
Evaluating the Capability and Performance of

Access Control Policy Verification Tools

Ang Li†, Qinghua Li†, Vincent C. Hu§, Jia Di†

†Department of Computer Science and Computer Engineering, University of Arkansas

§Computer Security Division, National Institute of Standards and Technology

†{angli, qinghual, jdi}@uark.edu, §vincent.hu@nist.com

Abstract—Access control has been used in many systems such
as military systems and business information systems. Access
control protects sensitive information based on access control
policies. Thus, assuring the correctness of policies is important.
For this purpose, many access control policy verification (ACPV)
tools have been proposed to check the correctness of policies.
Since these tools have been designed by different mechanisms,
they have different capabilities and performances. However,
there lacks a set of standard approaches for evaluating them.
Consequently, it is difficult for users to identify an appropriate
tool for verifying their security policies. In this paper, we make an
initial step towards building standard approaches for evaluating
the capability and performance of ACPV tools. Specifically, we
propose a set of reference metrics for analytically evaluating, as
well as sets of oracles and test cases for empirically checking
the run-time capability and performance of ACPV tools. To
demonstrate, we apply these metrics, oracles and test cases on
existing ACPV tools.

Index Terms—Access control, policy, verification

I. INT ROD UCT ION

Access control dominates which principals (e.g., process
and users) have access to which resources (e.g., memory,
files and database). It has been used in many applications
to protect the nation’s critical information infrastructures for
military systems, power grids, banking systems, etc. Access
control protects sensitive information and resources based
on access control policies, which typically consist of a set
of rules described in terms of subjects, objects, actions and
environment conditions of the protected system.

Since the protection provided by access control is based on
the policy, it is vital to create correct policies that meet the
protected system’s requirements. However, with the increasing
complexity of the protected system and large number of
rules in a policy, it becomes a challenging task to write
policies without faults, such as inconsistency between policy
rules. Faulty policies not only leak sensitive information to
unauthorized parties but also disable authorized access to
information. Thus, policy verification is a crucial technique
to assure the correctness of access control policies.

Many verification tools have been proposed, such as ACPT
[1], Margrave [2], Mohawk [3], Mutaver [4], as well as many
other theoretical approaches [5]-[8], [15], [18]-[21]. Since
existing tools have been designed by different mechanisms,
they have different capabilities and performances. However,
there lacks a set of standard approaches for evaluating them.
Thus, it is difficult for access control administrators to find
an appropriate tool to verify their access control policies. For
instance, which tool is suitable to verify Multi-Level Security
(MLS) policies? Which tool for detecting inconsistency in
policies? And which for verifying separation of duty? For the

performance (e.g., running time) evaluation, it is also difficult
to determine an appropriate tool that suits the policy with the
available resources and time for verification.

Little work has been done on evaluating access control
policy verification (ACPV) tools. Muhammad and Riaz [5]
surveyed access control policy validation mechanisms. They
classified different verification mechanisms based on the tech­
niques used, but provided limited evaluation on functionalities.
Also, they did not consider the performance of tools. Thus,
their work can only provide limited guidelines for users to
determine an appropriate tool based on their need.

To bridge this gap, in this paper, we make an initial
step towards building standard approaches for evaluating the
capability and performance of ACPV tools. Specifically, we
propose a framework that comprises sets of metrics, oracles
and test cases with demonstrations. Our contribution is three­
fold:

1) We propose a set of reference metrics to analytically
evaluate the capabilities of ACPV tools, and then conduct
a comprehensive analysis on existing tools based on the
metrics.

2) We design a set of oracles to empirically test the run-time
functions of ACPV tools (i.e., whether they can detect
the faults embedded in the oracles). These oracles are
designed in natural language and XACML (eXtensible
Access Control Markup Language) [6], which is the de
facto standard for specifying access control policies. We
use the oracles to test two tools, ACPT and Margrave.

3) We design a set of test cases to empirically test the run­
time performance of ACPV tools. These test cases are
used not only for evaluating the performance but also for
exploring the factors that affect the performance. We then
apply them to ACPT and Margrave. The above oracles
and test cases are available to the public.

The rest of the paper is organized as follows. Section II
provides background information on access control and an
overview of our evaluation framework. Section III presents the
reference metrics and the analytical study on the capability of
existing ACPV tools. Section IV describes our oracle and test
case design. Section V presents the evaluation results of ACPT
and Margrave. Section VI concludes the paper.

II. OVE RVIE W
Access Control Access control provides security protection

by regulating which principals have access to which resources
based on access control policies. For example, in a university,
a student can access the grading system to view his grade
for any course, but he is not allowed to view other students’
grades or change his own grades.

mailto:vincent.hu@nist.com
mailto:jdi}@uark.edu

There are several well-known access control concepts and
models [7], including Discretionary Access Control (DAC),
Mandatory Access Control (MAC), and Attribute-Based Ac­
cess Control (ABAC). In DAC, the owner of resources has
the privilege to determine which subject can access which
resource and to delegate access privilege to other users. In
contrast, MAC restricts access to resources by the system
(administrator), rather than the resource owner. For instance,
the level of security of a subject determines which object
he can access. ABAC is a way to restrict access based on
subjects’ attributes [8]. For example, using roles as attributes
(i.e., RABC [8]), a student is not allowed to change any other
student’s grade unless the student is assigned to the role of
teaching assistant.

There are three fundamental types of access control models
according to their properties: static, dynamic, and historical
[9]. Static policies regulate access rights by static system
states including attributes, rules, system environments, etc.
Popular access control models of this type include ABAC,
and MLS. Dynamic models regulate access rights by dynamic
system states, e.g., system events. A representative access
control model with these properties is N-Person Control. For
example, a file cannot be accessed by more than ten users at
the same time. Historical models regulate access rights based
on historical access states and predefined series of events.
Popular access control models of this type include Workflow
and Chinese Wall policies. The metrics, oracles and test cases
proposed in this paper cover all these types of access control
models.

ACPV is a crucial method for assuring the correctness of
access control policies. In the verification process, a policy
is shown correct by checking a set of high-level security
properties that the system should satisfy against. For instance,
“any student should not be allowed to write the grade.” Many
ACPV techniques have been proposed, such as model checking
[10], mutation testing [4], and other techniques [5]. Model
checking is an important technique for ACPV, and many tools
have been implemented based on it. For example, Mankai et
al. [10] proposed a framework to detect inconsistency and
incompleteness based on a standard logic model checking
tool. These tools use a specific language such as XACML
[6] for policy specifications. A more detailed survey of these
techniques can be found in [5].

Figure 1 illustrates our ACPV evaluation framework. It
evaluates an ACPV tool in three ways. First, the tool is
statically analyzed (e.g., based on the tool’s documentation)
to find out if it has the capabilities described by a set of
reference metrics. Second, the tool’s run-time capabilities are
tested by running a set of functional oracles on it. Third,
the tool’s run-time performance is tested by running a set of
test cases. Evaluators can apply this framework to identify a
proper ACPV tool that meets their verification requirements
(e.g., properties to verify, scale of policy, available computing
resources, etc.). If no tool satisfies the requirement (e.g., no
tool can verify a particular property), it means a new tool or
improvement of existing tools is needed. And, the framework
will provide the directions for the design or improvement. The
metrics, functional oracles, and test cases and how to use them
are described in the following sections.

Fig. 1. Evaluation framework

III. ANA LY Z I N G T H E CAPAB ILIT IES OF ACP V TO O L S

In this section, we propose metrics containing the important
capabilities desired from ACPV tools, and then analyze them
on available tools.

A. Metrics
The metrics are divided into five categories.
The first category contains general security properties that

every ACPV tool should be able to verify.
•	 Safety checks if the access control policy leaks access

permission to unauthorized or unintended principals.
•	 Separation of Duty (SoD) [11] prevents error and fraud

by ensuring that no conflict-of-interest assignments are
assigned to a single subject. For example, in a financial
accounting system, one employee that is responsible
for depositing cash should not also be responsible for
reconciling bank statements.

•	 Completeness assures that each access request should be
either accepted or denied by the access control policy.

•	 Liveness [9] guarantees that there is no deadlock in which
the system will wait forever for system events, and there
is no livelock in which access control model repeatedly
executes the same operation forever.

•	 Model-specific properties are security properties that
specifically supported by various access control models in
addition to the above generic properties. We mainly focus
on the properties of RBAC models for our experiment,
because RBAC has been widely used in the field. RBAC’s
specific properties include availability (e.g., if a user is
always a member of a certain role), reachability (e.g.,
if a user can be assigned to a certain role), dead roles
(i.e., roles that cannot be assigned to any user), role-
role containment (e.g., if every member of one role is
also a member of another role), information flow (e.g., if
information can flow from one object to another object),
and weakest precondition (e.g., what is the minimal set
of initial roles that a user must have to be added to roles
in the goal) [12].

The second category of metrics focuses on the policy rules,
which includes:

•	 Inconsistency detection - Due to the combination of
multiple policies into one, it is possible that inconsistency
between policy decisions occurs. For example, student A
cannot change the grade in one policy, but the right is
granted by other combined policy, and a conflict occurs.

•	 Real-time response - Users can get response in real time
if the verification tool can detect fault when the fault-
causing rule is added to the policy, rather than after all
the rules of the policy has completed.

•	 Detection of redundant rules - An access control rule
is redundant if removing the rule does not change the
behavior of the policy.

The third category of metrics centers on the quality of se­
curity properties used to verify a policy and includes coverage
and confinement check for the reason that if the verification
properties do not thoroughly cover all rule conditions or all
possible values, the policy is still not fault-proof. Coverage
and confinement check makes sure that the rules in a policy
are completely covered by the evaluation properties, and
guarantees that no exceptional access rights are granted.

Besides assuring the quality of policy and evaluation prop­
erties, it is important to perform conformance testing. Con­
formance testing is applied to validate compliance of imple­
mentation of the policy models. In the test oracle, access
requests are the test inputs and authorization decisions are
the outputs. A test input is executed as a request is evaluated
against the policy under test. Policy authors can inspect test
results against the test oracles to check whether they are as
expected. To facilitate this test, oracle generation is another
desired capability of ACPV tools.

The last category of capabilities is the support of access con­
trol models such as the previously described static, dynamic
and historical models.

B. ACPV Tools
We target currently available ACPV tools to demonstrate

test metrics.
ACPT [13] is developed by NIST and North Carolina State

University and enhanced by the University of Arkansas. It
provides both static and dynamic verifications to ensure policy
correctness. Static verification checks whether user-specified
properties are satisfied by given policy models through the
SMV (Symbolic Model Verification) model checker. The as­
surance provided by static verification relies on the quality of
the specified properties. ACPT also conducts dynamic verifi­
cation by automatically generating and executing conformance
oracles.

Margrave [2] developed by Fisler et al. verifies access con­
trol policies in XACML and EPAL languages by converting
them into multi-terminal binary decision diagram (MTBDDs).
It specifies access constraint properties in the Scheme pro­
gramming language to decide if counterexample is detected.

Other tools include ACRLCS [14], ACPEG [15], Mutaver
[4], Mohawk [3], VAC [16], [17], and RBAC-PAT [12]. Due
to the space limitation, details of them can be found in the
references. Note that our metrics are general and they can
also be used to analyze other tools.

C. Results
The analysis results are shown in Table I and Table II.
The result shows that all the tools under the test can

check the safety property. However, none of them is able to
check the liveness property, and only ACRLCS and Mohawk
can check SoD and the completeness property. The most

supported model-specific properties are reachability and role-
role containment of RBAC and ARBAC [18] policies. Only
ACPT supports MLS and Workflow policies.

For the policy rule properties, none of the tools can detect
redundant rules. All tools under test deliver verification results
after all the policy rules are complete, and only ACRLCS can
detect inconsistency in real time. Only ACPT and Mutaver
possess the coverage and confinement capability. In addition,
all the three access control models (static, dynamic and
historical) can be supported by ACPT, ACRLCS, Mutaver,
and Mohawk, and only ACPT can generate oracles for con­
formance testing.

Since none of the tools supports all the capabilities of
the metrics, they can be improved. Or, new tools should be
developed. Thus, users should find the tool that best fits their
requirements. For example, if safety and SoD properties are the
main properties to be checked, ACRLCS and Mohawk may be
considered.

IV. ORAC LE AND TES T CAS E DES IGN
In this section, we describe the design of functional or­

acles and performance test cases. Functional oracles are to
empirically test the run-time functionality of ACPV tools, and
performance test cases are for evaluating their run-time perfor­
mance and exploring the factors that affect the performance.
Our oracles and test cases are general and applicable to any
ACPV tool. All the oracles and test cases are available in the
ACPT tool at [1].

A. Access Control Policies Used
The oracles and test cases are designed based on four rep­

resenting policies in the literature: Continue [19], University
[12], Hospital [12] and Bank [20]. Continue is a web-based
software system for conference paper submission and review,
which is used by many conferences. The University policy
is an ARBAC policy including rules for student roles (e.g.,
graduate student) and employee roles (e.g., professor) assign­
ments; the role hierarchy includes the relationships between
various roles which simulate real-world administration condi­
tions. Hospital policy contains RABC and ARBAC policies. It
restricts resource access of a hospital, e.g., doctors’ accesses to
patients’ records. The bank policy is a RBAC policy designed
for a large bank system comprised of several departments, and
the policy can be extended into an ARBAC policy [3].

In addition, we develop a multi-level policy and a workflow
policy. The multi-level policy is designed according to a
university file system use scenario, where we assign different
ranks to students, teaching assistants, as well as some files,
and then apply the Bell-LaPadula property [7] to regulate
accesses to the files. The workflow policy is created for a
process handling purchase orders, where different roles carry
out their responsibility in three steps.

B. Functional Oracles
Here, we design policy oracles with embedded faults to test

if an ACPV tool can detect the faults in a policy. In this paper,
we consider three types of common faults: access conflict, no
object and undecided due to their importance. Access conflict
happens when a policy renders one subject to have conflicting
access permissions to the same object. For example, subject
A is in group G1 which is disallowed to access object o1, but

TABLE I

THE CAPABILIT IES OF ACC ES S CONT RO L VE R I FI C AT I O N TOO LS (A)

Tools
Security Properties

Safety SoD Completeness Liveness Model-specific Properties
ACPT [1], [13] Yes No No No RBAC (reachability, role-role containment), MLS, Workflow
Margrave [2] Yes No No No RBAC (role-role containment)
ACRLCS [14] Yes Yes No No ARBAC (reachability, role-role containment)
ACPEG [15] Yes No No No ARBAC(reachability)
Mutaver [4] Yes No No No -

VAC [16], [17] Yes No No No ARBAC(reachability)
Mohawk [3] Yes Yes Yes No ARBAC(reachability)

RBAC-PAT [12] Yes No No No RBAC and ARBAC(reachability, role-role containment, availability, dead roles, weakest precondition, information flow)

TABLE II

THE CAPABIL IT IES OF ACC ES S CONT ROL VE R I FI C AT I O N TOO LS (B)

Tools
Policy Related Quality of Properties Oracle Generation Support of AC Models Inconsistency Real-time Response Detecting Redundant Rules Coverage and Confinement

ACPT [1], [13] Yes No No Yes Yes Static, Dynamic, Historical
Margrave [2] Yes No No No No Static
ACRLCS [14] Yes Yes No No No Static, Dynamic, Historical
ACPEG [15] No No No No No Static
Mutaver [4] No No No Yes No Static, Dynamic, Historical

VAC [16], [17] No No No No No Static
Mohawk [3] No No No No No Static, Dynamic, Historical

RBAC-PAT [12] Yes No No No No Static

TABLE III

CHA RACT ER IST ICS OF OR AC L E S F O R D I FF E R E N T P O L I C I E S

Policy # Subjects # Objects # Rules AC Model
Continue 4 6 12 static
University 5 2 15 static
Hospital 4 9 39 static
Bank 10 6 60 dynamic
Multi-level 3 2 8 static
Workflow 2 1 3 historical

group G2, which subject A is also a member of, is allowed to
access object o1. No object happens if there are objects not
protected by any rule in the policy. Undecided is the fault that
a subject’s access permission to an object cannot be decided
by the policy.

For each of the above faults, we design an oracle by
selecting rules from the original policy. Characteristics of the
oracles are shown in Table III. We then embed the three
common faults into the basic oracle by modifying rules.
Verification against these oracles in tools demonstrates if they
can detect the embedded faults.

Figure 2 shows the example oracle with access conflict
fault embedded for the Continue policy. To create such fault,
we add a rule into rules for Reviewer Policy, which allows
pcmember 3 to read Review 3 even though the ReviewStatus
is Not Submitted. Obviously, this rule conflicts with the last
rule in PCmember Policy, which prohibits any pcmember from
reading Review 3 when the ReviewStatus is Not Submitted.

In order to make the oracles easy to understand and use,
we create all oracles in two formats: natural language and
XACML. XACML is used because many access control poli­
cies are described in this language and many ACPV tools
take XACML-format policy as input. Thus, the format can
be directly used by those tools. Typically, an XACML policy
consists of three levels, PolicySet, Policy and Rule. The
PolicySet contains one or more Policy elements, and the Policy
contains one or more Rule elements. In XACML, there are
four main elements for the PolicySet, Policy and Rule which
are Subject, Resource, Action and Environment. In addition,
XACML provides the Target element to check the applicability
according to a set of conditions. Further, the Condition element

only exists in rules, which applies an array of functions to
compare two or more attribute elements. Figure 3 shows the
XACML format of one rule in the Figure 2 oracle.

C. Performance Test Cases
Here, we choose University Policy and Hospital Policy to

develop test cases for performance evaluations. We consider
three important factors that may affect the performance of
ACPV tools, which are number of subjects, number of objects
and number of rules, and change these factors in different test
cases to explore their effects.

For each University or Hospital policy and each considered
factor, we design a group of test cases by changing one factor
but keeping the other two factors unchanged. For example, to
test by the number of rules in the test cases of University
Policy, we keep 15 subjects and 8 objects unchanged but
increase the number of rules from 15 to 120. Test cases for
other factors and policies are designed in similar ways.

The running time may be different for the same policy when
different properties are checked. The reason is that a property
is usually verified after a certain rule of the policy is checked.
For convenience, we say this rule matches the property. To
evaluate this effect, we consider the location of the rule that
matches the verified property. We use different properties that
match different rules of a policy. For example, in the first test
case of University policy shown in Table V, we specify three
properties which match the second rule, the tenth rule and the
fourteenth rule respectively.

V. EVA L UAT I N G T H E RUN-TI M E FUNCTIO NALIT Y AND

PER FO RMANCE O F AC PV TOO LS

In this section, we introduce the experiment methodology,
and show the evaluation results on the run-time functionality
and performance of the ACPV tools. We also explore which
factors affect the performance.

A. Experiment Methodology
We choose ACPT and Margrave for this experiment, be­

cause these two representative ACPV tools use the two most
popular formal verification methods: model checking and

Roles: Reviewer, Pcmember
Users: Reviewer (pcmember_1, pcmember_2, pcmember_3)
Action: Read, MakeReview, Update
ReviewStatus: Submitted, Not_Submitted
Inheritance: Beneficiary-> Reviewer (pcmember_1, pcmember_2, pcmember_3),

Inherited Values->PCmember
Resource: Paper (Paper_1, Paper_2, Paper_3) Review (Review_1, Review_2, Review_3)
Rules (#12):
PCmember Policy:
(pcmember, Read, Paper_1)->Permit
(pcmember, Read, Paper_2)->Permit
(pcmember, Read, Paper_3) ->Permit
(pcmember, ReviewStatus: Not_Submitted, Read, Review_1) ->Deny
(pcmember, ReviewStatus: Not_Submitted, Read, Review_2) ->Deny
(pcmember, ReviewStatus: Not_Submitted, Read, Review_3) ->Deny
Reviewer Policy:
(pcmember_1, ReviewStatus: Not_Submitted, Update, Review_1) ->Permit
(pcmember_2, ReviewStatus: Not_Submitted, Update, Review_2) ->Permit
(pcmember_3, ReviewStatus: Not_Submitted, Update, Review_3) ->Permit
(pcmember_3, ReviewStatus: Not_Submitted, Read, Review_3) ->Permit
(pcmember_1, ReviewStatus: Not_Submitted, MakeReview, Paper_1) ->Permit
(pcmember_2, ReviewStatus: Not_Submitted, MakeReview, Paper_2) ->Permit
(pcmember_3, ReviewStatus: Not_Submitted, MakeReview, Paper_3) ->Permit

Fig. 2. Continue test case in Natural Language

<Rule Effect="Permit" RuleId="rule_1">
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="urn: oasis: names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">pcmember
</AttributeValue>
<SubjectAttributeDesignator AttributeId="PCmember"
DataType=http://www.w3.org/2001/XMLSchema#string
SubjectCategory="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"/>
</SubjectMatch>
</Subject>
</Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="urn: oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">paper_1
</AttributeValue>
<ResourceAttributeDesignator AttributeId="Paper"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
</ResourceMatch>
</Resource>
</Resources>
<Actions>
<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">Read
</AttributeValue>
<ActionAttributeDesignator AttributeId="Action"
DataType="http://www.w3.org/2001/XMLSchema#string"/> </ActionMatch>
</Action>
</Actions>
</Target>
</Rule>

Fig. 3. Continue test case in XACML

multiple binary tree respectively. We obtain the latest version
of ACPT from NIST, and Margrave Version 3.0 is installed
based on DrRacket Version 5.0.1. For ACPT, the test oracles
are input through the graphical user interface provided by the
tool. For Margrave, we manually create the XACML oracles
for the input. All experiments are performed on a laptop
running Windows 7 with an Intel i7-4610M CPU and 8 GB
of RAM.

B. Run-time Functionality Test
We run the oracles designed based on the Continue Policy,

University Policy, Hospital Policy and Bank Policy on ACPT
and Margave to observe if the two tools are capable of
detecting the faults in the oracles. The results are showing
in Table IV. ACPT can successfully detect all three faults
in these policies, but Margrave fail to detect the faults in
Bank Policy and Continue Policy. The reason of the failure
is that the Bank policy is a historical type of policy model,
which is not supported by Margrave, and Margrave does not

TABLE IV

TES TE D FUNCTIO NALIT Y OF AC PT AN D MAR GRAV E

ACPT Margrave
Hospital Policy (Access Conflict fault) Yes Yes

Hospital Policy (No Object fault) Yes Yes
Hospital Policy (Undecided fault) Yes Yes

University Policy (Access Conflict fault) Yes Yes
University Policy (No Object fault) Yes Yes
University Policy (Undecided fault) Yes Yes
Bank Policy (Access Conflict fault) Yes No

Bank Policy (No Object fault) Yes No
Bank Policy (Undecided fault) Yes No

Continue Policy (Access Conflict fault) Yes No
Continue Policy (No Object fault) Yes No
Continue Policy (Undecided fault) Yes No

Static Model Yes Yes
Dynamic Model Yes No
Historical Model Yes No

support XACML’s <condition> element in Continue Policy.
Such results can provide guidance for users to evaluate the
capability of different tools and choose the right tool for their
need.

C. Run-time Performance Test
To evaluate the performance of ACPT and Margave, we

measure the absolute runtime consumed to perform verifica­
tion functions on designed test cases. For each test case, we
specify three properties to verify, each property are verified ten
times, and then the average runtime of verifying a property
is calculated. The three properties match rules in different
locations of the test case. For both University Policy and
Hospital Policy, the three properties (#1, #2, #3) match the
rules located in the first part, middle part and last part of a
test case. For example, in the first University Policy test case,
the three properties match the second rule, the tenth rule, and
the fourteenth rule respectively.

Table V shows that ACPT and Margrave have different
performance characteristics. With the increasing complexity
of each test case, ACPT keeps a quite stable running time
at around 16ms. In contrast, the running time of Margrave
increases dramatically with growing scale and complexity of
policies. For instance, Margrave needs 36ms to verify the first
property in the first test case of University Policy, and the time
doubles to 72ms for verifying the same property in the fourth
test case with a larger scale.

D. Factors Affecting Verification Performance

This set of experiment aims to explore the effect of different
factors on the performance of ACPT and Margrave based on
the test cases designed in Section IV-C. The location of the
rule that matches the verified property does not affect ACPT as
shown in Table V. But it affects the performance of Margrave.
For example, the running time for verifying the first property
and the third property of the first test case of University Policy
increases from 36ms to 48ms.

The results for the other three factors (number of subjects,
number of objects, and number of rules) are shown in Figure
4. In spite of changing factors, ACPT’s running time does not
change much. For Margrave, the number of rules affects the
performance significantly.

(a) Number of Rules (b) Number of Subjects (c) Number of Objects

Fig. 4. Effect of different factors on verification performance (University Policy). By default, there are 15 subjects, 8 objects, and 120 rules.

TABLE V
PER F OR M A N C E OF ACPT AN D MAR GRAV E

Policy Test Case Property ACPT Margrave

University

University Policy (15 rules, 5
subjects, 2 objects)

#1 property 15ms 36ms
#2 property 16ms 45ms
#3 property 16ms 48ms

University Policy (30 rules,
10 subjects, 2 objects)

#1 property 16ms 53ms
#2 property 15ms 62ms
#3 property 16ms 68ms

University Policy (60 rules,
15 subjects, 3 objects)

#1 property 15ms 55ms
#2 property 16ms 64ms
#3 property 16ms 78ms

University Policy (120 rules,
30 subjects, 3 objects)

#1 property 15ms 72ms
#2 property 16ms 84ms
#3 property 16ms 94ms

Hospital

Hospital Policy (39 rules, 4
subjects, 9 objects)

#1 property 15ms 53ms
#2 property 16ms 73ms
#3 property 16ms 64ms

Hospital Policy (78 rules, 8
subjects, 9 objects)

#1 property 15ms 75ms
#2 property 15ms 76ms
#3 property 16ms 92ms

Hospital Policy (165 rules, 13
subjects, 12 objects)

#1 property 15ms 84ms
#2 property 15ms 86ms
#3 property 15ms 100ms

Hospital Policy (330 rules, 26
subjects, 12 objects)

#1 property 15ms 100ms
#2 property 16ms 96ms
#3 property 17ms 103ms

VI. CONC LUS ION AN D FUT URE WOR K

In this paper, we proposed metrics to analytically evaluate
the capabilities of ACPV tools, and designed oracles and
test cases in both natural language and XACML formats
to verify the functionality and evaluate the performance in
run time. Based on these metrics, oracles and test cases, we
demonstrated the evaluations of capabilities and performances
of existing ACPV tools, and explored the effects of different
factors on the performance of verification. We found that
some important capabilities are lacking from existing tools.
The proposed techniques and obtained results can help access
control policy administrators to select the right ACPV tool for
their requirements.

This work intends to make an initial step towards devel­
oping standard approaches for evaluating ACPV tools. Future
directions include enriching the set of reference metrics (e.g.,
through considering the properties of emerging access control
models and ACPV tools), designing more robust oracles that is
capable of evaluating more ACPV mechanisms, and designing
large-scale test cases with many rules, subjects, and objects.

ACKN OWLE DGMEN T

This work is supported in part by NIST Grant No.
60NANB14D188.

REF ER EN CES

[1]	 “ACPT,” http://csrc.nist.gov/groups/SNS/acpt/acpt-beta.html.

[2]	 K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,
“Verification and change-impact analysis of access-control policies,” in
Proceedings of the 27th international conference on Software engineer­
ing (ICSE), 2005, pp. 196–205.

[3]	 K. Jayaraman, V. Ganesh, M. Tripunitara, M. Rinard, and S. Chapin,
“Automatic error finding in access-control policies,” in Proceedings of
the 18th ACM conference on Computer and communications security
(CCS), 2011, pp. 163–174.

[4]	 E. Martin, J. Hwang, T. Xie, and V. Hu, “Assessing quality of policy
properties in verification of access control policies,” in Annual Computer
Security Applications Conference (ACSAC), 2008, pp. 163–172.

[5]	 M. Aqib and R. A. Shaikh, “Analysis and comparison of access control
policies validation mechanisms,” International Journal of Computer
Network and Information Security (IJCNIS), vol. 7, no. 1, p. 54, 2014.

[6]	 T. Moses et al., “Extensible access control markup language (xacml)
version 2.0,” Oasis Standard, vol. 200502, 2005.

[7]	 V. C. Hu, D. Ferraiolo, and D. R. Kuhn, Assessment of access control
systems. NIST Interagency/Internal Report (NISTIR)-7316, 2006.

[8]	 D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan­
dramouli, “Proposed nist standard for role-based access control,” ACM
Transactions on Information and System Security (TISSEC), vol. 4, no. 3,
pp. 224–274, 2001.

[9]	 V. C. Hu, D. R. Kuhn, T. Xie, and J. Hwang, “Model checking for
verification of mandatory access control models and properties,” Inter­
national Journal of Software Engineering and Knowledge Engineering,
vol. 21, no. 01, pp. 103–127, 2011.

[10]	 M. Mankai and L. Logrippo, “Access control policies: Modeling and
validation,” in 5th Nouvelles Technologies de la R ́epartition Conference
(NOTERE), 2005, pp. 85–91.

[11]	 R. A. Botha and J. H. P. Eloff, “Separation of duties for access control
enforcement in workflow environments,” IBM Systems Journal, vol. 40,
no. 3, pp. 666–682, 2001.

[12]	 M. I. Gofman, R. Luo, A. C. Solomon, Y. Zhang, P. Yang, and S. D.
Stoller, “Rbac-pat: A policy analysis tool for role based access control,”
in Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2009, pp. 46–49.

[13]	 J. Hwang, T. Xie, V. C. Hu, and M. Altunay, “Acpt: A tool for modeling
and verifying access control policies.” in IEEE International Symposium
on Policies for Distributed Systems and Networks (POLICY), 2010, pp.
40–43.

[14]	 V. C. Hu and K. Scarfone, “Real-time access control rule fault detection
using a simulated logic circuit,” in International Conference on Social
Computing (SocialCom), 2013, pp. 494–501.

[15]	 N. Zhang, M. Ryan, and D. P. Guelev, “Evaluating access control
policies through model checking,” in Information Security. Springer,
2005, pp. 446–460.

[16]	 A. L. Ferrara, P. Madhusudan, and G. Parlato, “Policy analysis for self-
administrated role-based access control,” in Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2013, pp. 432–447.

[17]	 ——, “Security analysis of access control through program verification,”
in Proceedings of the 25th IEEE Computer Security Foundations Sym­
posium (CSF), 2012.

[18]	 R. Sandhu, V. Bhamidipati, and Q. Munawer, “The arbac97 model for
role-based administration of roles,” ACM Transactions on Information
and System Security (TISSEC), vol. 2, no. 1, pp. 105–135, 1999.

[19]	 S. Krishnamurthi, “The continue server (or, how i administered padl
2002 and 2003),” in Practical aspects of declarative languages.
Springer, 2003, pp. 2–16.

[20]	 K. Jayaraman, V. Ganesh, M. Tripunitara, M. C. Rinard, and S. J.
Chapin, “Arbac policy for a large multi-national bank,” arXiv preprint
arXiv:1110.2849, 2011.

http://csrc.nist.gov/groups/SNS/acpt/acpt-beta.html

