
Foundations of Software Assurance

Paul E. Black
Software Quality Group
Software and Systems Division

16 June 2016

Outline

 Software Assurance Reference Dataset
(SARD)

 Bugs Framework (BF)

2

Software Assurance Reference Dataset
(SARD)

3

http://samate.nist.gov/SARD/

Software Assurance Reference Dataset
(SARD)

4

http://samate.nist.gov/SARD/

 Public repository for software
assurance test cases with known
vulnerabilities

 Over 140 000 cases in C,
C++, Java, PHP, C#, and Python

 Contributions from NSA/CAS,
IARPA, Fortify, TELECOM Nancy,
Defence R&D Canada, Klocwork,
MIT Lincoln Laboratory, Praxis,
Toyota, Secure Software, etc.

What is Static Analysis?

Java,
C,

C++,
…

binary

5

Weaknesses
&

Vulnerabilities

What is Static Analysis?

Java,
C,

C++,
…

binary

Static
Analyzer

 Examine source code or binary for weaknesses,
adherence to guidelines, etc.

6

Weaknesses
&

Vulnerabilities
SARD

Static
Analyzer

7

Known
Weaknesses

&
Vulnerabilities

programs with
known bugs

How to Test Static Analyzers?

?=

Characteristics of Test Cases

8

Production
Code

SARDprograms with
known bugs

Characteristics of Test Cases

Known Bugs 9

Production
Code

SARDprograms with
known bugs

Characteristics of Test Cases

Known Bugs

Statistically
Significant

Perfect
Test
Suite

10

Production
Code

SARDprograms with
known bugs

 Approximations
– Collect millions of tool

warnings for open
source software from
SATE.

– Manually analyze
hundreds of reported
bugs (CVEs) to
establish ground truth.

– Publish Juliet test
suite: hundreds of
thousands of synthetic
test cases with known
bugs.

Known Bugs

Production
Code

CVE

SATE

Juliet

Characteristics of Test Cases

11

Statistically
Significant

12

 Contributions also from Kratkiewicz, MIT
Lincoln Laboratory, Praxis, etc.

 NSA Juliet 1.2 - over 86 000 small,
synthetic test cases in C, C++, and Java,
covering 150 bug classes

 IARPA STONESOUP Phase 3 - 15 000
cases based on 12 web apps with injected
bugs from 25 classes

 1276 test cases from Toyota
 Test cases from Static Analysis Tool

Exposition (SATE)
 2000 PHP cases developed at TELECOM

Nancy

SARD Content

Other SARD Content
 Zitser, Lippmann, & Leek MIT cases

– 28 slices from BIND, Sendmail, WU-FTP, etc.
 Fortify benchmark 112 C and Java cases
 Klocwork benchmark 40 C cases
 25 cases from Defence R&D Canada
 Robert Seacord, “Secure Coding in C and C++” - 69 cases
 Comprehensive, Lightweight Application Security Process

(CLASP) - 25 cases
 329 cases from our static analyzer suite

Outline

 Software Assurance Reference Dataset
(SARD)

 Bugs Framework (BF)

14

http://samate.nist.gov/BF/

The Bugs Framework (BF) is
a precise descriptive language for bugs.

15

Precise Medical Language
• Medical professionals have terms to precisely name

muscles, bones, organs, conditions, diseases, etc.

16

Current Bug Descriptions Have Problems

 Common Weakness Enumeration (CWE)
– Definitions are imprecise and inconsistent.
– Coarse grained: bundling attributes, attacks, etc.
– Uneven coverage: some combinations not given all.

 Software Fault Patterns (SFP)
– Does not include upstream causes or consequences.
– Based solely on CWEs.

 Semantic Templates
– Does not distinguish many types of fault, weakness,

location, or consequence.
– Only cover two classes.

17

What is the Bugs Framework?

 It is a set of classes of bugs.
 Each bug class has

– Causes
– Attributes of a fault
– Consequences

 Causes and consequences are directed
graphs.

 BF uses precise terminology.

18

Bugs Framework Classes

 Injection (INJ), e.g.
– SQL injection
– OS injection

 Control of Interaction Frequency (CIF), e.g.
– Limit number of login attempts
– Only one vote per voter

 Information Exposure (IEX), e.g.
– Password leak

 Buffer Overflow (BOF)

19

Buffer Overflow: Attributes

21

Buffer Overflow: Attributes
• Access:

• Read, Write.

22

Buffer Overflow: Attributes

23

• Access:
• Read, Write.

• Boundary:
• Below (before, under, or lower), Above (after, over, or upper).

Buffer Overflow: Attributes

24

• Access:
• Read, Write.

• Boundary:
• Below (before, under, or lower), Above (after, over, or upper).

• Location:
• Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

return to stringToId()

return to getInvocation()

return to getOneElement()

Buffer Overflow: Attributes

25

• Access:
• Read, Write.

• Boundary:
• Below (before, under, or lower), Above (after, over, or upper).

• Location:
• Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

• Magnitude (how far outside):
• Small (just barely outside), Far (e.g. 4000).

Buffer Overflow: Attributes

26

N a t i o n a l I n s t i t u t e o f

• Access:
• Read, Write.

• Boundary:
• Below (before, under, or lower), Above (after, over, or upper).

• Location:
• Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

• Magnitude (how far outside):
• Small (just barely outside), Far (e.g. 4000).

• Data Size (how much is outside):
• Little, Huge.

Buffer Overflow: Attributes
• Access:

• Read, Write.
• Boundary:

• Below (before, under, or lower), Above (after, over, or upper).
• Location:

• Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).
• Magnitude (how far outside):

• Small (just barely outside), Far (e.g. 4000).
• Data Size (how much is outside):

• Little, Huge.
• Reach (one-by-one or arbitrary):

• Continuous, Discrete.

27

B eo

Buffer Overflow: Causes

28

Access:
Read
Write

Boundary:
Below
Above

Location:
Heap
Stack

Magnitude:
Small
Far

Data Size:
Little
Huge

Reach:
Continuous
Discrete

No NULL
Termination

Wrong Index / Pointer
Out of Range

Data Exceeds Array

Array Too Small

Too Much Data

Incorrect
Conversion

Input Not
Checked Properly

Incorrect Calculation

Off By One

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

Causes Attributes

Buffer Overflow: Consequences

29

Access:
Read
Write

Boundary:
Below
Above

Location:
Heap
Stack

Magnitude:
Small
Far

Data Size:
Little
Huge

Reach:
Continuous
Discrete

Resource Exhaustion

Information Exposure

Information Change/Loss

Arbitrary Code Execution

System Crash

Program Crash

Denial Of
Service

ConsequencesAttributes

Incorrect Results

Altered Control Flow

What is BF Good For?
 Precisely explain why techniques work in some cases and

not others.
 More clearly describe vulnerabilities (e.g. Heartbleed,

Shellshock, and Ghost).
 Help programmers write better code, because they

understand weaknesses more clearly.
 Accurately state the classes of bugs that software

assurance tools cover (and do not cover).

31

Example 1: BF Explains Techniques
 Canaries

– A canary is extra memory above and below an
array with unusual values, e.g., 0xDEADBEEF

– Useful with attributes
• Write Access
• Small Magnitude

 Address Space Layout Randomization
(ASLR)
– Allocate arrays randomly about memory
– Useful with attributes

• Heap Location
• Stack Location - limited

32

33

from
http://xkcd.com/1354/

Example 2: Heartbleed

Heartbleed buffer overflow is:
– caused by Data Exceeds Array, specifically Too Much Data
– because of Input not Checked Properly
– where there was a Read that was After the end, Far outside
– in a Continuous read of a Huge number of bytes
– from an array in the Heap
– that may be exploited for Information Exposure
– when enabled by Sensitive Information Uncleared Before

Release (CWE-226).

“The (1) TLS and (2) DTLS implementations … do not properly
handle Heartbeat Extension packets, which allows remote
attackers to obtain sensitive information from process memory
via crafted packets that trigger a buffer over-read, as
demonstrated by reading private keys, …” (CVE-2014-0160)

h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

34

Example 2: Heartbleed

Information
Exposure

35

Sensitive
Info Uncleared Before

Release

No NULL
Termination

Wrong Index / Pointer
Out of Range

Data Exceeds Array

Array Too Small

Too Much Data

Resource Exhaustion

Incorrect
Conversion

Information Change/Loss

Arbitrary Code Execution

System Crash

Program Crash

Denial Of
Service

Input Not
Checked Properly

Incorrect Calculation

Off By One

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

Incorrect Results

Altered Control Flow

Access:
Read
Write

Boundary:
Below
Above

Location:
Heap
Stack

Magnitude:
Small
Far

Data Size:
Little
Huge

Reach:
Continuous
Discrete

Example 2: Heartbleed h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

