

Efficient Verification of Equivalence Classes and

Simultaneous Testing Using Two-layer Covering Arrays

D. Richard Kuhn1, Raghu N. Kacker1, Yu Lei2, Jose Torres-Jimenez3

1 National Institute of 2Computer Science & Engineering 3CINVESTAV-Tamaulipas,
Standards and Technology University of Texas at Arlington Ciudad Victoria, Tamaulipas,

Gaithersburg, MD 20899, USA Arlington, TX, USA Mexico
{kuhn, raghu.kacker}@nist.gov ylei@uta.edu jtj@cinvestav.mx

Abstract – This short paper introduces a method for verifying
equivalence classes for module/unit testing. This is achieved
using a two-layer covering array, in which some or all values of
a primary covering array represent equivalence classes. A
second layer covering array of the equivalence class values is
computed, and its values substituted for the equivalence class
names in the primary array. It is shown that this method can
also detect certain classes of errors without a conventional test
oracle, and an illustrative example is given.

Keywords-component; combinatorial testing; factor covering
array; oracle problem; verification and validation (V&V); t-way
testing;

I. INTRODUCTION

In combinatorial testing, as in other approaches,
equivalence classes are an essential component. By
definition, an equivalence class is a set of variable values
where all such values are treated the same by the unit under
test. For example, a module that computes shipping cost
based on distance d and weight w, may have a few classes
for weight, where packages under 1 pound are in one class,
1 to 10 pounds in another, and over 10 in a third class. If
the module is specified by some function f(d,w), then f(d,
0.2) = f(d, 0.9), for equal values of d. However, we expect
f(d, 0.2) to be different from f(d, 5.0), because two different
weight classes are involved.

In general, it should be possible to substitute any value
from an equivalence class for any other value from the same
class, and leave the result unchanged. If the result changes,
then either a) the classes have not been defined correctly for
this unit of code; or 2) there is an error in the code. (Note
that it is possible that equivalence class values for a
particular variable may not be the same in all modules using
the variable. For example, another section of the shipping
code might have different classes used in deciding what size
shipping container to use.)

Therefore comparing the result of exercising code with
equivalence class values that are expected to produce equal
results can be an effective form of verification. If results
vary where they should not, then it is possible that
equivalence classes have not been defined correctly, and
consequently must be fixed before developing unit tests, or
a coding error has been discovered. Combinatorial methods
can be used to make this process efficient. The process

provides a basic check on correctness, detecting a
significant class of faults, and it can be fully automated and
thus suitable for incorporation into a development
environment. Because the testing aspect of this method is
based on matching outputs for the elements of equivalence
classes, we refer to it as equivalence class value match
testing, or simply match testing.

II. METHOD

1. For each variable for which equivalence classes will be
established, designate classes and their values as Ci,j,k,
where i indexes variables, j indexes classes, and k indexes
values for variable Ci, class j.

2. Compute a primary covering array where factors are
variables and levels are variable values for variables without
equivalence classes, and equivalence class designations Ci,j

for variables with equivalence classes.

3. For each row of the primary array, compute a secondary
covering array of the factors that are variables with
equivalence classes, where levels for each factor Ci,j are the
values Ci,j,k of that class. For each row in the secondary
array, substitute its values for the equivalence classes Ci,j in
the row from the primary array. Thus if the primary array
has M rows and each secondary array has N rows, then a full
test array with M×N rows is created. While this process may
result in a very large number of tests, a test oracle is not
required, and in general it should be possible to run tests
independently of each other. It would be entirely practical
to spread millions of tests across hundreds of processors, for
example.

III. TUTORIAL EXAMPLE

We illustrate the process with a simple example of
access control. The rules are that access is allowed if (1)
subject is an employee and the time is during working hours
and it is a weekday; (2) subject is an employee with
administrative privileges; or (3) subject is an auditor and it
is a weekday. Based on these rules, equivalence classes can
be defined for time of day and day of the week. This is
implemented in the code as minutes after midnight for time,
with three classes: (0..0539), (0540..1020), (1021..1439).
Days of the week can be divided into two equivalence
classes, for weekend and weekdays, designated as (1,7) and
(2..6) respectively.

For readability in this simple example, we have
designated different results for different segments of the
code as return values of 1, 2, and 3. As noted above, in
reality results would be defined and differentiated by some
predicate, not necessarily a single possible value. For
instance, in our access control example below, decision 3
might be recognized by system effects such as the
appearance of an auditor role in the system log file.

We illustrate the method using the small program in
Figure 1. Faults are introduced into various versions by
mutating relational operators in the function
access_chk(), shown in bold font.

#include <stdio.h>

static int START = 0540;

static int END = 1020;

static int MON = 2;

static int FRI = 6;

int emp; // employee

int d; // day, 1..7

int t; // time, minutes

int p; // priv

int aud; // auditor

main(argc, argv)

int argc;

char *argv[];

{

if(argc < 6) {fprintf(stdout, "Error: Command

line arguments are\n"); exit(1); }

emp = atoi(argv[1]);

d = atoi(argv[2]);

t = atoi(argv[3]);

p = atoi(argv[4]);

aud = atoi(argv[5]);

fprintf(stdout, "%d\n", access_chk());

exit(0);

}

int access_chk() {

if (emp && t >= START && t <= END &&

d >= MON && d <= FRI) return 1;

else

if (emp && p) return 2;

else

if (aud && d >= MON && d <= FRI)

return 3;

else

return 0;

}

Figure 1. Example program under test.

Test Generation
The primary array includes factors for the two

equivalence classes and other variables.
emp: boolean

day: (1,7), (2,6) -> classes A1, A2

time: (0,0539), (0540,1020), (1021, 1439)

-> classes B1, B2, B3

priv: boolean

aud: boolean

Factors and levels used to generate the primary covering
array are thus:

emp (bool) : 0,1

day (enum) : A1,A2

time (enum): B1,B2,B3

priv (bool): 0,1

aud (bool) : 0,1

Pairwise coverage is obtained with the following array:
0,A2,B1,1,1

1,A1,B1,0,0

0,A1,B2,1,0

1,A2,B2,0,1

0,A1,B3,0,1

1,A2,B3,1,0

Secondary arrays are computed to implement pairwise tests
for each row of the primary array. Thus the first row
generates:

0 2 0 1 1

0 6 0 1 1

0 2 539 1 1

0 6 539 1 1

Test Results
If equivalence classes have been defined correctly, and

there are no errors in the code, then results should be the
same (as defined by some predicate) for each set of tests in
the secondary array generated from one row of the primary
array. Thus for the correct code, results are as follows.

3333

0000

0000

1111

0000

2222

row corresponds to one row of the primary covering array,
and each column gives the result for one of the secondary
array tests generated for the corresponding primary array
row. Note that all values are identical for columns of a
given row. Because the equivalence classes have been
defined correctly and the code is correct, equivalent values
produce the same results.

With the mutation below, where t <= END has been
replaced with t == END,

if (emp && t>=START && t==END

&& d>=MON && d<=FRI) return 1;

the result is as follows. Note that values differ in the fourth
row, because the elements of the equivalence classes for
time of day no longer produce the same result. Thus we
have detected an error in the code.

3333

0000

0000

3311

0000

2222

A set of 10 mutated programs was generated, with the fault
detection results as shown in Table I.

TABLE I. FAULT DETECTION RATES FOR SEEDED ERRORS

Version Mutated Code Fault
detected

1 (emp && t>START && t<=END &&
d>=MON && d<=FRI)

YES
2 (emp && t>=START && t==END &&

d>=MON && d<=FRI)
YES

3 (emp && t>=START && t<=END &&
d>=MON && d<FRI)

YES
4 (emp && t>=START && t<=END &&

d>MON && d<=FRI)
YES

5 (aud && d >= MON && d<FRI) YES
6 (emp && t>=START || t<=END &&

d>=MON && d<=FRI)
NO

7 (emp && t>=START && t<=END ||
d>=MON && d<=FRI)

NO
8 (emp && t>=START && t<=END ||

d>=MON || d<=FRI)
YES

9 (aud && d >= MON || d <= FRI) YES
10 (aud && d <= MON || d <= FRI) YES

IV. REALISTIC EXAMPLE

To illustrate the application of this method as it can be
applied in practical testing, we use a Traffic Collision
Avoidance System module [6], which has been included in
many studies of test methods. Although small, the TCAS
module code is a realistic example for match testing, which
as noted previously is intended for module or small unit
testing. The code includes a set of 41 versions with seeded
faults. Roughly two thirds of the faults are simple changes
such as replacing a constant with another constant, replacing
>= with >, or dropping a condition. The TCAS program has
12 input variables specifying parameters of two aircraft,
such as speed and position, and one output variable. For
testing studies, tests are run against the set of faulty versions
to determine which can be detected by the test set.

For this example, we developed equivalence classes for
three of the variables and produced two separate two-layer
test covering arrays using 3-way×3-way and 4-way×3-way
designs. Results are shown in Table II.

faults
Primary x secondary #tests total detected
3-way x 3-way 285x8 2280 6
4-way x 3-way 970x8 7760 22

Although a large set of tests is required, the number is
practical for most applications because no test oracle is
needed. Once equivalence classes have been defined, tests
can be run in parallel if desired. Results are encouraging, as
more than half of the 41 faults were detected with the
second configuration. Because match testing can be fully
automated, these faults could be detected without human
effort required to develop test oracles.

V. DISCUSSION

A significant class of faults can be detected with this
method, which can be automated and implemented without
the need for conventional test oracles. Using both primary
and secondary covering arrays makes it possible to find
faults that might not be discovered with a simpler
implementation of the equivalence class verification. Table
III shows the number of faults detected using comparisons
of results for various combinations of the equivalence class
values for the example in Figure 1. In the table, “L” refers
to the lower value of an equivalence class and “H” refers to
the higher value. Thus “LL/HH” indicates comparing
results for the lower values of day and time variables with
results for higher values of these. The number of faults
detected varies, ranging from 2 to 8, and only two of the
value selections detect eight faults.

TABLE III. FAULT DETECTION WITHOUT SECONDARY ARRAY.
faulty
version

LL/
HH

HL/
HH

LH/
HH

LL/
HL

LL/
LH

HL/
LH

1 Y Y N N Y Y
2 Y Y N N Y Y
3 Y N Y Y N Y
4 Y N Y Y N Y
5 Y N Y Y N Y
6 N N N N N N
7 N N N N N N
8 Y N Y Y N Y
9 Y N Y Y N Y

10 Y N Y Y N Y

The example in Figure 1 also illustrates the limitations of
this method. Note that faults in versions 6 and 7 are not
detected. Detecting either of these mutations requires the
faulty expression to evaluate to a different truth value than
the correct version, but no set of values from the
equivalence classes used in Section III will produce this
result.

The method is not limited to simple predicates as
included in the example, and can be effective in any case
where the faulty predicate maps elements of a single
equivalence class to two or more different results. One
complication is that equivalence classes may be defined by
more than one relation. Returning to the example in the
introduction, the specification may include different
processing for cases specified by multiple conditions. The
constraint handling features of ACTS [1][2] or other
covering array generators may be applied to produce
equivalence classes for the primary array that are then
expanded in the secondary array.

VI. RELATED WORK

Few methods exist for testing without conventional test
oracles. One recent approach is metamorphic testing [3],
which uses one or more metamorphic relations defining
properties relating test inputs and outputs, with subsequent

transformations of test data that can then be checked for
conformance to the metamorphic relations. For example,
since cos(x) = cos(x+360), test output of a cosine function
for x would be compared with test output of the function for
x+360, with a difference indicating an error. Partial oracles
are another approach somewhat different from conventional
testing, in which properties of output are checked, rather
than expecting a specific output value for a given input. A
third approach is the established practice of including
assertions in code, to ensure that various properties are
maintained during execution.

While not using a test oracle in the conventional sense,
with a particular output expected for a given input, all of
these methods rely on some specification relating test inputs
to outputs. Match testing does also, in that we use
information that is latent in the specification of equivalence
classes. Metamorphic testing, partial oracles, and assertion
checking, in contrast, use specification information that
relates inputs to outputs directly using some property.
Match testing does not conflict with these approaches, and
might be used to improve their efficiency.

VII. CONCLUSIONS

The method described here is designed to be incorporated
into a test development environment, and can be fully
automated. Test designers may define equivalence classes
and have these verified by executing the code and
comparing results of each class. While not necessarily
suitable for large modules, the method can provide a basic
check on the soundness of equivalence classes, while
detecting faults that may escape detection with conventional
testing. In future work, we plan to integrate this method into
a test development environment such as ComTest [4], which
is integrated with CITLab [3]. A large-scale evaluation of
the method is planned, applying it to a set of realistic sized
programs. We also plan to investigate special considerations
for floating point variables, and the possibility of generating
a covering array using a sampling of each equivalence class
involved. Another strategy to be considered is replacing the
secondary covering array with tests derived using the base
choice criterion [7], in which values are varied individually,

one variation per test, holding all other values constant.
Base choice has been shown to provide a significant degree
of combination coverage [8], 1+t(v-1)/v t, so it may provide a
suitable tradeoff between effectiveness and number of tests
in the secondary array.

Acknowledgement: Many thanks to Dylan Yaga at NIST
for a careful reading of the paper and suggesting
improvements.

Disclaimer: Certain products may be identified in this document,
but such identification does not imply recommendation by the US
National Institute of Standards and Technology or other agencies
of the US Government, nor that the products identified are
necessarily the best available for the purpose.

REFERENCES

[1]	 Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG:
A general strategy for t-way software testing. 14th
international conference on the engineering of computer-
based systems, 2007, pp 549–556

[2]	 ACTS Home Page, http:// csrc.nist.gov/acts/

[3]	 T.Y. Chen, T.H. Tse, and Z.Q. Zhou, "Fault-based testing
without the need of oracles", Information and Software
Technology, vol. 45, no. 1, pp. 1–9, (2003).

[4]	 https://github.com/comtest/comtestnist/releases
[5]	 A. Gargantini, P. Vavassori, “CITLab, a Laboratory for

Combinatorial Interaction Testing”, Intl. Workshop on
Combinatorial Testing, 2012.

[6]	 M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. Proc. Sixteenth Int.
Conf. Software Engineering, pp. 191–200, May 1994.

[7]	 P. E. Ammann, A. J. Offutt, (1994). Using formal methods to
derive test frames in category-partition testing, Proc. Ninth
Annual Conf. Computer Assurance (COMPASS'94),
Gaithersburg MD, IEEE Computer Society Press, pp. 69-80.

[8]	 D.R. Kuhn, I. Dominguez Mendoza, R.N. Kacker, Y.Lei,
(2013, March). Combinatorial coverage measurement
concepts and applications. In Software Testing, Verification
and Validation Workshops (ICSTW), 2013 IEEE Sixth
International Conference on (pp. 352-361). IEEE.

https://github.com/comtest/comtestnist/releases

