Foundations of Software Assurance

Paul E. Black

Software Quality Group
Software and Systems Division

16 June 2016

N lgNational Institute of Standards and Technology ¢ U.S. Department of Commerce

Outline

e Software Assurance Reference Dataset
(SARD)

e Bugs Framework (BF)

Software Assurance Reference Dataset
(SARD)

Software Assurance Reference Dataset

NIST

Motional Institute of
Stondords and Technalogy

SRD Home = View /Download gaq

(SARD)

d More Downloads Submit Test Suites

Extended Search U Source Code Search |

Number (Test case ID): |

Description contains : |

Contributor/Authar : |

Hadkeand Ry
Language : | apy
Type of Artifact: | apqy

Status

Weakness : |ﬂmr...

Code complexity : |Anv...

Date: @ any O Before O After

(Format: M/di)
use the calendar (nexticon).

O

Weakness Code Complexity

—FANy...
"f—CWE—atBE: Insufficient Encapsulation
-~ CWE-388: Error Handling
+1- CWE-389: Error Conditions, Returr
T—CWE—ES#: Security Features
T—CWE-EQT: Failure to Fulfill APl Contrac
T—CWE-m 9: Data Handling
T—CWE-361 :Time and State
—~CWE-398: Indicator of Poor Code Qua
I—CWE-dTU: Use of Externally-Contre
’f—CWE-465: PaointerIssues
+-CWE-411: Resource Locking Prob
CWE-401: Failure to Release Mem
CWE-415: Double Free
CWE-416: Use After Free
+-CWE-417: Channel and Path Error

Public repository for software
assurance test cases with known
vulnerabilities

Over 140 000 cases in C,
C++, Java, PHP, C#, and Python

Contributions from NSA/CAS,
IARPA, Fortify, TELECOM Nancy,
Defence R&D Canada, Klocwork,
MIT Lincoln Laboratory, Praxis,
Toyota, Secure Software, etc.

What is Static Analysis?

What is Static Analysis?

“"a".':..,‘.' |4|
Ja(\:/a, II l E . Weaknesses
it Static &
’ Vulnerabilities
Analyzer -
binary &

e Examine source code or binary for weaknesses,
adherence to guidelines, etc.

How to Test Static Analyzers?

o

Gk

programs with
known bugs

b,

N

>

Static
Analyzer

Weaknesses
&
Vulnerabilities

=

Known
Weaknesses
&
Vulnerabilities

Characteristics of Test Cases

Production
Code

|
| o

programs with
known bugs ||

» M

Characteristics of Test Cases

Production
|| Code
£
programs with
known bugs ||

Known Bugs

Characteristics of Test Cases

| o

programs with
known bugs

Production Statistically
Code Significant

ST
S

Perfect
Test

Suite

Known Bugs "

Characteristics of Test Cases

e Approximations Production Statistically

— Collect millions of tool Code Significant
warnings for open

source software from
SATE.

-~ Manually analyz
hundreds of reported
establish ground truth -

— Publish Juliet test
suite: hundreds of
thousands of synthetic
test cases with known
bugs

Known Bugs

11

SARD Content

Contributions also from Kratkiewicz, MIT
Lincoln Laboratory, Praxis, etc.

NSA Juliet 1.2 - over 86 000 small,
synthetic test cases in C, C++, and Java,
covering 150 bug classes

IARPA STONESOUP Phase 3 - 15 000
cases based on 12 web apps with injected
bugs from 25 classes

1276 test cases from Toyota

Test cases from Static Analysis Tool
Exposition (SATE)

2000 PHP cases developed at TELECOM

TELECOM

LINCOLN LABORATORY

]
ld MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Ingénieurs du numeérique * Inspiring your digital future

12

Other SARD Content

e Zitser, Lippmann, & Leek MIT cases

— 28 slices from BIND, Sendmail, WU-FTP, etc.

Fortify benchmark 112 C and Java cases

Klocwork benchmark 40 C cases

25 cases from Defence R&D Canada

Robert Seacord, “Secure Coding in C and C++” - 69 cases

Comprehensive, Lightweight Application Security Process
(CLASP) - 25 cases

e 329 cases from our static analyzer suite

Outline

e Bugs Framework (BF)

14

he Bugs Framework (BF) Is
a precise descriptive language for bugs.

15

Precise Medical Language

« Medical professionals have terms to precisely name
muscles, bones, organs, conditions, diseases, etc.

Flgure 2: Computed tomography of a comatose patlent with a
left temporal epldural haematoma, right parenchymal temporal
lobe haematoma, and a right convexity subdural haematoma
before and after cranlotomy and evacuation of hagmatomas

16

Current Bug Descriptions Have Problems

e Common Weakness Enumeration (CWE)
— Definitions are imprecise and inconsistent.
— Coarse grained: bundling attributes, attacks, etc.
-~ Uneven coverage: some combinations not given all.

e Software Fault Patterns (SFP)

— Does not include upstream causes or conseguences.
— Based solely on CWEs.

e Semantic Templates

— Does not distinguish many types of fault, weakness,
location, or consequence.

— Only cover two classes.

17

What is the Bugs Framework?

e It Is a set of classes of bugs.

e Each bug class has
-~ Causes
— Attributes of a fault
- Consequences

e Causes and consequences are directed
graphs.

e BF uses precise terminology.

18

Bugs Framework Classes

e Injection (INJ), e.g.
— SQL injection
— OS injection
e Control of Interaction Frequency (CIF), e.g.
— Limit number of login attempts
— Only one vote per voter
e Information Exposure (IEX), e.g.
- Password leak

e Buffer Overflow (BOF)

19

Buffer Overflow: Attributes

21

Buffer Overflow: Attributes

e Access:

« Read, Write.

\ /

22

Buffer Overflow: Attributes

e Access:

« Read, Write.

« Boundary:

« Below (before, under, or lower), Above (after, over, or upper).

23

Buffer Overflow: Attributes

» Access:

Read, Write.
« Boundary:

Below (before, under, or lower), Above (after, over, or upper).
 Location:

Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

[HEERERNRERENEN

return to stringTold()

return to getinvocation()

return to getOneElement()

24

Buffer Overflow: Attributes

Access:

Read, Write.
Boundary:

Below (before, under, or lower), Above (after, over, or upper).
Location:

Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).
Magnitude (how far outside):

Small (just barely outside), Far (e.g. 4000).

—
B—

25

Buffer Overflow: Attributes

Access:

 Read, Write.

Boundary:

« Below (before, under, or lower), Above (after, over, or upper).
Location:

 Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).
Magnitude (how far outside):

 Small (just barely outside), Far (e.g. 4000).

Data Size (how much is outside):

» Little, Huge.

26

Buffer Overflow: Attributes

Access:

 Read, Write.

Boundary:

« Below (before, under, or lower), Above (after, over, or upper).
Location:

 Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).
Magnitude (how far outside):

« Small (just barely outside), Far (e.g. 4000).

Data Size (how much is outside):

» Little, Huge.

Reach (one-by-one or arbitrary):

e Continuous, Discrete.

B o

27

Buffer Overflow: Causes

Incorrect Calculation

Missing Clnteg_er
Eactor oercion
Integer Overflow
Wrap-around

Incorrect
Argument

Integer
Underflow

Off By One

Causes

Input Not
Checked Properly

Incorrect
Conversion

Data Exceeds Array

Array Too Small

Too Much Data

No NULL
Termination

Wrong Index / Pointer

Out of Range

Attributes

Access:
v'Read
v'Write

Boundary:

v'Below
v'Above

Location:
v'Heap
v Stack

Magnitude:
v'Small
v'Far

Data Size:

v'Little
v'Huge

Reach:
v'Continuous
v'Discrete

28

Buffer Overflow: Consequences

Attributes

Consequences

Access:
v'Read
v'Write

Boundary:

v'Below
v Above

Location:
v'Heap
v'Stack

Magnitude:
v'Small
v'Far

Data Size:

v'Little
v'Huge

Reach:

v’ Continuous
v'Discrete

Information Exposure
Information Change/L0ss
Altered Control Flow

Incorrect Results
Program Crash

./ Denial Of
7N Service

Resource Exhaustion
Arbitrary Code Execution

29

What i1s BF Good For?

e Precisely explain why techniques work in some cases and
not others.

e More clearly describe vulnerabilities (e.g. Heartbleed,
Shellshock, and Ghost).

e Help programmers write better code, because they
understand weaknesses more clearly.

e Accurately state the classes of bugs that software
assurance tools cover (and do not cover).

31

Example 1: BF Explains Techniques

e Canaries

— A canary is extra memory above and below an
array with unusual values, e.g., OXxDEADBEEF

— Useful with attributes
« Write Access
- Small Magnitude

e Address Space Layout Randomization
(ASLR)

— Allocate arrays randomly about memory

— Useful with attributes
- Heap Location

« Stack Location - limited
32

Example 2: Heartbleed

SERVER, ARE
IF 50, REPI.Y "BIRD" (r-l LEHER&}

J

HMmM. .. these 4 letters: BIRD.

I%ﬁﬁu%mw er Meg wants these 500 letters: HAT.

/

from
http://xkcd.com/1354/
33

requesta the "
ctl.ms pmje (anmr_lsr_rator
server’'s master key r.o 11]B
\eants t:ocham;c W)unt p&-&m rd to

|]IIIImIIIIl]IﬁI]IITF I\O

Example 2: Heartbleed

Heartbleed buffer overflow is:

caused by Data Exceeds Array, specifically Too Much Data

because of Input not Checked Properly

where there was a Read that was After the end, Far outside

In a Continuous read of a Huge number of bytes

from an array in the Heap

— that may be exploited for Information Exposure

— when enabled by Sensitive Information Uncleared Before
Release (CWE-226).

“The (1) TLS and (2) DTLS implementations ... do not properly
handle Heartbeat Extension packets, which allows remote
attackers to obtain sensitive information from process memory
via crafted packets that trigger a buffer over-read, as
demonstrated by reading private keys, ...” (CVE-2014-0160)

34

Example 2: Heartbleed

Sensitive

Info Uncleared Before
Release \
Information
Exposure
Input Not

Checked Properly

Data Exceeds Array Access:
v'Read

Boundary:
Too Much Data

v'Above
Location:
v'Heap

Magnitude:

v'Far
Data Size:

v'Huge
Reach:
v’ Continuous

35

