

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

Combinatorial Testing of ACTS: A Case Study

Mehra N.Borazjany, Linbin Yu, Yu Lei

Department of Computer Science and Engineering

The University of Texas at Arlington

Arlington, Texas 76019, USA

{mehranourozborazjany,linbinyu,ylei}@uta.edu

Abstract— In this paper we present a case study of applying
combinatorial testing to test a combinatorial test generation
tool called ACTS. The purpose of this study is two-fold. First,
we want to gain experience and insights about how to apply
combinatorial testing in practice. Second, we want to evaluate
the effectiveness of combinatorial testing applied to a real-life
system. ACTS has 24637 lines of uncommented code, and
provides a command line interface and a fairly sophisticated
graphic user interface. The main challenge of this study was to
model the input space in terms of a set of parameters and
values. Once the model was designed, we generated test cases
using ACTS, which were then later used to test ACTS. The
results of this study show that input space modeling can be a
significant undertaking, and needs to be carefully managed.
The results also show that combinatorial testing is effective in
terms of achieving high code coverage and fault detection.

Keywords—Combinatorial Testing; Input Parameter
Modeling; Software Testing.

I. INTRODUCTION

Software failures are often the result of a faulty
interaction between input parameters. Empirical studies
show that most faults are caused by interactions among six
or fewer parameters [16]. Combinatorial testing, which has
proven very effective in fault detection, is a testing strategy
that applies the theory of combinatorial design to test
software systems. Given a system under test with k
parameters, t-way combinatorial testing requires all
combinations of values of t (out of k) parameters be covered
at least once, where t is usually a small integer. If test
parameters are modeled properly, all faults caused by
interactions involving no more than t parameters will be
detected. Combinatorial testing can significantly reduce the
cost of software testing while increasing its effectiveness.

Input Parameter Modeling is an important step in
combinatorial testing. An input parameter model (IPM)
contains a set of parameters, each of which has a set of
possible values [7]. There are important design decisions
and tradeoffs to be made in the modeling process. Different
testers may come up with different models, depending on
creative choices and experience [1]. Grochtmann and
Grimm [6] mentioned that finding parameters and values is
a creative process that can never be fully automated. Several
methods could be used for IPM, such as Category Partition
[7] or Classification Trees [6]. A basic eight-step process
that is custom-designed to be used with combinatorial
testing is suggested in [1].

Raghu Kacker, Rick Kuhn

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, Maryland 20899, USA

{raghu.kacker,kuhn}@nist.go

In this paper we present a case study in which we applied
combinatorial testing to a combinatorial test generation tool
called ACTS [21]. ACTS is developed jointly by the US
National Institute Standards and Technology and the
University of Texas at Arlington, and currently has more
than 900 individual and corporate users. This study was
conceived when a user of ACTS asked the question: Have
you tested ACTS using ACTS? The objective of this study
is two-fold. First, we want to gain experience and insights
about how to apply combinatorial testing in practice.
Second, we want to evaluate the effectiveness of
combinatorial testing applied to a real-life system.
Compared to extensive work that has been reported on the
theoretical side, there is a lack of empirical studies and
experience reports on applying combinatorial testing to real-
life systems [17].

The results of our study indicate that combinatorial testing
is very effective. In our study, we generated a total number
of 1105 tests, and the execution of these tests achieved
about 88% statement coverage, and detected 15 bugs in a
rather mature system.

The remainder of this paper is organized as follow.
Section 2 briefly reviews the existing work on input
parameter modeling and combinatorial testing. Section 3
gives a high-level introduction to the ACTS tool. Section 4
describes our approach to modeling input parameters for
ACTS. Section 5 reports the experimental results. Section 6
provides concluding remarks and our plan for future work.

II. RELATED WORK

We discuss related work in two areas, including input
parameter modeling (IPM) and empirical studies on
combinatorial testing.

Several approaches, e.g., Category Partitioning [7] and
Classification Tree [6], have been reported for the general
problem of identifying parameters and parameter values.
These approaches can be applied to combinatorial testing.
Grindal and Offutt suggest an input parameter modeling
method that is specifically designed for combinatorial
testing [1]. This method provides more guidance in the
parameter and parameter value selection. Beizer [10],
Malaiya [11], and Chen et al. [5] also addressed the problem
of parameter and value selection but did not describe the
complete processes.

Several empirical studies of combinatorial testing have
been reported that applied combinatorial testing on major

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.146

591

mailto:raghu.kacker,kuhn}@nist.go
mailto:mehranourozborazjany,linbinyu,ylei}@uta.edu

features of a mobile phone application testing [18], an email
system testing [19], satellite communications system testing
[22], configuration testing [23], browser compatibility
testing [24], network interface testing [25], and protocol
testing [26]. The studies show that combinatorial testing is
very effective and can be applied to a wide variety of
applications. The purpose of these studies was to evaluate
the effectiveness of combinatorial testing, whereas we also
try to gain experience and insights about the input modeling
process.

III. ACTS
ACTS is a test generation tool for constructing t-way

combinatorial test sets. Currently, it supports t-way test set
generation with t up to 6. The tool is implemented in Java
and provides both command line and graphical user
interfaces. In the following, we briefly discuss the core
features in ACTS.

• T-Way Test Set Generation: A system configuration is
specified by a set of parameters and their values. A test set
is a t-way test set if it satisfies the following property:
Given any t parameters, every combination of values of
these t parameters is covered in at least one test in the test
set. Several test generation algorithms are implemented in
ACTS. These algorithms include IPOG, IPOG-D, IPOG-F,
IPOG-F2, and PaintBall. ACTS supports two test
generation modes, namely, scratch and extend. The former
allows a test set to be built from scratch, whereas the latter
allows a test set to be built by extending an existing test set.

• Mixed Strength (or Relation Support): Relations are
groups of parameters with different strengths. ACTS
allows arbitrary parameter relations to be created, where
different relations may overlap or subsume each other. In
the latter case, relations that are subsumed by other
relations will be ignored by the test generation engine.

• Constraint Support: Some combinations are not valid
and must be excluded from the resulting test set. ACTS
allows the user to define invalid combinations by
specifying constraints. The specified constraints are taken
into account during test generation so that the resulting test
set will cover combinations that satisfy these constraints.

• Coverage Verification: This feature is used to verify
whether a test set satisfies t-way coverage, i.e. whether it
covers all the t-way combinations.

IV. INPUT PARAMETER MODELING

Testing methods are generally categorized as either white-
box or black-box testing. In white-box testing, expected
results are identified from the specification but inputs are
derived from the implementation. In black-box testing, both
input and expected results are identified from the specified
functional requirements. Because only the functionality of
the software module is of concern, black-box testing also
mainly refers to functional testing, a testing method
emphasized on executing the functions and examination of
their input and output data.

The first step is to select the testing method. The
functionality testing is used in this experiment, as it also
suggested by [1,12,13].

The second step was to identify the test parameters based
on system characteristics. We added “M_” at the beginning
of all identified parameters to make a distinction between our
model parameters versus those in the ACTS tool system
configurations. We call our model parameters the Test
Factors.

The next step was to identify the test values. Valid-values
boundary-values and invalid-values are typically suggested
to identify the values for the factors. In this experiment we
identified both valid and invalid values. We used valid
values to perform the normal functionality testing and invalid
values to perform robustness testing. We called our model
values the Test Values.

Next we discovered the relationship between the identified
test factors. Then we derived the abstract model and finally
introduced concrete values to the model and generated test
cases to perform both functionality testing and robustness
testing.

One of our design decisions in this experiment was the
strength of the test cases. We started from 2-way testing and
then we extended the generated test cases to perform 3-way
testing. This helped us to evaluate the impact of 2-way
testing and 3-way testing on code coverage and fault
detection.

Another design decision involves introducing constraints
to the model to support robustness testing. The ACTS tool
does not support robustness testing; therefore, we manually
introduced some constraints to ensure that in each test we
have only one invalid value among each combination of
values.

We will present our modeling process in the following
paragraphs. First we will discuss our model for system under
test. This is one of our important models as it contains
system configurations and core features of the ACTS tool.
Second, our command line interface model will be presented
and finally our graphical user interface model will be
discussed.
A. System Under Test Modeling

System under Test (SUT) contains the configuration
information of the system e.g. Parameters, Relations, and
Constraints. In order to model the SUT, we have to model its
components. The models for M_Parameters, M_Relations,
and M_Constraints are as follows:
• M_Parameters: The M_Parameters is defined to model
the parameter component in the ACTS. The parameter itself
has three parts; name, value, and type. Currently, four types
of parameters are supported: Enum, Boolean, Range, and
Integer. The Range type is basically a subset of Integer type.
Entering a range is a feature in a GUI for facilitating entering
values that are in range. It does not affect the system since it
interprets to integer and then stores. However when we test
the normal functionality of the GUI we consider the Range
type as well.

First, for each individual parameter, we identified two
factors; value per parameter and type. The name factor is not
important from the functionality perspective; therefore, we

592

did not consider it in our model. The M_Parameters factors
are shown in Table 1.

Table 1: M_Parameters test factors for one parameter
Type Value per parameter

Boolean Invalid
Integer [true,false] (default)
Range One or more (valid values)
Enum
Next, we discovered the relations between these factors.

There are some constraints between Type and value of a
parameter, e.g. the only valid value for a boolean type
parameter is the default value which is [true,false]. If the
type is Enum, its value is either an invalid value such as a
space character in robustness testing or a valid value in
functionality testing. We want to ensure that for each
parameter we cover all its type-value combinations at least
once. All possible type-value combinations of the
M_Parameters are shown in Table 2.

Table 2: Abstract IPM: type-value combinations of M_Parameters
Type-Value combinations
Boolean type with Invalid value
Boolean type with Default value
Boolean type with one or more value
Integer type with Invalid value
Integer type with one or more value
Enum type with Invalid value
Enum type with one or more value

Some of these combinations are useful for functionality
testing and others for robustness testing. The robustness
testing for the command line interface and the graphical user
interface (GUI) are different in some cases. E.g. in the GUI
when we select a Boolean type parameter, we cannot select
any value, since its feature is disabled. The value is
[true,false] by default. This is incorrect in the command line;
therefore, we applied this combination to perform
robustness testing in the command line interface. The gray
rows in Table 2 show the combinations that are only
applicable for robustness testing of the command line.

Also this model is an abstract model and we need
concrete values to perform functionality testing. The Integer
were selected so that we have positive, zero, and negative
values in our system. The value for Boolean type is a system
defined value and states as [true, false] by default. The
values for Enum parameters were selected so that we have a
large and small number of values in our system. Enum types
in ACTS will accept any character but space. So we will use
the space as an invalid value in robustness testing.

In the following examples we assigned concrete values to
our abstract model:
� Integer parameters with valid values:

o num1:[-1000, 10000]

o num2:[-2, -1, 0, 1, 2] (Range)

� Boolean parameters with Default values:
o bool1:[true,false]

� Enum parameters with one or more values:
o Enum1:[v1, v2, v3, v4, vS, v6, v7, v8, v9]

o Enum2:[1, 2]

Afterward, multiple parameters are taken into account.
Based on the ACTS specification, the system under test at
should have at least two parameters. We tested the system

with valid, invalid, and boundary numbers of parameters. We
did not find any relation between the number of parameters
and the parameter types; therefore we decided to not perform
testing on all the different combinations between them,
whereas our goal is to cover all types of parameters at least
once in the system under test. We decided to select one
Integer type and one Enum type parameter when the number
of parameters was two in the test, and selected at least one of
each type when the number of parameter was three or more
to accomplish our goal. The test factors for multiple
parameters are shown in Table 3.

Table 3: M_Parameters test factors for multiple parameters
Number of parameters Parameter Type

Invalid (0 or 1) Any type
Two One Integer and one Enum
Three or more At least one of each type
Finally, based on the information obtained, we generated

executable test cases with concrete values. The following
example is a parameter component of a system with seven
parameters which contains all the parameter types:

Abstract test case:

Number of parameters: Th e r m r
r e o o e
Parameter type: At l a t o e p r m t r o a h ty e e s n a a e e f e c p
num1:[-1000, 10000]

num2:[-2, -1, 0, 1, 2]
bool1:[true,false]
bool2:[true, false]
Enum1:[v1, v2, v3, v4, vS, v6, v7, v8, v9]
Enum2:[1, 2]

Enum3:[#]

• M_Relations: The ACTS tool allows arbitrary relations
between parameters to be created, where different relations
may overlap or subsume each other or may subsume the
default relation.

First we identified test factores for the M_Relations. The
ACST has two types of relations; default and user-
defined. ”Default” is the default relation of the system. This
relation is not removable and it contains all of the system
parameters and the current strength of the system. Also this
relation will be automatically added to the system under test.
The type and strength are two test factors for the
M_Relations. Strength can be a number from 2 to 6 but we
only performed our test on 2, 3, and 6. 2 and 6 are boundary
values. The test factors for the M_Relations are shown in
Table 4.

Table 4: M_Relations test factors for one relation
Type Strength

Default 2
User-defined (valid parameters) 3

User-defined (invalid parameters) 6
The robustness testing for the command line interface and

graphical user interface (GUI) are not the same in
M_Relations. The user in the command line interface allows
entering a relation to reference the parameters that do not
exist in the system.

At this time, we identified the test factors of multiple
relations. Based on the ACTS specification when the user
adds the user-defined relations to the system, three different
situations may occur. Because the default relation is not
removable, the user-defined relations will always overlap
with the default relation. They may also overlap with each

593

other: “Overlap”, or subsume each other: “Subsume”, or
subsume the default relation: “Subsume-default”. The test
factors for the user-defined relations are shown in Table 5.

Table 5: M_Relations test factors for user-defined relations
Number of user-defined

relations
Relation between user-defined and

default relations
0 Overlap
1 Subsume

Two or more Subsume the default
Our goal was to cover all of the different relations in the

system under test. When the number of user-defined
relations is zero it means that the system contains only the
“default” relation. When the number of user-defined
relations is one this means that the system contains two
relations; the default relation and the user-defined relation. In
this condition, we introduced a user-defined relation that
subsumes the default relation, “subsume-default”. When the
number of user-defined relations is two or more, the system
contains three or more relations; the default relation and two
or more user-defined relations. In this condition, we
introduced some user-defined relations that “subsume” or
“overlap” each other to accomplish our goal.

An example of different relations in a system with the
above mentioned values is shown in Table 6.

Table 6: Examople of M_Relations values (default strength 4)
I relation
values

Example

default [4,(bool1, bool2, Enum1, Enum2, num1, num2)]

Subsume-
default

[4,(bool1, bool2, Enum1, Enum2, num1, num2)] (default)
[5,(bool1, bool2, Enum1, Enum2, num1, num2)]

Overlap [2,(bool1, bool2, Enum1)]
[2,(Enum1, Enum2, num1)]

Subsume [3,(bool1, bool2, Enum1, Enum2, num1)]
[2,(bool1, bool2, Enum1, Enum2, num1)]

The numbers in the bracket represent the strength while
the symbols in are a list of parameter names that interact
with each other. The default strength in this example is 4 as
shown in the first row. The second row shows a relation that
subsumes the default relation in row one. The third and
fourth rows show the relations that overlap or subsume each
other respectively.
• M_Constraints: The M_Constraints is defined to model
the constraint component in the ACTS. Currently, three
types of constraints are supported: Boolean, Relational, and
Arithmetic. Each type will cover some symbols (operators)
shows in Table 7.

Table 7: Operators per constraint type
Boolean Relational Relational
or + =
and * >
=> / <
! - >

% <
In order to have a meaningful constraint we need to

generate a finite combination of symbols (operators) that are
well-formed according to applicable rules. We used ACTS to
generate all possible 2-way combinations between these
three types of operators. ACTS generated 25 different
combinations as shown in Table 8. For example three
operators in the first row are or, +, and >. We manually
generated a constraint that covers all of them e.g. p1+p2>1

or p3; p1 and p2 are two Integer type parameters and p3 is a
Boolean type parameter. We generated 25 different
constraints to cover all the different 2-way combinations
between the different types of constraints.

As this model is an abstract model and we also need
concrete values to perform testing. We used valid parameters
to generate the constraints in normal functionality testing and
one invalid parameter per constraint in robustness testing. An
invalid parameter in this case is a parameter that is either not
introduced to the system at all, or whose type does not match
with its operator type, e.g. a Boolean type parameter and the
arithmetic operator.

Afterward multiple constraints were taken into account.

The test factors for multiple constraints are shown in Table 9.

Table 8: 2-way combinations of constraints types

We identified three factors for testing multiple constraints.
The system under test can have zero, one, or multiple
constraints. In addition, adding constraints to the system may
introduce unsolvable constraints; therefore, the constraints

are not always solvable.
Table 9: M_Constraints test factors for multiple constraints

Number of constraints
for each test constraints relation Satisfiability

O related savable
1 Not_related unsolvable
Multiple
Furthermore, it is important to consider the relationship

between different constraints. The constraints can be either
related or not. The constraints are related if they share at
least one parameter. The constraints are not-related if they
don’t share any parameter.

The bellow example demonstrates the related constraints
(The constraints number 1 and 2 share the parameter n2).

1. (n2 >100) => !b2
2. e1="1" => !(n2 >100)
The bellow example demonstrates the not-related

constraints.
1. (n2 >100) =>!b2
2. e1="1" => !b1

594

These factors are independent and so we don’t need to find
the different combinations between them. However we need
to consider them at least once during our testing process.

Finally based on the information obtained, we generated
executable test cases with concrete values. The following
example is a system with six parameters and five solvable
related constraints in which the constraints cover the rows
number 2, 7, 15, 17, and 23 of Table 8:

Abstract test case:
Number of parameters: Three or more
Parameter type: At least one parameter of each type
Number of constraint: multiple
Constraint relation: related
Satisfiability: solvable

num1:[-1000, 10000]

num2:[-2, -1, 0, 1, 2]

bool1:[true,false]

bool2:[true, false]

enum1:[v1, v2, v3, v4, vS, v6, v7, v8, v9]

enum2:[1, 2]

enum2="1" && num2+ nnum1=9999

(nnum1*num2= 1000) => bool1

num2jnnum1 <=S00 => bool2

enum1="v1"11 num2-nnum1=9998

nnum1%num2<900 => num2<0

• M_SUT: As we mentioned before system under test
(SUT) contains the configuration information of the system
parameters, relations and constraints. In the previous sections
we identified test values for each of these components;
M_Parameters, M_Relations, and M_Constraints. We
combined them to form the M_SUT model. The M_SUT
factors and values are shown in Table 10.

Table 10: M_SUT test factors and values
 M_SUT

Test Factors Test Values

M_Parameters

Invalid
Two (1 Integer,1 Enum)
Three or more (at least 1 Integer,1 Enum, 1
Boolean)

M_Relations

Invalid parameter (just in CMD interface)
Default relation
Two (default and subsume-default)
Multiple relations (default plus at least 2
subsume)
Multiple relations (default plus at least 2
overlap)

M_Constraints

None
Unsolvable
Invalid
One
Multiple not-related constraints
Multiple related constraints

We decided that there is no interaction between M_SUT
factors; therefore, covering each value once would be
sufficient. We produced the abstract model of M_SUT which
is shown in Table 11. In total, 8 different system
configurations have been identified for M_SUT, four of
which were used in robustness testing.

Table 11: Abstract IPM of M_SUT
M_

Parameters
M_
Relations

M _Constraints M_SUT

Two Two
Multiple not-
related

2P_2R_multi-nC

Multiple Multiple Multiple related multiP_multiR_multi-rC

Multiple Multiple One multiP_multiR_oneC
Two Default None 2P_2R_noC
Invalid Default One InvalidP
Two Invalid One InvalidR
Two Default Invalid InvalidC
Two Default Unsolvable UnsolvedC
An example of a system under test with six parameters,

multiple relations, and multiple related constraints is shown
in Table 12(a). An example of SUT with “Invalid constraint”
is also shown in Table 12 (b).

Table 12: Example of a SUT
a. M SUT with multiple parameters, multiple relations and

multiple related Constraints (multiP_multiR_multi-rC)
Default degree of interaction coverage: 4
Number of parameters: 6

Parameters:
num1:[-1000, -100, 1000, 10000]
num2:[-2, -1, 0, 1, 2]
bool1:[true, false]

 bool2:[true, false]
Enum1:[v1, v2, v3, v4, vS, v6, v7, v8, v9]
Enum2:[1, 2]

Relations :
[4,(bool1, bool2, Enum1, Enum2, num1, num2)]
[S,(bool1, bool2, Enum1, Enum2, num1, num2)]

 [2,(bool1, bool2, Enum1)]
[2,(Enum1, Enum2, num1)]
 [3,(bool1, bool2, Enum1, Enum2, num1)]

Constraints :
enum2="1" && num2+ nnum1=9999
(nnum1*num2= 1000) => bool1
num2jnnum1 <=S00 => bool2
enum1="v1"11 num2-nnum1=9998
num1%num2<900 => num2<0

b. M SUT with invalid constraint (num3 doesn_t e_ist)
Default degree of interaction coverage: 4
Number of parameters: 6
Number of configurations: 0

Parameters:
num1:[-1000, -100, 1000, 10000]
num2:[-2, -1, 0, 1, 2]
bool1:[true, false]
 bool2:[true, false]
Enum1:[v1, v2, v3, v4, vS, v6, v7, v8, v9]
Enum2:[1, 2]

Relations :
[4,(bool1, bool2, Enum1, Enum2, num1, num2)]
[S,(bool1, bool2, Enum1, Enum2, num1, num2)]

Constraints :
(num1*num2>num2+100) => bool2!=bool1
num2jnum1 >=10 => !bool2
num1%num2<=3 => num1<4
bool1 =>Enum1="v1"
Enum2="1" && Enum1="v2" => num2=2 11 nnum3=0

The factors discussed in the above paragraphs are common
between two different interfaces of ACTS. The following
paragraphs; however, will identify the specific factors and
values for the command line interface and the GUI interface.
B. Command Line Interface Modeling

The various options are available in command line
interface as shown in Table 13. There are several test
generation algorithms implemented in ACTS. The user has
to select one of these algorithms in order to generate the tests.
“M_Algorithm” would be chosen as one of our factors with
the domain value of [IPOG, IPOG-D, IPOG-F, IPOG-F2,
PaintBall]. The IPOG algorithm is the most commonly used

595

algorithm; therefore, in this experiment we performed our
test on the IPOG and fixed the value of M_Algorithm to
“IPOG”. Covering IPM for other algorithms will be one of
our future works. Also, ACTS supports two test generation
modes, scratch and extend. Obviously “M_mode” is another
factor with the domain value of [scratch, extend].

Table 13: Command-Line IPM
Test

Factors
Test

Values
Description

M_mode scratch generate tests from scratch (default)

extend extend from an existing test set
M_algo ipog use algorithm IPO (default)

M_fastMode on enable fast mode
off disable fast mode (default)

M_doi specify the degree of interactions to be covered

M_output

numeric output test set in numeric format
nist output test set in NIST format (default)
csv output test set in Comma-separated

values format
excel output test set in EXCEL format

M_check on verify coverage after test generation
off do not verify coverage (default)

M_progress on display progress information (default)
off do not display progress information

M_debug on display debug info
off do not display debug info (default)

M_randstar on randomize don’t care values
off do not randomize don’t care values

Some of these options e.g. M_fastmode, M_check,
M_debug, M_randstar, and M_progressare are totally
independent from each other. Because there is no interaction
between them they must appear in the test only once. Figure
1 (a) shows the test cases generated by ACTS for the
command line interface with test strength t=2. We extended
it to t=3 to see whether we could detect more faults. Figure
1(b) shows some of the test cases generated by ACTS for
t=3.
C. Graphical User Interface Modeling

ACTS is a complex system with several features and
functionalities. The divide-and-conquer strategy is used to
model the GUI. We divided the system based on the system
use-cases.

The use-cases are often used to capture the system
functionalities. We derived the ACTS’s use-cases from the
user document and captured several features for the GUI
such as Create New System, Building the Test Set, Modify
system (add/remove/edit parameters and parameters values,
add/remove relations, add/remove constraints),
Open/Save/Close System, Import/Export test set, statistics,
and Verify Coverage.
• For each of these we designed a separate IPM to yield
several small IPMs rather than one large one. Some of the
IPMs have been reported in this paper and for the purpose of
brevity others will be reported in the appendix.
• Modify system: Modification is the process of changing
the system configuration. Designing the IPM for this feature
was very challenging because this feature has several
functionalities. We divided the modification to the
following smaller IPMs; add parameter, remove parameter,
modify parameter, add constraint, remove constraint, add

relation, and remove relation. Modify a parameter by itself
consists of three IPMs; change the name of the parameter,
add new value to the parameter, and delete a value from a
parameter. In the following we explain some of these
models.

(a) Test cases with t=2

(b) Part of test cases with extend t=2 to t=3
Figure 1: CMD test cases created by ACTS

•
• Add a parameter: First, adding a parameter; user has to
enter a parameter name to activate the add button. We call
this M_name in the model with [valid, invalid] test values.
The user may enter space or a special character or number
but these are invalid and the system will show the related
error messages.

The only acceptable name is string without any space.
Next selecting a type (M_type) and entering value for the
parameter (M_value); also these parameters can be input
parameters or output (M_in_out). In addition if the type of
the parameter is “Boolean” then the user cannot enter any
value because the system has a default value for the Boolean
types [true,false], also if type is “Range” the user cannot
enter any value but selecting the range. This range could be
an invalid range:

(-9000000 to 9000000)

596

Basically these are some invalid combinations between
the type and the value which we have to exclude from the
final test cases. As we mentioned before, ACTS has a
constraint support feature so we will add the following
constraints:

M type="Boolean" => M value="Default"

This means that if the type of the parameter is a
“Boolean”, the system will fix the value to “default”.

The model of “add parameter” is shown in Table 14. The
valid test cases generated by ACTS with test strength t=2
are shown in Figure 2.

Table 14: GUI, add parameter IPM
IPM of GUI, add parameter

Test Factors Test Values

M_sys_name

invalid (space, special_char, number, duplicate
name)
String only
String plus numeric

M_name

invalid (space, special_char, number, duplicate
name)
String only
String plus numeric

M_type

Boolean
Enum
number
range

M_in_out input
Output

M_value

Integer
String
default
Invalid (Space, duplicate value, invalid range of
numbers or characters)

The Invalid test cases generated by ACTS with strength
t=2 are shown in Figure 3.
• Change parameter name: The user can change the name
of a parameter. The new name should be a valid name (no
space). This parameter should also not be involved in any
constraint, otherwise the name has to change automatically
everywhere in the system in which this parameter is used.
The model of “change parameter name” is shown in Table
15. The valid test cases generated by ACTS with strength
t=2 are shown in Figure 4.

Figure 2: add parameter valid test cases t=2 created by ACTS

Figure 3: add parameter invalid test cases t=2 created by ACTS

M_Involve_in_constraint is a factor to guarantee we will
test parameters that are involved in the constraints if the
system has a constraint.

Table 15: GUI, change parameter name IPM
IPM of GUI, change parameter name
Test Factors Test Values

M_name

String only
String plus numeric
Invalid (space, special_char, number,
duplicate name)

M_Involve_in_constraint yes
no

M_System_has_constraint yes
no

Figure 4: change parameter name created by ACTS

• Building system: The IPM of build system is shown in
Table 16 and Table 17. All of the parameters are discussed
earlier because these are core features of ACTS. Valid IPM
is used to test the normal functionality of the system and
invalid IPM is used for robustness testing.

In the above paragraphs we discussed how we created our
models and used them as an input to ACTS tool, and how
ACTS give us all the combinations between factors for each
model. The number of models was 19 with 1105 generated
test cases.

We integrated the smaller IPMs together using an
interaction-based test sequence generation to completely test
the system. The reason we decided to use this method was
that some of the bugs would not be triggered by just testing
each use-case individually. It is important to test a sequence

597

of events in order to test the whole system completely. ACTS. In future work we will use tools such as GUI Ripper

Wenhua Wang et al. [14] present a test sequence generation to remove human error in this part of the experiment [28].

approach for covering all interactions between any two

pages of a web application.

Table 16: GUI, Build valid IPM
Valid IPM of GUI, build system
Test Factors Test Values

I mode scratch
extend

I algorithm ipog
M_Strength 2,4,6

M_randomize on
off

M_progress on
off

M_SUT

2P_2R_multi-nC
multiP_multiR_multi-rC
multiP_multiR_oneC
2P_2R_noC

Table 17: GUI, Build invalid IPM
Invalid IPM of GUI, build system
Test Factors Test Values

I mode scratch
extend

I algorithm ipog
M_Strength 2,4,6

M_randomize on
off

M_progress on
off

M_SUT

InvalidP
InvalidR
InvalidC
UnsolvedC

We can generalize this algorithm to be able to use it in
combinatorial testing of systems with a GUI as well. First we
generated a navigation graph of our use cases. There exists
an edge from one node m to another node n if node n can be
visited immediately after node m through a direct link. Each
node is a use-case. A simplified form of ACTS’s use-cases
navigation graph is shown in Figure 5. Using the navigation
graph was very helpful because not all the combinations
between the use-cases are feasible. The graph helped to
visualize the feasible and infeasible sequences.

Next we generated a test sequence to satisfy pairwise
interaction coverage. The term “pairwise interaction” refers
to interaction between two nodes. Let G = (V, E, n0) be a
navigation graph. Formally, a pairwise interaction in G is an
ordered pair (m, n), where m and n are two nodes, and there
exists a path from m to n in G. Pairwise interaction coverage
requires that a set of paths be selected from a navigation
graph as test sequences so that every ordered pair is covered
in at least one of those test sequences. We generated all of
the ordered pairs for use-cases from the navigation graph.

In next Section we provide some examples of the
sequences that lead us to find the faults in ACTS. In this
experiment we limited the length of sequences to be six. The
whole process, from generating the graph, to selecting the
proper interactions, to selecting the sequence of events, was
performed manually. In this paper our focus was on IPM for

Figure 5: ACTS's Navigation Graph

V. EXPERIMENTAL RESULTS

The experiments are designed to answer the following
questions: How much code coverage can be achieved? How
many faults can be detected?

The design model for ACTS has 19 valid IPMs which are
shown in Table 18, yielding 1105 generated test cases. Code
coverage data are shown in Figure 6 and Figure 7. We used
clover to collect code coverage [15]. We ran clover with
eclipse and executed our tests on ACTS version 1.2. ACTS
statistics are shown in Table 19. e.g. number of
uncommented lines of code in ACTS are 24637.

Table 18: IPM of ACTS
Model Number of Factors Max number of values

CMD 7 8
BUILD 6 8
NEW SYSTEM 4 5
ADD PARAM 4 5
REMOVE PARAM 2 2
CHANGE NAME 2 2
ADD VALUE 3 5
REMOVE VALUE 3 3
ADD RELATION 2 4
REMOVE RELATION 2 4
ADD CONSTRAINT 3 3
REMOVE CONSTRAIN 2 5
OPEN 3 4
CLOSE 2 2
VERIFY 2 2
IMPORT 3 4
EXPORT 2 4
SAVE 3 2
STATISTICS 3 3

Clover gave us the code coverage for all of the test cases.
While we executed our tests, clover highlighted the parts of
the source code that were executed. This made it easy to
identify the code that was never called during our testing
process. It is shown in Figure 6 that our tests covered more
than 88% of system statements. Figure 7 shows different
packages of ACTS. We covered 99% the Console package.

598

t

Other packages are more related to the GUUI. Packages, e.g.
Engine, Model, Util, GUI, and Data are ccommon between
different algorithms. We only performedd testing on the
“IPOG” algorithm. There are five mmore algorithms
implemented in ACTS. Therefore, we havve not exercised
some statements in our experiments.

Methods

Statements 88.1
79.3

11.9

81.2 18.8
20.7

0% S0% 100%

Covered Uncovered
Figure 6: ACTS Effectiveness Mettrics

data

model

constarints

util 87
94.4

87.7
100

8S.4
82.1
79.4

99.3

13
S.6

12.3
0

14.6
17.9
20.6

0.7

0% 20% 40% 60% 80% 100%

Covered Uncoveredd

Figure 7: Statement coverage for ACTS packages
We classified detected faults in ACTS intto four groups as

shown in Table 20. The First group is the faults related to
functionality testing of graphical user interfface. The second
group is the faults related to robustness tessting of graphical
user interface. The third group is the ffaults related to
functionality testing of command line interrface. The fourth
group is the faults related to robustness testting of command
line interface.

Table 19: ACTS Statistics
LOC (line of code) 38,165
NC LOC 24,637
Number of Statements 13,642
Number of Branches 4,696
Number of Methods 1,693
Number of Classes 153
Number of Files 110
Number of Packages 12
The total number of detected faults is 15, 10 of which

detected by functionality testing and 5 of tthem detected by
robustness testing. In our experiment somme of the faults
detected in the GUI occurred in the commaand line interface
as well. One possible reason that we only deetect 15 faults out
of almost 1000 tests is because the ACTS is pretty mature
software, well documented, stable, and w widely used, Also
some of the detected bugs are single mode faaults.

The following are some examples of thee detected faults.
The red lines in Figure 3 show the test casess that detect bugs.

For example, the first line is a buug with the scenario that
system let the user enter a spacee character, which is an
invalid value for the Enum type. The second red line is
another bug with the scenario thatt the system let the user
select an invalid range for the Rannge types. Both of these
bugs are detected during robustnesss testing of GUI. The red
line in Figure 4 also shows anotheer detected bug with the
scenario that the system lets the useer change the name of the
parameter that is involved in the connstraints.

Table 20: Faults Cla ssification
Fault Groups Nummber of Detected Faults

functionality testing of GUI 10
robustness testing of GUI 5
functionality testing of cmd 1
robustness testing of cmd 1

The following are two examples of the detected faults of
the sequences that lead us to find the fault in ACTS. Assume
L is our node list. L1 and L2 are tw o different test sequences
that led us to detect three different bbugs in ACTS.
• L1 = {open, import, build (e_tetend mode), save, close}

In this scenario, the user opens aa system, imports the test
set and builds it. An error was dettected when we built the
system in this scenario. The imported test set had an invalid
format, which caused the buildd process to throw an
exception. This error was not deteccted by functional testing
of the import use-case individuallly. The import method
failed to correctly set all the valuees that are needed by the
back-end system parameters. Howevver, this problem was not
observed from outside when we te sted the import use-case.
The build operation after the impport operation helped to
expose the incorrect state as an exception that can be
observed from outside.
• L2 = {open, build, Edit a parammeter, build (e_tend
mode)}

In this scenario, the user openns a system, builds the
system, and edits a parameter. The Edit operation, as
explained in “modify parameter” seection, allows values of a
parameter to be added or removved. After modifying a
parameter, the user builds the systtem again. An error was
detected after we called the build mmethod again, this time in
the extend mode. This error was noot detected by testing the
“modify parameter” use-case individdually. Similar to L1, the
modify method failed to correctly s et all of the values to the
back-end system parameters. This problem was, however,
only be exposed when we built the ssystem again.

VI. THREATS TO VVALIDITY

Threats to internal validity arre factors that may be
responsible for the experimentaal results, without our
knowledge. We have tried to auttomate the experimental
procedure as much as possible, in ann effort to remove human
errors. We generate our test case s with ACTS, which is
automated, and we executed them oon the command interface
of ACTS automatically. We used clover, which is a third
party application to measure our codde coverage.

Threats to external validity occuur when the experimental
results could not be generalized to oother programs. We used
ACTS, which is only one applicatioon. More experiments on

599

other programs can improve the external validity of our
study.

VII. CONCLUSION AND FUTURE WORK

This paper presents a case study on applying
combinatorial testing to test a combinatorial test generation
tool called ACTS. The main challenge of this study was
modeling the input space of ACTS in terms of a set of
parameters and values. In particular, significant effort was
spent on modeling the System Under Test (SUT), which may
have different types of parameters, relations and constraints,
and on modeling the GUI interface, for which several
smaller models were created and tested and then integrated
together. The results of this study indicate that input space
modeling is a significant task, and it needs to be managed
carefully. The results of this study also show that
combinatorial testing is effective in terms of achieving high
code coverage and fault detection.

We plan to conduct similar studies of other real-world
applications. The goal is to develop a set of guidelines, with
significant examples, that can be used by practitioners to
apply combinatorial testing in practice.

VIII. ACKNOWLEDGMENT

This work is supported by two grants (70NANB9H9178
and 70NANB10H168) from Information Technology Lab of
National Institute of Standards and Technology (NIST) and a
grant (61070013) of National Natural Science Foundation of
China.

IX. REFRENCES

[1].	 Grindal, M. and Offutt, J. (2007) Input Parameter Modeling for
Combination Strategies in Software Testing, Proceedings of the
IASTED International Conference on Software Engineering
(SE2007), Innsbruck, Austria, 13-15 Feb 2007, pages 255-260

[2].	 Grindal, M., Offutt, J. and Mellin, J. (to appear) Managing
Conflicts when Using Combination Strategies to Test Software,
Proceedings of the 18th Australian Conference on Software
Engineering (ASWEC2007), Melbourne, Australia, 10-13 April
2007.

[3].	 Grindal, M, Offutt, J, and Andler, S. F. (2005) Combination
Testing Strategies: (A) Survey, publisher Wiley, Software Testing,
Verification, and Reliability, volume 15, number 2, pp. 167-199.

[4].	 Grindal, M. (2007) Handling Combinatorial Explosion in Software
Testing. Thesis Dissertation no 1073, Department of Computer and
Information Science Linköpings universitet. ISBN 978-91-87515
74-9. ISSN 0345-7524

[5].	 T. Chen, P.-L. Poon, S.-F. Tang, and T. Tse. On the Identification
of Categories and Choices for Specification-based Test Case
Generation. Information and Software Technology, 46(13):887–
898, 2004.

[6].	 M. Grochtmann and K. Grimm. Classification Trees for Partition
Testing. Journal of Software Testing, Verification, and Reliability,
3(2):63–82, 1993.

[7].	 T. J. Ostrand and M. J. Balcer. The Category-Partition Method for
Specifying and Generating Functional Tests. Communications of
the ACM, 31(6):676–686, June 1988.

[8]. http://www.pjcj.net/testing_and_code_coverage/paper.html by
Paul Johnson

[9]. T. Chen, S.-F. Tang, P.-L. Poon, and T. Tse. Identification of
Categories and Choices in Activity Diagrams. In Proceedings of

the Fifth International Conference on Quality Software (QSIC
2005) 19-20 September 2005, Melbourne, Australia, pages 55–63.
IEEE Computer Society, September 2005.

[10]. B. Beizer. Software Testing Techniques. Van Nostrand Reinhold,
1990.

[11]. Y. K. Malaiya. Antirandom testing: Getting the most out of black-
box testing. In Proceedings of the International Symposium on
Software Reliability Engineering, (ISSRE’95), Toulouse, France,
Oct, 1995, pages 86–95, Oct. 1995.

[12]. H. Yin, Z. Lebne-Dengel, and Y. K. Malaiya. Automatic Test
Generation using Checkpoint Encoding and Anti-random Testing.
Technical Report CS-97- 116, Colorado State University, 1997.

[13]. D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The
Combinatorial Design Approach to Automatic Test Generation.
IEEE Software, 13(5):83–89, September 1996.

[14]. Wenhua Wang, Sreedevi Sampath, Yu Lei, Raghu Kacker. An
Interaction-Based Test Sequence Generation Approach for Testing
Web Applications, IEEE International Conference on High
Assurance Systems Engineerng, December 2008.

[15]. Clover: Code Coverage Tool for Java.
http://www.cenqua.com/clover/.

[16]. Kuhn R, Wallace D, Gallo A. Software fault interactions and
implications for software testing. IEEE Transactions on Software
Engineering 2004; 30(6):418–421.

[17]. C. Nie and H. Leung. A survey of combinatorial testing. ACM
Computing Surveys (CSUR), 43:11:1–11:29, 201

[18]. Krishnan, R.,Krishna, S. M., Nandhan, P. S. 2007. Combinatorial
Testing: Learnings From Our Experience. Sigsoft Softw. Engin.
Notes 32, 3, 1–8.

[19]. Burr, K. and Young, W. 1998. Combinatorial Test Techniques:
Table -based Automation, Test Generation, And Code Coverage.
In Proceedings Of The International Conference On Software
Testing Analysis And Review. 503–513.

[20]. Lei, Y., Carver, R. H., Kacker, R., and Kung, D. C. 2007. A
Combinatorial Testing Strategy for Concurrent Programs. Softw.
Test., Verif. Reliab. 17, 4, 207–225.

[21]. http://csrc.nist.gov/groups/SNS/acts/documents/comparison
report.html

[22]. Huller, J. 2000. Reducing Time to Market with Combinatorial
Design Method Testing. In Proceedings of The The International
Council On Systems Engineering (Incose) Conference.

[23]. Xu, B., Nie, C., Shi, L., Chu, W. C., Yang, H., and Chen, H. 2003.
Test Plan Design for Software Configuration Testing. In Software
Engineering Research and Practice, Csrea Press, 686–692.

[24]. Xu, L., Xu, B., Nie, C., Chen, H., and Yang, H. 2003b. A Browser
Compatibility Testing Method Based On Combinatorial Testing. In
Proceedings of the International Conference on Web Engineering
(Icwe. Springer, Berlin, 310–313.

[25]. Williams, A. W. And Probert, R. L. 1996. A Practical Strategy for
Testing Pair-wise Coverage of Network Interfaces. In Proceedings
of the 7th International Symposium on Software Reliability
Engineering (Issre’96). Ieee Computer Society, Los Alamtos, Ca,
246.

[26]. Burroughs, K., Jain, A., and Erickson, R. 1994. Improved Quality
Of Protocol Testing Through Techniques Of Experimental Design.
In Proceedings of the IEEE International Conference on Record,
’serving Humanity through Communications.’ Vol. 2. 745–752.

[27]. A. M. Memon and Q. Xie, “Studying the fault-detection
effectiveness of GUI test cases for rapidly evolving software,”
IEEE Transactions on Software Engineering, vol. 31, no. 10, pp.
884–896, 2005.

600

http://csrc.nist.gov/groups/SNS/acts/documents/comparison
http://www.cenqua.com/clover
http://www.pjcj.net/testing_and_code_coverage/paper.html

