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Abstract—Access control has been used in many systems such 
as military systems and business information systems. Access
control protects sensitive information based on access control 
policies. Thus, assuring the correctness of policies is important.
For this purpose, many access control policy verification (ACPV)
tools have been proposed to check the correctness of policies.
Since these tools have been designed by different mechanisms,
they have different capabilities and performances. However, 
there lacks a set of standard approaches for evaluating them.
Consequently, it is difficult for users to identify an appropriate
tool for verifying their security policies. In this paper, we make an
initial step towards building standard approaches for evaluating
the capability and performance of ACPV tools. Specifically, we
propose a set of reference metrics for analytically evaluating, as
well as sets of oracles and test cases for empirically checking
the run-time capability and performance of ACPV tools. To 
demonstrate, we apply these metrics, oracles and test cases on
existing ACPV tools. 

Index Terms—Access control, policy, verification 

I. INT ROD UCT ION 

Access control dominates which principals (e.g., process 
and users) have access to which resources (e.g., memory, 
files and database). It has been used in many applications 
to protect the nation’s critical information infrastructures for 
military systems, power grids, banking systems, etc. Access 
control protects sensitive information and resources based 
on access control policies, which typically consist of a set 
of rules described in terms of subjects, objects, actions and 
environment conditions of the protected system. 

Since the protection provided by access control is based on 
the policy, it is vital to create correct policies that meet the 
protected system’s requirements. However, with the increasing 
complexity of the protected system and large number of 
rules in a policy, it becomes a challenging task to write 
policies without faults, such as inconsistency between policy 
rules. Faulty policies not only leak sensitive information to 
unauthorized parties but also disable authorized access to 
information. Thus, policy verification is a crucial technique 
to assure the correctness of access control policies. 

Many verification tools have been proposed, such as ACPT 
[1], Margrave [2], Mohawk [3], Mutaver [4], as well as many 
other theoretical approaches [5]-[8], [15], [18]-[21]. Since 
existing tools have been designed by different mechanisms, 
they have different capabilities and performances. However, 
there lacks a set of standard approaches for evaluating them. 
Thus, it is difficult for access control administrators to find 
an appropriate tool to verify their access control policies. For 
instance, which tool is suitable to verify Multi-Level Security 
(MLS) policies? Which tool for detecting inconsistency in 
policies? And which for verifying separation of duty? For the 

performance (e.g., running time) evaluation, it is also difficult 
to determine an appropriate tool that suits the policy with the 
available resources and time for verification. 

Little work has been done on evaluating access control 
policy verification (ACPV) tools. Muhammad and Riaz [5] 
surveyed access control policy validation mechanisms. They 
classified different verification mechanisms based on the tech­
niques used, but provided limited evaluation on functionalities. 
Also, they did not consider the performance of tools. Thus, 
their work can only provide limited guidelines for users to 
determine an appropriate tool based on their need. 

To bridge this gap, in this paper, we make an initial 
step towards building standard approaches for evaluating the 
capability and performance of ACPV tools. Specifically, we 
propose a framework that comprises sets of metrics, oracles 
and test cases with demonstrations. Our contribution is three­
fold: 

1) We propose a set of reference metrics to analytically 
evaluate the capabilities of ACPV tools, and then conduct 
a comprehensive analysis on existing tools based on the 
metrics. 

2) We design a set of oracles to empirically test the run-time 
functions of ACPV tools (i.e., whether they can detect 
the faults embedded in the oracles). These oracles are 
designed in natural language and XACML (eXtensible 
Access Control Markup Language) [6], which is the de 
facto standard for specifying access control policies. We 
use the oracles to test two tools, ACPT and Margrave. 

3) We design a set of test cases to empirically test the run­
time performance of ACPV tools. These test cases are 
used not only for evaluating the performance but also for 
exploring the factors that affect the performance. We then 
apply them to ACPT and Margrave. The above oracles 
and test cases are available to the public. 

The rest of the paper is organized as follows. Section II 
provides background information on access control and an 
overview of our evaluation framework. Section III presents the 
reference metrics and the analytical study on the capability of 
existing ACPV tools. Section IV describes our oracle and test 
case design. Section V presents the evaluation results of ACPT 
and Margrave. Section VI concludes the paper. 

II. OVE RVIE W 
Access Control Access control provides security protection 

by regulating which principals have access to which resources 
based on access control policies. For example, in a university, 
a student can access the grading system to view his grade 
for any course, but he is not allowed to view other students’ 
grades or change his own grades. 
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There are several well-known access control concepts and 
models [7], including Discretionary Access Control (DAC), 
Mandatory Access Control (MAC), and Attribute-Based Ac­
cess Control (ABAC). In DAC, the owner of resources has 
the privilege to determine which subject can access which 
resource and to delegate access privilege to other users. In 
contrast, MAC restricts access to resources by the system 
(administrator), rather than the resource owner. For instance, 
the level of security of a subject determines which object 
he can access. ABAC is a way to restrict access based on 
subjects’ attributes [8]. For example, using roles as attributes 
(i.e., RABC [8]), a student is not allowed to change any other 
student’s grade unless the student is assigned to the role of 
teaching assistant. 

There are three fundamental types of access control models 
according to their properties: static, dynamic, and historical 
[9]. Static policies regulate access rights by static system 
states including attributes, rules, system environments, etc. 
Popular access control models of this type include ABAC, 
and MLS. Dynamic models regulate access rights by dynamic 
system states, e.g., system events. A representative access 
control model with these properties is N-Person Control. For 
example, a file cannot be accessed by more than ten users at 
the same time. Historical models regulate access rights based 
on historical access states and predefined series of events. 
Popular access control models of this type include Workflow 
and Chinese Wall policies. The metrics, oracles and test cases 
proposed in this paper cover all these types of access control 
models. 

ACPV is a crucial method for assuring the correctness of 
access control policies. In the verification process, a policy 
is shown correct by checking a set of high-level security 
properties that the system should satisfy against. For instance, 
“any student should not be allowed to write the grade.” Many 
ACPV techniques have been proposed, such as model checking 
[10], mutation testing [4], and other techniques [5]. Model 
checking is an important technique for ACPV, and many tools 
have been implemented based on it. For example, Mankai et 
al. [10] proposed a framework to detect inconsistency and 
incompleteness based on a standard logic model checking 
tool. These tools use a specific language such as XACML 
[6] for policy specifications. A more detailed survey of these 
techniques can be found in [5]. 

Figure 1 illustrates our ACPV evaluation framework. It 
evaluates an ACPV tool in three ways. First, the tool is 
statically analyzed (e.g., based on the tool’s documentation) 
to find out if it has the capabilities described by a set of 
reference metrics. Second, the tool’s run-time capabilities are 
tested by running a set of functional oracles on it. Third, 
the tool’s run-time performance is tested by running a set of 
test cases. Evaluators can apply this framework to identify a 
proper ACPV tool that meets their verification requirements 
(e.g., properties to verify, scale of policy, available computing 
resources, etc.). If no tool satisfies the requirement (e.g., no 
tool can verify a particular property), it means a new tool or 
improvement of existing tools is needed. And, the framework 
will provide the directions for the design or improvement. The 
metrics, functional oracles, and test cases and how to use them 
are described in the following sections. 

Fig. 1. Evaluation framework 

III. ANA LY Z I N G T H E CAPAB ILIT IES OF ACP V TO O L S 

In this section, we propose metrics containing the important 
capabilities desired from ACPV tools, and then analyze them 
on available tools. 

A. Metrics 
The metrics are divided into five categories. 
The first category contains general security properties that 

every ACPV tool should be able to verify. 
•	 Safety checks if the access control policy leaks access 

permission to unauthorized or unintended principals. 
•	 Separation of Duty (SoD) [11] prevents error and fraud 

by ensuring that no conflict-of-interest assignments are 
assigned to a single subject. For example, in a financial 
accounting system, one employee that is responsible 
for depositing cash should not also be responsible for 
reconciling bank statements. 

•	 Completeness assures that each access request should be 
either accepted or denied by the access control policy. 

•	 Liveness [9] guarantees that there is no deadlock in which 
the system will wait forever for system events, and there 
is no livelock in which access control model repeatedly 
executes the same operation forever. 

•	 Model-specific properties are security properties that 
specifically supported by various access control models in 
addition to the above generic properties. We mainly focus 
on the properties of RBAC models for our experiment, 
because RBAC has been widely used in the field. RBAC’s 
specific properties include availability (e.g., if a user is 
always a member of a certain role), reachability (e.g., 
if a user can be assigned to a certain role), dead roles 
(i.e., roles that cannot be assigned to any user), role-
role containment (e.g., if every member of one role is 
also a member of another role), information flow (e.g., if 
information can flow from one object to another object), 
and weakest precondition (e.g., what is the minimal set 
of initial roles that a user must have to be added to roles 
in the goal) [12]. 

The second category of metrics focuses on the policy rules, 
which includes: 

•	 Inconsistency detection - Due to the combination of 
multiple policies into one, it is possible that inconsistency 
between policy decisions occurs. For example, student A 
cannot change the grade in one policy, but the right is 
granted by other combined policy, and a conflict occurs. 



•	 Real-time response - Users can get response in real time 
if the verification tool can detect fault when the fault-
causing rule is added to the policy, rather than after all 
the rules of the policy has completed. 

•	 Detection of redundant rules - An access control rule 
is redundant if removing the rule does not change the 
behavior of the policy. 

The third category of metrics centers on the quality of se­
curity properties used to verify a policy and includes coverage 
and confinement check for the reason that if the verification 
properties do not thoroughly cover all rule conditions or all 
possible values, the policy is still not fault-proof. Coverage 
and confinement check makes sure that the rules in a policy 
are completely covered by the evaluation properties, and 
guarantees that no exceptional access rights are granted. 

Besides assuring the quality of policy and evaluation prop­
erties, it is important to perform conformance testing. Con­
formance testing is applied to validate compliance of imple­
mentation of the policy models. In the test oracle, access 
requests are the test inputs and authorization decisions are 
the outputs. A test input is executed as a request is evaluated 
against the policy under test. Policy authors can inspect test 
results against the test oracles to check whether they are as 
expected. To facilitate this test, oracle generation is another 
desired capability of ACPV tools. 

The last category of capabilities is the support of access con­
trol models such as the previously described static, dynamic 
and historical models. 

B. ACPV Tools 
We target currently available ACPV tools to demonstrate 

test metrics. 
ACPT [13] is developed by NIST and North Carolina State 

University and enhanced by the University of Arkansas. It 
provides both static and dynamic verifications to ensure policy 
correctness. Static verification checks whether user-specified 
properties are satisfied by given policy models through the 
SMV (Symbolic Model Verification) model checker. The as­
surance provided by static verification relies on the quality of 
the specified properties. ACPT also conducts dynamic verifi­
cation by automatically generating and executing conformance 
oracles. 

Margrave [2] developed by Fisler et al. verifies access con­
trol policies in XACML and EPAL languages by converting 
them into multi-terminal binary decision diagram (MTBDDs). 
It specifies access constraint properties in the Scheme pro­
gramming language to decide if counterexample is detected. 

Other tools include ACRLCS [14], ACPEG [15], Mutaver 
[4], Mohawk [3], VAC [16], [17], and RBAC-PAT [12]. Due 
to the space limitation, details of them can be found in the 
references. Note that our metrics are general and they can 
also be used to analyze other tools. 

C. Results 
The analysis results are shown in Table I and Table II. 
The result shows that all the tools under the test can 

check the safety property. However, none of them is able to 
check the liveness property, and only ACRLCS and Mohawk 
can check SoD and the completeness property. The most 

supported model-specific properties are reachability and role-
role containment of RBAC and ARBAC [18] policies. Only 
ACPT supports MLS and Workflow policies. 

For the policy rule properties, none of the tools can detect 
redundant rules. All tools under test deliver verification results 
after all the policy rules are complete, and only ACRLCS can 
detect inconsistency in real time. Only ACPT and Mutaver 
possess the coverage and confinement capability. In addition, 
all the three access control models (static, dynamic and 
historical) can be supported by ACPT, ACRLCS, Mutaver, 
and Mohawk, and only ACPT can generate oracles for con­
formance testing. 

Since none of the tools supports all the capabilities of 
the metrics, they can be improved. Or, new tools should be 
developed. Thus, users should find the tool that best fits their 
requirements. For example, if safety and SoD properties are the 
main properties to be checked, ACRLCS and Mohawk may be 
considered. 

IV. ORAC LE AND TES T CAS E DES IGN 
In this section, we describe the design of functional or­

acles and performance test cases. Functional oracles are to 
empirically test the run-time functionality of ACPV tools, and 
performance test cases are for evaluating their run-time perfor­
mance and exploring the factors that affect the performance. 
Our oracles and test cases are general and applicable to any 
ACPV tool. All the oracles and test cases are available in the 
ACPT tool at [1]. 

A. Access Control Policies Used 
The oracles and test cases are designed based on four rep­

resenting policies in the literature: Continue [19], University 
[12], Hospital [12] and Bank [20]. Continue is a web-based 
software system for conference paper submission and review, 
which is used by many conferences. The University policy 
is an ARBAC policy including rules for student roles (e.g., 
graduate student) and employee roles (e.g., professor) assign­
ments; the role hierarchy includes the relationships between 
various roles which simulate real-world administration condi­
tions. Hospital policy contains RABC and ARBAC policies. It 
restricts resource access of a hospital, e.g., doctors’ accesses to 
patients’ records. The bank policy is a RBAC policy designed 
for a large bank system comprised of several departments, and 
the policy can be extended into an ARBAC policy [3]. 

In addition, we develop a multi-level policy and a workflow 
policy. The multi-level policy is designed according to a 
university file system use scenario, where we assign different 
ranks to students, teaching assistants, as well as some files, 
and then apply the Bell-LaPadula property [7] to regulate 
accesses to the files. The workflow policy is created for a 
process handling purchase orders, where different roles carry 
out their responsibility in three steps. 

B. Functional Oracles 
Here, we design policy oracles with embedded faults to test 

if an ACPV tool can detect the faults in a policy. In this paper, 
we consider three types of common faults: access conflict, no 
object and undecided due to their importance. Access conflict 
happens when a policy renders one subject to have conflicting 
access permissions to the same object. For example, subject 
A is in group G1 which is disallowed to access object o1, but 



TABLE I
 
THE CAPABILIT IES OF ACC ES S CONT RO L VE R I FI C AT I O N TOO LS (A)
 

Tools 
Security Properties 

Safety SoD Completeness Liveness Model-specific Properties 
ACPT [1], [13] Yes No No No RBAC (reachability, role-role containment), MLS, Workflow 
Margrave [2] Yes No No No RBAC (role-role containment) 
ACRLCS [14] Yes Yes No No ARBAC (reachability, role-role containment) 
ACPEG [15] Yes No No No ARBAC(reachability) 
Mutaver [4] Yes No No No -

VAC [16], [17] Yes No No No ARBAC(reachability) 
Mohawk [3] Yes Yes Yes No ARBAC(reachability) 

RBAC-PAT [12] Yes No No No RBAC and ARBAC(reachability, role-role containment, availability, dead roles, weakest precondition, information flow) 

TABLE II
 
THE CAPABIL IT IES OF ACC ES S CONT ROL VE R I FI C AT I O N TOO LS (B)
 

Tools 
Policy Related Quality of Properties Oracle Generation Support of AC Models Inconsistency Real-time Response Detecting Redundant Rules Coverage and Confinement 

ACPT [1], [13] Yes No No Yes Yes Static, Dynamic, Historical 
Margrave [2] Yes No No No No Static 
ACRLCS [14] Yes Yes No No No Static, Dynamic, Historical 
ACPEG [15] No No No No No Static 
Mutaver [4] No No No Yes No Static, Dynamic, Historical 

VAC [16], [17] No No No No No Static 
Mohawk [3] No No No No No Static, Dynamic, Historical 

RBAC-PAT [12] Yes No No No No Static 

TABLE III
 
CHA RACT ER IST ICS OF OR AC L E S F O R D I FF E R E N T P O L I C I E S
 

Policy # Subjects # Objects # Rules AC Model 
Continue 4 6 12 static 
University 5 2 15 static 
Hospital 4 9 39 static 
Bank 10 6 60 dynamic 
Multi-level 3 2 8 static 
Workflow 2 1 3 historical 

group G2, which subject A is also a member of, is allowed to 
access object o1. No object happens if there are objects not 
protected by any rule in the policy. Undecided is the fault that 
a subject’s access permission to an object cannot be decided 
by the policy. 

For each of the above faults, we design an oracle by 
selecting rules from the original policy. Characteristics of the 
oracles are shown in Table III. We then embed the three 
common faults into the basic oracle by modifying rules. 
Verification against these oracles in tools demonstrates if they 
can detect the embedded faults. 

Figure 2 shows the example oracle with access conflict 
fault embedded for the Continue policy. To create such fault, 
we add a rule into rules for Reviewer Policy, which allows 
pcmember 3 to read Review 3 even though the ReviewStatus 
is Not Submitted. Obviously, this rule conflicts with the last 
rule in PCmember Policy, which prohibits any pcmember from 
reading Review 3 when the ReviewStatus is Not Submitted. 

In order to make the oracles easy to understand and use, 
we create all oracles in two formats: natural language and 
XACML. XACML is used because many access control poli­
cies are described in this language and many ACPV tools 
take XACML-format policy as input. Thus, the format can 
be directly used by those tools. Typically, an XACML policy 
consists of three levels, PolicySet, Policy and Rule. The 
PolicySet contains one or more Policy elements, and the Policy 
contains one or more Rule elements. In XACML, there are 
four main elements for the PolicySet, Policy and Rule which 
are Subject, Resource, Action and Environment. In addition, 
XACML provides the Target element to check the applicability 
according to a set of conditions. Further, the Condition element 

only exists in rules, which applies an array of functions to 
compare two or more attribute elements. Figure 3 shows the 
XACML format of one rule in the Figure 2 oracle. 

C. Performance Test Cases 
Here, we choose University Policy and Hospital Policy to 

develop test cases for performance evaluations. We consider 
three important factors that may affect the performance of 
ACPV tools, which are number of subjects, number of objects 
and number of rules, and change these factors in different test 
cases to explore their effects. 

For each University or Hospital policy and each considered 
factor, we design a group of test cases by changing one factor 
but keeping the other two factors unchanged. For example, to 
test by the number of rules in the test cases of University 
Policy, we keep 15 subjects and 8 objects unchanged but 
increase the number of rules from 15 to 120. Test cases for 
other factors and policies are designed in similar ways. 

The running time may be different for the same policy when 
different properties are checked. The reason is that a property 
is usually verified after a certain rule of the policy is checked. 
For convenience, we say this rule matches the property. To 
evaluate this effect, we consider the location of the rule that 
matches the verified property. We use different properties that 
match different rules of a policy. For example, in the first test 
case of University policy shown in Table V, we specify three 
properties which match the second rule, the tenth rule and the 
fourteenth rule respectively. 

V. EVA L UAT I N G T H E RUN-TI M E FUNCTIO NALIT Y AND 

PER FO RMANCE O F AC PV TOO LS 

In this section, we introduce the experiment methodology, 
and show the evaluation results on the run-time functionality 
and performance of the ACPV tools. We also explore which 
factors affect the performance. 

A. Experiment Methodology 
We choose ACPT and Margrave for this experiment, be­

cause these two representative ACPV tools use the two most 
popular formal verification methods: model checking and 



  
    

  
  

    
  

        
  

 
   
   
    
     
     

  
     
     
     
    
     
     
     

Roles: Reviewer, Pcmember 
Users: Reviewer (pcmember_1, pcmember_2, pcmember_3) 
Action: Read, MakeReview, Update 
ReviewStatus: Submitted, Not_Submitted 
Inheritance: Beneficiary-> Reviewer (pcmember_1, pcmember_2, pcmember_3), 

Inherited Values->PCmember 
Resource: Paper (Paper_1, Paper_2, Paper_3) Review (Review_1, Review_2, Review_3) 
Rules (#12): 
PCmember Policy: 
(pcmember, Read, Paper_1)->Permit 
(pcmember, Read, Paper_2)->Permit 
(pcmember, Read, Paper_3) ->Permit 
(pcmember, ReviewStatus: Not_Submitted, Read, Review_1) ->Deny 
(pcmember, ReviewStatus: Not_Submitted, Read, Review_2) ->Deny 
(pcmember, ReviewStatus: Not_Submitted, Read, Review_3) ->Deny 
Reviewer Policy: 
(pcmember_1, ReviewStatus: Not_Submitted, Update, Review_1) ->Permit 
(pcmember_2, ReviewStatus: Not_Submitted, Update, Review_2) ->Permit 
(pcmember_3, ReviewStatus: Not_Submitted, Update, Review_3) ->Permit 
(pcmember_3, ReviewStatus: Not_Submitted, Read, Review_3) ->Permit 
(pcmember_1, ReviewStatus: Not_Submitted, MakeReview, Paper_1) ->Permit 
(pcmember_2, ReviewStatus: Not_Submitted, MakeReview, Paper_2) ->Permit 
(pcmember_3, ReviewStatus: Not_Submitted, MakeReview, Paper_3) ->Permit 

Fig. 2. Continue test case in Natural Language 

<Rule Effect="Permit" RuleId="rule_1"> 
<Target> 
<Subjects> 
<Subject> 
<SubjectMatch MatchId="urn: oasis: names:tc:xacml:1.0:function:string-equal"> 
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">pcmember 
</AttributeValue> 
<SubjectAttributeDesignator AttributeId="PCmember" 
DataType=http://www.w3.org/2001/XMLSchema#string 
SubjectCategory="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"/> 
</SubjectMatch> 
</Subject> 
</Subjects> 
<Resources> 
<Resource> 
<ResourceMatch MatchId="urn: oasis:names:tc:xacml:1.0:function:string-equal"> 
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">paper_1 
</AttributeValue> 
<ResourceAttributeDesignator AttributeId="Paper" 
DataType="http://www.w3.org/2001/XMLSchema#string"/> 
</ResourceMatch> 
</Resource> 
</Resources> 
<Actions> 
<Action> 
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">Read 
</AttributeValue> 
<ActionAttributeDesignator AttributeId="Action" 
DataType="http://www.w3.org/2001/XMLSchema#string"/> </ActionMatch> 
</Action> 
</Actions> 
</Target> 
</Rule> 

Fig. 3. Continue test case in XACML 

multiple binary tree respectively. We obtain the latest version 
of ACPT from NIST, and Margrave Version 3.0 is installed 
based on DrRacket Version 5.0.1. For ACPT, the test oracles 
are input through the graphical user interface provided by the 
tool. For Margrave, we manually create the XACML oracles 
for the input. All experiments are performed on a laptop 
running Windows 7 with an Intel i7-4610M CPU and 8 GB 
of RAM. 

B. Run-time Functionality Test 
We run the oracles designed based on the Continue Policy, 

University Policy, Hospital Policy and Bank Policy on ACPT 
and Margave to observe if the two tools are capable of 
detecting the faults in the oracles. The results are showing 
in Table IV. ACPT can successfully detect all three faults 
in these policies, but Margrave fail to detect the faults in 
Bank Policy and Continue Policy. The reason of the failure 
is that the Bank policy is a historical type of policy model, 
which is not supported by Margrave, and Margrave does not 

TABLE IV
 
TES TE D FUNCTIO NALIT Y OF AC PT AN D MAR GRAV E
 

ACPT Margrave 
Hospital Policy (Access Conflict fault) Yes Yes 

Hospital Policy (No Object fault) Yes Yes 
Hospital Policy (Undecided fault) Yes Yes 

University Policy (Access Conflict fault) Yes Yes 
University Policy (No Object fault) Yes Yes 
University Policy (Undecided fault) Yes Yes 
Bank Policy (Access Conflict fault) Yes No 

Bank Policy (No Object fault) Yes No 
Bank Policy (Undecided fault) Yes No 

Continue Policy (Access Conflict fault) Yes No 
Continue Policy (No Object fault) Yes No 
Continue Policy (Undecided fault) Yes No 

Static Model Yes Yes 
Dynamic Model Yes No 
Historical Model Yes No 

support XACML’s <condition> element in Continue Policy. 
Such results can provide guidance for users to evaluate the 
capability of different tools and choose the right tool for their 
need. 

C. Run-time Performance Test 
To evaluate the performance of ACPT and Margave, we 

measure the absolute runtime consumed to perform verifica­
tion functions on designed test cases. For each test case, we 
specify three properties to verify, each property are verified ten 
times, and then the average runtime of verifying a property 
is calculated. The three properties match rules in different 
locations of the test case. For both University Policy and 
Hospital Policy, the three properties (#1, #2, #3) match the 
rules located in the first part, middle part and last part of a 
test case. For example, in the first University Policy test case, 
the three properties match the second rule, the tenth rule, and 
the fourteenth rule respectively. 

Table V shows that ACPT and Margrave have different 
performance characteristics. With the increasing complexity 
of each test case, ACPT keeps a quite stable running time 
at around 16ms. In contrast, the running time of Margrave 
increases dramatically with growing scale and complexity of 
policies. For instance, Margrave needs 36ms to verify the first 
property in the first test case of University Policy, and the time 
doubles to 72ms for verifying the same property in the fourth 
test case with a larger scale. 

D. Factors Affecting Verification Performance 

This set of experiment aims to explore the effect of different 
factors on the performance of ACPT and Margrave based on 
the test cases designed in Section IV-C. The location of the 
rule that matches the verified property does not affect ACPT as 
shown in Table V. But it affects the performance of Margrave. 
For example, the running time for verifying the first property 
and the third property of the first test case of University Policy 
increases from 36ms to 48ms. 

The results for the other three factors (number of subjects, 
number of objects, and number of rules) are shown in Figure 
4. In spite of changing factors, ACPT’s running time does not 
change much. For Margrave, the number of rules affects the 
performance significantly. 



(a) Number of Rules (b) Number of Subjects (c) Number of Objects
 
Fig. 4. Effect of different factors on verification performance (University Policy). By default, there are 15 subjects, 8 objects, and 120 rules.
 

TABLE V 
PER F OR M A N C E OF ACPT AN D MAR GRAV E 

Policy Test Case Property ACPT Margrave 

University 

University Policy (15 rules, 5 
subjects, 2 objects) 

#1 property 15ms 36ms 
#2 property 16ms 45ms 
#3 property 16ms 48ms 

University Policy (30 rules, 
10 subjects, 2 objects) 

#1 property 16ms 53ms 
#2 property 15ms 62ms 
#3 property 16ms 68ms 

University Policy (60 rules, 
15 subjects, 3 objects) 

#1 property 15ms 55ms 
#2 property 16ms 64ms 
#3 property 16ms 78ms 

University Policy (120 rules, 
30 subjects, 3 objects) 

#1 property 15ms 72ms 
#2 property 16ms 84ms 
#3 property 16ms 94ms 

Hospital 

Hospital Policy (39 rules, 4 
subjects, 9 objects) 

#1 property 15ms 53ms 
#2 property 16ms 73ms 
#3 property 16ms 64ms 

Hospital Policy (78 rules, 8 
subjects, 9 objects) 

#1 property 15ms 75ms 
#2 property 15ms 76ms 
#3 property 16ms 92ms 

Hospital Policy (165 rules, 13 
subjects, 12 objects) 

#1 property 15ms 84ms 
#2 property 15ms 86ms 
#3 property 15ms 100ms 

Hospital Policy (330 rules, 26 
subjects, 12 objects) 

#1 property 15ms 100ms 
#2 property 16ms 96ms 
#3 property 17ms 103ms 

VI. CONC LUS ION AN D FUT URE WOR K 

In this paper, we proposed metrics to analytically evaluate 
the capabilities of ACPV tools, and designed oracles and 
test cases in both natural language and XACML formats 
to verify the functionality and evaluate the performance in 
run time. Based on these metrics, oracles and test cases, we 
demonstrated the evaluations of capabilities and performances 
of existing ACPV tools, and explored the effects of different 
factors on the performance of verification. We found that 
some important capabilities are lacking from existing tools. 
The proposed techniques and obtained results can help access 
control policy administrators to select the right ACPV tool for 
their requirements. 

This work intends to make an initial step towards devel­
oping standard approaches for evaluating ACPV tools. Future 
directions include enriching the set of reference metrics (e.g., 
through considering the properties of emerging access control 
models and ACPV tools), designing more robust oracles that is 
capable of evaluating more ACPV mechanisms, and designing 
large-scale test cases with many rules, subjects, and objects. 
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