
CrossTalk—July/August 2012 15

THE END OF THE PC

Definition
We define a sequence covering array, SCA(N, S, t) as an N x

S matrix where entries are from a finite set S of s symbols, such
that every t-way permutation of symbols from S occurs in at least
one row and each row is a permutation of the s symbols [6]. The
t symbols in the permutation are not required to be adjacent. That
is, for every t-way arrangement of symbols x1, x2, ..., xt, the regular
expression .*x1.*x2.*xt.* matches at least one row in the array.

Example 1
We may have a component of a factory automation system

that uses certain devices interacting with a control program. We
want to test the events defined in Table 1. There are 6! = 720
possible sequences for these six events, and the system should
respond correctly and safely no matter the order in which they
occur. Operators may be instructed to use a particular order, but
mistakes are inevitable, and should not result in injury to users
or compromise the operation. Because setup, connections, and
operation of this component are manual, each test can take a
considerable amount of time. It is not uncommon for system-
level tests such as this to take hours to execute, monitor, and
complete. We want to test this system as thoroughly as possible,
but time and budget constraints do not allow for testing all pos-
sible sequences, so we will test all 3-event sequences.

D. Richard Kuhn, NIST
James M. Higdon, Eglin AFB
James F. Lawrence, NIST
Raghu N. Kacker, NIST
Yu Lei, University of Texas at Arlington

Abstract. Many software testing problems involve sequences of events. The
methods described in this paper were motivated by testing needs of mission critical
systems that may accept multiple communication or sensor inputs and generate
output to several communication links and other interfaces, where it is important
to test the order in which events occur. Using combinatorial methods makes it
possible to test sequences of events using significantly fewer tests than previous
procedures.

Efficient Methods
for Interoperability
Testing Using Event
Sequences

Introduction
For many types of software, the sequence of events is an

important consideration [1, 2]. For example, graphical user inter-
faces may present the user with a large number of options that
include both order-independent (e.g., choosing items) and order-
dependent selections (such as final selection of items, quantity,
and payment information). The software should work correctly,
or issue an appropriate error message, regardless of the order
of events selected by the user. A number of test approaches
have been devised for these problems, including graph-covering,
syntax-based, and finite-state machine methods [3, 4, 5].

In testing such software, the critical condition for triggering
failures often is whether or not a particular event has occurred
prior to a second one, not necessarily if they are back to back.
This situation reflects the fact that in many cases, a particu-
lar state must be reached before a particular failure can be
triggered. For example, a failure might occur when connecting
device A only if device B is already connected, or only if devices
B and C were both already connected. The methods described
in this paper were developed to address testing problems of this
nature, using combinatorial methods to provide efficient testing.
Sequence covering arrays, as defined here, ensure that every t
events from a set of n (n > t) will be tested in every possible t-
way order, possibly with interleaving events among each subset
of t events.

Test Sequence
1 a b c d e f
2 f e d c b a
3 d e f a b c
4 c b a f e d
5 b f a d c e
6 e c d a f b
7 a e f c b d
8 d b c f e a
9 c e a d b f

10 f b d a e c
	

With six events, a, b, c, d, e, and f, one subset of three is {b,
d, e}, which can be arranged in six permutations: [bde], [bed],
[dbe], [deb], [ebd], [edb]. A test that covers the permutation
[dbe] is: [adcfbe]; another is [adcbef]. With only 10 tests, we
can test all 3-event sequences, shown in Table 2. In other words,
any sequence of three events taken from a..f arranged in any
order can be found in at least one test in Table 2 (possibly with
interleaved events).

Table 1. Example system events.

Table 2. All 3-event sequences of six events.

16 CrossTalk—July/August 2012

THE END OF THE PC

Returning to the example set of events {b, d, e}, with six
permutations: [bde] is in Test 5, [bed] is in Test 4, [dbe] is in Test
8, [deb] is in Test 3, [ebd] is in Test 7, and [edb] is in Test 2.

A larger example system may have 10 devices to connect,
in which case the number of permutations is 10!, or 3,628,800
tests for exhaustive testing. In that case, a 3-way sequence
covering array with 14 tests covering all 3-way sequences is a
dramatic improvement, as is 72 tests for all 4-way sequences
(see Table 4).

Example 2
A 2-way sequence covering array can be constructed by list-

ing the events in some order for one test and in reverse order
for the second test, as shown in Table 3:

Generating Sequence
Covering Arrays

Sequence covering arrays, as the name implies, are analogous
to standard covering arrays [7], which include at least one of every
t-way combination of any n variables, where t < n. We have devel-
oped several methods of generating SCAs, but the most efficient
approach is a simple greedy algorithm that iteratively generates
multiple candidate tests, then selects the one that covers the larg-
est number of previously uncovered sequences, repeating until
all sequences have been covered. This algorithm produces more
compact arrays than others developed so far.

Table 4 shows the number of 3-way and 4-way sequence
tests for event sets of varying sizes generated using the algo-
rithm. In another paper [6], we have shown the number of tests
generated is proportional to log n, for n events, making it practi-
cal to test complex systems with a large number of events using
a reasonable number of tests. Logarithmic growth in number of
tests can also be seen in Table 4.

Using Sequence Covering Arrays
The motivation for this work was a USAF mission-critical sys-

tem that uses multiple devices with inputs and outputs to a laptop
computer. (Confidentiality rules do not permit a detailed descrip-
tion of this system.) System functionality depends on the order
in which events occur, though it does not matter whether events
are adjacent to one another (in any sub-sequence), nor which
step an event falls under, without regard to the other events. The
test procedure for this system has eight steps: boot system, open
application, run scan, and connect peripherals P-1 through P-5. It
is anticipated that because of dependencies between peripherals,
the system may not function properly for some sequences. That
is, correct operation requires cooperation among multiple periph-
erals, but experience has shown that some may fail if their partner
devices were not present during startup. Thus the order of con-
necting peripherals is critical. In addition, there are constraints on
the sequence of events: cannot scan until the app is open; cannot
open app until the system is booted. There are 40,320 permuta-
tions of eight steps, but some are redundant (e.g., changing the
order of peripherals connected before boot), and some are invalid
(violates a constraint). Around 7,000 are valid, and non-redundant,
but this is far too many to test for a system that requires manual,
physical connections of devices.

The system was tested using a seven-step sequence covering
array, removing boot-up from test sequence generation. The initial
test configuration for 3-way sequences was generated using the
algorithm given in Sect. 2. Covering all 3-way sequences allowed
testing a much larger set of states than using 2-way sequences,
but could be accomplished at a reasonable cost. Some changes
were made to the pre-computed sequences based on unique
requirements of the system test. If 6=‘Open App’ and 5=‘Run Scan’,
then cases 1, 4, 6, 8, 10, and 12 are invalid, because the scan
cannot be run before the application is started. This was handled by
swapping items when they are adjacent (1 and 4), and out of order.
For the other cases, several were generated from each that were
valid permutations of the invalid case. A test was also embedded
to see whether it mattered where each of three USB connec-

Table 3. 2-way sequence covering array.

Table 4. Number of tests for combinatorial 3-way and 4-way sequences.

Test Sequence

1 a b c d

2 d c b a

	

Events 3-seq Tests 4-seq Tests
5 8 26

6 10 36

7 12 46

8 12 50

9 14 58

10 14 66

11 14 70

12 16 78

13 16 86

14 16 90

15 18 96

16 18 100

17 20 108

18 20 112

19 22 114

20 22 120

21 22 126

22 22 128

23 24 134

24 24 136

25 24 140

26 24 142

27 26 148

28 26 150

29 26 154

30 26 156

40 32 182

50 34 204

60 38 222

70 40 238

80 42 250

	

CrossTalk—July/August 2012 17

THE END OF THE PC

tions were placed. The last test case ensures at least strength 2
(sequence of length 2) for all peripheral connections and ‘Boot’, i.e.,
that each peripheral connection occurs prior to boot. The final test
array is shown in Table 5. Errors detected in testing included sev-
eral that could not be attributed to 2-way sub-sequences. These er-
rors would not have been detected using a simple 2-way sequence
covering array (which could consist of only two tests, as in Example
2), and may not have been caught with more conventional tests.

Conclusions
Sequence covering arrays can have significant practical value

in testing. Because the number of tests required grows only loga-
rithmically with the number of events, t-way sequence coverage is
tractable for a wide range of testing problems. Using a sequence
covering array for system testing described here made it possible
to provide greater confidence that the system would function

correctly regardless of possible dependencies among peripherals.
Because of extensive human involvement, the time required for a
single test is significant, and a small number of random tests or
scenario-based ad hoc testing would be unlikely to provide t-way
sequence coverage to a satisfactory degree.

Acknowledgments:
We are very grateful to Tim Grance for support of this work

within the NIST Cybersecurity program, and to Paul E. Black for
suggestions that helped clarify and strengthen the paper.

Disclaimer:
We identify certain software products in this document, but
such identification does not imply recommendation by NIST,
nor does it imply that the products identified are necessarily
the best available for the purpose.

	

Original Case Case Step1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

1 1 Boot P-1 (USB-RIGHT) P-2 (USB-BACK) P-3 (USB-LEFT) P-4 P-5 Application Scan

2 2 Boot Application Scan P-5 P-4 P-3 (USB-RIGHT) P-2 (USB-BACK) P-1 (USB-LEFT)

3 3 Boot P-3 (USB-RIGHT) P-2 (USB-LEFT) P-1 (USB-BACK) Application Scan P-5 P-4

4 4 Boot P-4 P-5 Application Scan P-1 (USB-RIGHT) P-2 (USB-LEFT) P-3 (USB-BACK)

5 5 Boot P-5 P-2 (USB-RIGHT) Application P-1 (USB-BACK) P-4 P-3 (USB-LEFT) Scan

6A 6 Boot Application P-3 (USB-BACK) P-4 P-1 (USB-LEFT) Scan P-2 (USB-RIGHT) P-5

6B 7 Boot Application Scan P-3 (USB-LEFT) P-4 P-1 (USB-RIGHT) P-2 (USB-BACK) P-5

6C 8 Boot P-3 (USB-RIGHT) P-4 P-1 (USB-LEFT) Application Scan P-2 (USB-BACK) P-5

6D 9 Boot P-3 (USB-RIGHT) Application P-4 Scan P-1 (USB-BACK) P-2 (USB-LEFT) P-5

7 10 Boot P-1 (USB-RIGHT) Application P-5 Scan P-3 (USB-BACK) P-2 (USB-LEFT) P-4

8A 11 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-LEFT) Application Scan P-5 P-1 (USB-BACK)

8B 12 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-BACK) P-5 Application Scan P-1 (USB-LEFT)

9 13 Boot Application P-3 (USB-LEFT) Scan P-1 (USB-RIGHT) P-4 P-5 P-2 (USB-BACK)

10A 14 Boot P-2 (USB-BACK) P-5 P-4 P-1 (USB-LEFT) P-3 (USB-RIGHT) Application Scan

10B 15 Boot P-2 (USB-LEFT) P-5 P-4 P-1 (USB-BACK) Application Scan P-3 (USB-RIGHT)

11 16 Boot P-3 (USB-BACK) P-1 (USB-RIGHT) P-4 P-5 Application P-2 (USB-LEFT) Scan

12A 17 Boot Application Scan P-2 (USB-RIGHT) P-5 P-4 P-1 (USB-BACK) P-3 (USB-LEFT)

12B 18 Boot P 2 (USB RIGHT) Appli ti Sc P 5 P 4 P 1 (USB LEFT) P 3 (USB BACK)

Table 5. Final test array.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

Software Project Management: Lessons Learned
Jan/Feb 2013 Issue

Submission Deadline: Aug 10, 2012

Supply Chain Risk Management
Mar/Apr 2013 Issue

Submission Deadline: Oct 10, 2012

Large Scale Agile
May/Jun 2013 Issue

Submission Deadline: Dec 10, 2012

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

18 CrossTalk—July/August 2012

THE END OF THE PC

Richard Kuhn is a computer scientist in the Com-
puter Security Division of NIST. His current inter-
ests are in information security, empirical studies of
software failure, and software assurance, focusing on
combinatorial testing. He received an MS in computer
science from the University of Maryland College Park.

James Higdon is a senior analyst in Technical
Engineering and Acquisition Support with Jacobs En-
gineering, at the 46th Test Squadron, Eglin Air Force
Base, Florida. His current interests are in experimen-
tal design and combinatorial testing of hardware/soft-
ware systems. He received an MS from the Air Force
Institute of Technology.

James Lawrence is a Professor in the Department
of Mathematics at George Mason University, Fair-
fax, VA, and a faculty associate at NIST. His current
interests are in convexity and combinatorics, including
applications in software testing. He received a Ph.D.
from the University of Washington.

Raghu Kacker is a researcher in the Applied and
Computational Mathematics Division of NIST. His
current interests include software testing and evalu-
ation of the uncertainty in outputs of computational
models and physical measurements. He has a Ph.D.
in statistics and is a Fellow of the American Statistical
Association, and American Society for Quality.

Yu Lei is an Associate Professor in Department of
Computer Science and Engineering at the University
of Texas, Arlington. His current research interests
include automated software analysis and testing, with
a special focus on combinatorial testing, concurrency
testing, and security testing. He received his Ph.D.
from North Carolina State University.

ABOUT THE AUTHORS
1. 	 D.L. Parnas, “On the Use of Transition Diagrams in the Design of User
	 Interface for an Interactive Computer System,” Proc. 24th ACM Nat’l Conf.,
	 pp. 379-385, 1969.
2.	 W. E. Howden, G. M. Shi: Linear and Structural Event Sequence Analysis.
	 ISSTA 1996: pp. 98-106, 1996.
3.	 S. Chow, “Testing Software Design Modeled by Finite-State Machines,”
	 IEEE Trans. Softw. Eng., vol. 4, no. 3, pp. 178187, 1978.
4.	 J. Offutt, L. Shaoying, A. Abdurazik, and P. Ammann, “Generating Test Data
	 From State-Based Specifications,” J. Software Testing, Verification
	 and Reliability, vol. 13, no. 1, pp. 25-53, March, 2003.
5.	 B. Sarikaya, “Conformance Testing: Architectures and Test Sequences,”
	 Computer Networks and ISDN Systems, vol.17, no. 2,
	 North-Holland, pp. 111-126, 1989.
6.	 D.R. Kuhn, J.M. Higdon, J.F. Lawrence, R.N. Kacker, Y. Lei, “Combinatorial
	 Methods for Event Sequence Testing”, 8 Oct 2010 (submitted for publication).
	 <http://csrc.nist.gov/groups/SNS/acts/documents/event-seq101008.pdf>
7.	 X. Yuan, M.B. Cohen, A. Memon, “Covering Array Sampling of Input Event
	 Sequences for Automated GUI Testing”, November 2007 ASE ‘07: Proc.
	 22nd IEEE/ACM Intl. Conf. Automated Software Engineering, pp. 405-408.

REFERENCES

http://csrc.nist.gov/groups/SNS/acts/documents/event-seq101008.pdf

