
Isolating Failure-Inducing Combinations in
Combinatorial Testing using Test
Augmentation and Classification

Kiran Shakya Tao Xie

North Carolina State University

Yu Lei

University of Texas at Arlington

Nuo Li

ABB Robotics

Raghu Kacker Richard Kuhn

Information Technology Lab
NIST

CT 2012 workshop

• Software normally has faults.
• Given a System Under Test (SUT) with N input

parameters, a failure is usually caused by
interaction among k parameters where k << N.

• Problem:
– Generating CT for even a small k (such as 5 or

6) is computationally expensive for SUT with
large N.

– CT results may be insufficient for diagnosis due
to failures caused by interactions among 5 or
more parameters (aka faulty combinations)

Motivation

Background

CT Suite Results Classification Failure Inducing
Combination

CT Suite Results Classification Failure Inducing
Combination

Test Suite
Augmentation Feature Selection

Our Approach

Previous Approach

Problem

1. Often its hard to judge the size of faulty
interactions.

2. Generating CT of higher strength is expensive.
3. Fault diagnosis on lower strength CT results

may not be provide good results.

Agenda

1. Problem
2. Example
3. Approach
4. Proof of Concept
5. Conclusion

Example

 Consider TCAS v16
• # of Parameters: 12
• Total Input Space: 3 X 23 X 3 X 2 X 4 X 102 X

3 X 2 X 3 = 1036800
 Assume we don’t know in advance the nature

of failures.

Example (contd..)

Parameters Values
Cur_Vertical_Sep 299, 300, 601
High_Confidence 0, 1
Two_of_Three_Reports_Valid 0, 1
Own_Tracked_Alt 1, 2
Own_Tracked_Alt_Rate
Other_Tracked_Alt 1, 2
Alt_Layer_Value 0,1,2,3
Up_Separation 0, 399, 400, 499, 500, …
Down_Separation 0, 399, 400, 499, 500, …
Other_RAC 0, 1, 2
Other_Capability 1, 2
Climb_Inherit 0,1

Example (continue..)

CT Strength Failing/Total Number of
Tests

2-way 0/156

3-way 1/461

4-way 6/1450

5-way 14/4309

Characteristic of Failure (TCAS v16)

Example (continue..)

Result of Classification Tree:

• (EMPTY)

Reason:

• Data Set is Highly Unbalanced.
• Not enough Failing Tests.

Approach

Labeled Test
cases

Test
Augmentation

Feature Selection

Classification
Model Ranking

Combinatorial
Tests

Test Execution

Faulty
Combinations

Test Augmentation

 Use OFOT 1 (one factor one time) method to
generate additional tests from failing tests.
Ex: Given a Failing Test:
 601,1,1,1,600,2,3,740,400,0,2,1

OFOT generates
300,1,1,1,600,2,3,740,400,0,2,1
299,1,1,1,600,2,3,740,400,0,2,1
601,0,1,1,600,2,3,740,400,0,2,1
…..

1. C. Nie and H. Leung, “The minimal failure-causing schema of combinatorial testing,” 2011.

Test Augmentation (continue..)

 Maximum number of tests generated by OFOT is

where m is total no of failing tests, k is the number
of parameters, and ai is distinct input values for each
parameter.
 This is far less than the number of tests required to
build higher strength array.
 For Example: 6-way Tests: 6,785 vs OFOT: 612

Test Augmentation (continue..)

 Run the classification tree algorithm
 High_Confidence = 0: 0 (2248.0/12.0)

High_Confidence = 1
| Alt_Layer_Value = 0
| | Own_Tracked_Alt_Rate = 600
| | | Cur_Vertical_Sep = 299: 0 (149.0/12.0)
| | | Cur_Vertical_Sep = 300
| | | | Two_of_Three_Reports_Valid = 0: 0
(28.0/2.0)
| | | | Two_of_Three_Reports_Valid = 1
| | | | | Other_RAC = 0
| | | | | | Other_Tracked_Alt = 1
| | | | | | | Other_Capability = 1: 1 (4.0)
| | | | | | | Other_Capability = 2: 0 (3.0)
| | | | | | Other_Tracked_Alt = 2: 1 (6.0)
...(and many more nodes)

Test Augmentation (continue..)

Version Test Aug Effectiveness

16 302/357 73%

26 407/407 80%

Test Augmentation Result

Feature Selection

 Can we do more?
• Developers typically use classification tree to

manually analyze the nature of faults
• Clearly smaller the size of tree, easier will be the

debugging process
 For Example:

• Classification tree generated for TCAS has 56
nodes

• Can we reduce the size of classification tree?

Feature Selection (continue..)

 Objective of Feature Selection
• Identifying and removing irrelevant and redundant

information as much as possible.

 What kind of feature Selection:
• Correlation based feature selection (H.A.Mark,

Ph.D.dissertation, Univ of Waikato, 1999.)

Feature Selection (contd..)

Parameters Values
Cur_Vertical_Sep 299, 300, 601
High_Confidence 0, 1
Two_of_Three_Reports_Valid 0, 1
Own_Tracked_Alt 1, 2
Own_Tracked_Alt_Rate
Other_Tracked_Alt 1, 2
Alt_Layer_Value 0,1,2,3
Up_Separation 0, 399, 400, 499, 500, …
Down_Separation 0, 399, 400, 499, 500, …
Other_RAC 0, 1, 2
Other_Capability 1, 2
Climb_Inherit 0,1

Feature Selection (Evaluation)

Version Test Aug Effectiven
ess

Size of
Tree

Feature
Subset

Size of
Reduced
Tree

Effectiven
ess

16 302/357 73% 56 8 31 65%

26 407/407 80% 85 10 28 74%

Ranking

 For each leaf node that indicates a failure, a
corresponding likely faulty combination is computed by

• Taking the conjunction of the parameter values found
in the path from the root node to the leaf node
• Calculate its score

A=1

B=0 B=1 12/2

Output: Fail Output: Pass

Combination:
A =1 and B=1
10/12 = .83

Proof of Concept

 Hypothesis: The faulty should show up
higher in the rank.

Final Outcome:

• TCAS v26, our approach did found the
faulty combination.
• TCAS v16, out of two combinations, our
approach found one of them.

Proof of Concept

int alt_sep_test() {

enabled=High_Confidence &&
 /*(Own_Tracked_Alt_Rate<=OLEV) && BUG */
 (Cur_Vertical_Sep>MAXALTDIFF);
....
}

Real Fault

HighConfidence=1 && OwnTrackedAltRate>OLEV(=600) &&
CurVerticalSep>MAXALTDIFF(=600)

Conclusion

 Diagnosis of failure when the number of
failures are low.

 Our approach:
• Tries to balance the test generation and
classification for fault diagnosis

 Proof of concept on two versions of TCAS

Thank you

Questions?

	Isolating Failure-Inducing Combinations in Combinatorial Testing using Test�Augmentation and Classiﬁcation
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

