
 - Authentication Technologies
 - Cryptographic Infrastructures
 - Crypto-enabled Applications

- Four General Activities
 - Research
 - Standardization & Guidance
 - Testing (Interoperability, Conformance, & Assurance)
 - Deployment
Authentication Technologies, I

- **Research**
 - Knowledge-based Authentication
 - Strength of Passwords

- **Standardization & Guidance**
 - E-Authentication Guidance establishes framework for selection of e-Auth mechanisms
 - Updating NIST’s password guidance
 - Subject Identification Method standard (with KISA)
Authentication Technologies, II

• Testing & Tools
 – Reference Implementation of the Subject Identification Method standard

• Deployment
 – SAML-based infrastructure for e-Authentication for Federal Government applications
Cryptographic Infrastructures

• Research Activities
 – 3rd Annual PKI R&D Workshop co-sponsored with Internet II

• Standards
 – PKI Standards are mature
 – IETF and ISO PKI standards activities are winding down
Cryptographic Infrastructures, II

• NIST leading PKI Testing Efforts
 – Interoperability testing for IETF PKI standards
 – PKI client conformance tests (Path Validation)
 – Protection Profiles for CAs and PKI clients

• Key Participant in FPKI Deployment Efforts
 – FPKI Policy Authority and Certificate Policy Working Group (Federal Bridge CA)
 – Shared Service Provider Working Group (managed PKI services for Government Smart Card)
 – Path Validation & Discovery Working Group
FPKI Architecture

Legend:
SSP = Qualified Shared Service Providers
Federal Identity Credentialing Committee (FICC)

- Common physical & logical credentials for Physical & logical access
 - Federal employees & associates
- Combines Federal PKI Steering Committee, HR and Physical Security
- NIST provides technical support
 - Smart card/badge, biometrics & certificate
 - NIST lead in Certificate Policy WG
- Website: http://www.cio.gov/ficc
Crypto-Enabled Applications

• Standards & Guidance
 – High Level API for Cryptographic Services
 – S/MIME Functional Profile
 – SSL/TLS Selection and Implementation Guidance

• Testing Tools and Services
 – Reference Implementation for High Level API
 – S/MIME Interoperability and Conformance Testing

• Assisting Agencies in Application Deployment
 – FDIC, Army Corps of Engineers, Treasury/Financial Management System
E-Authentication Tech Guidance

• Will Be NIST Recommendation SP800-63
• Puts technical flesh on OMB generated e-Authentication policy guidance
 – Federal Register announcement for comment in July; revised announcement pending
 – Four levels of assurance
 • Defined in terms of the possible risks and consequences of authentication error
Assurance Levels

• OMB guidance defines 4 assurance levels
 – Level 1 is lowest, Level 4 is highest

• Assurance level needed determined by consequences of authentication error
 – Inconvenience, distress & damage to reputation
 – Financial loss
 – Harm to agency programs or reputation
 – Civil or criminal violations
 – Personal safety
Technical Guidance Constraints

• Technology neutral
 – Required (if practical) by e-Sign, Paperwork Elimination and other laws
 – Difficult: many technologies, apples and oranges comparisons

• Practical with COTS technology
 – To serve public must take advantage of existing password based solutions and relationships

• Only for remote network authentication

• Only about identity authentication
 – not about attributes or authorization or access control
E-Auth Guidance Scope

- Remote Authentication over open networks
 - Does not address in-person authentication
- Consequence is that biometrics are only useful in identity proofing, because
 - Protocols for remote network authentication are based on secret tokens (typically passwords or keys), but;
 » Biometrics make bad secrets
E-Auth Guidance

- SP 800-63
 - ID Proofing
 - Tokens, credentials and assertions
 - Protocols
 - Required properties at each level
 - Password strength model
ID Proofing

• Level 1
 – Self assertion, minimal records

• Level 2
 – More or less instant gratification possible
 • Some confirmation of address or phone number

• Level 3
 – Substantial checking, multiple sources

• Level 4
 – Level 3 plus in-person appearance
 • Record biometric, give token to a warm body
Token Type by Level

Allowed Token Types

<table>
<thead>
<tr>
<th>Allowed Token Types</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard crypto token</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Soft crypto token</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Zero knowledge password</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Strong password</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIN</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Required Protections by Level

<table>
<thead>
<tr>
<th>Protection Against</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eavesdropper</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Replay</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>On-line guessing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Verifier Impersonation</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Man-in-the-middle</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session Hijacking</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Auth. Protocol Type by Level

Allowed Protocol Types

<table>
<thead>
<tr>
<th>Protocol Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private key PoP</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Symmetric key PoP</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Zero knowledge password</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunneled password</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Challenge-reply password</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Required Protocol Properties by Level

<table>
<thead>
<tr>
<th>Required properties</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared secrets not revealed to 3(^{rd}) parties</td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Session Data transfer authenticated</td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
Biometric Standards - Plan for 2004

- Lead national (INCITS M1) & international (JTC 1 SC 37) Biometric standard developments
- Coordinate & participate in the development of an initial portfolio of interoperability & data interchange standards to:
 - ANSI approval status (through M1):
 - Data interchange formats: finger-image, pattern, & minutiae; iris image; face
 - Application profiles: transportation workers, border management
 - Draft international standard status (through SC 37):
 - BioAPI specification (ANSI INCITS 358-2002)
 - Common Biometric Exchange Formats Framework (CBEFF)
 - Data interchange formats (finger-image, pattern, minutiae; iris image & face)
Biometric Standards - Plan for 2004

- NISP role in the Biometric Consortium (BC) and the BioAPI Consortium
 - Co-chair the Biometric Consortium (with NSA)
 - Annual conference: Week of September 20th.
 - Member of the BioAPI Consortium Steering Committee

- Leverage of Consortia Standards developed by NIST/BC Biometric WG:
 - Complete development of the Common Biometric Exchange Framework Format (CBEFF):
 - Publish as NISTIR 6529-A & submit to INCITS
 - Publish biometric identifier protection and usage techniques as a NISTIR & submit to INCITS T4

- Identify biometric interoperability testing requirements
Questions
Links

• NIST Cryptographic Toolkit
• Federal PKI Steering Committee
 – http://www.cio.gov/fpkisc/
• E-gov project
 – http://www.whitehouse.gov/omb/egov/
• E-authentication
• Federal Identity Credentialing Committee
 – http://www.cio.gov/ficc/
Crypto FIPS

• FIPS 46-3, Data Encryption Standard -1999
 – refers to ANSI X9.52-1998 for triple DES
 – expect to kill 56-bit DES with 46-4 due in 94
• FIPS 81, DES Modes of Operation – 1980
• FIPS 113, Computer Data Authentication - 1985
 – DES MAC for financial apps.
• FIPS 117, Key Management using ANSI X9.17
 – being withdrawn
• FIPS 180-2, Secure Hash Standard – 2002
 – SHA1, SHA-256, SHA-384, SHA-512
Crypto FIPS

- FIPS 185, Escrowed Encryption Alg. – 1994
 - Skipjack
- FIPS 186-2, Digital Signature Standard
 - DSS, RSA: X9.31 & PKCS#1, ECDSA: X9.62
- FIPS 197, Advanced Encryption Standard (AES) 2001