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Definition
We define a sequence covering array, SCA(N, S, t) as an N x 

S matrix where entries are from a finite set S of s symbols, such 
that every t-way permutation of symbols from S occurs in at least 
one row and each row is a permutation of the s symbols [6]. The 
t symbols in the permutation are not required to be adjacent. That 
is, for every t-way arrangement of symbols x1, x2, ..., xt, the regular 
expression .*x1.*x2.*xt.* matches at least one row in the array. 

Example 1
We may have a component of a factory automation system 

that uses certain devices interacting with a control program. We 
want to test the events defined in Table 1. There are 6! = 720 
possible sequences for these six events, and the system should 
respond correctly and safely no matter the order in which they 
occur. Operators may be instructed to use a particular order, but 
mistakes are inevitable, and should not result in injury to users 
or compromise the operation. Because setup, connections, and 
operation of this component are manual, each test can take a 
considerable amount of time. It is not uncommon for system-
level tests such as this to take hours to execute, monitor, and 
complete. We want to test this system as thoroughly as possible, 
but time and budget constraints do not allow for testing all pos-
sible sequences, so we will test all 3-event sequences. 
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Introduction 
For many types of software, the sequence of events is an 

important consideration [1, 2]. For example, graphical user inter-
faces may present the user with a large number of options that 
include both order-independent (e.g., choosing items) and order-
dependent selections (such as final selection of items, quantity, 
and payment information). The software should work correctly, 
or issue an appropriate error message, regardless of the order 
of events selected by the user. A number of test approaches 
have been devised for these problems, including graph-covering, 
syntax-based, and finite-state machine methods [3, 4, 5]. 

In testing such software, the critical condition for triggering 
failures often is whether or not a particular event has occurred 
prior to a second one, not necessarily if they are back to back. 
This situation reflects the fact that in many cases, a particu-
lar state must be reached before a particular failure can be 
triggered. For example, a failure might occur when connecting 
device A only if device B is already connected, or only if devices 
B and C were both already connected. The methods described 
in this paper were developed to address testing problems of this 
nature, using combinatorial methods to provide efficient testing. 
Sequence covering arrays, as defined here, ensure that every t 
events from a set of n (n > t) will be tested in every possible t-
way order, possibly with interleaving events among each subset 
of t events. 

Test  Sequence 
1  a  b c d e f  
2  f  e d c b a  
3  d  e f a b c  
4  c  b a f e d  
5  b  f a d c e  
6  e  c d a f b  
7  a  e f c b d  
8  d  b c f e a  
9  c  e a d b f  

10  f  b d a e c  
	
  

With six events, a, b, c, d, e, and f, one subset of three is {b, 
d, e}, which can be arranged in six permutations: [bde], [bed], 
[dbe], [deb], [ebd], [edb]. A test that covers the permutation 
[dbe] is: [adcfbe]; another is [adcbef]. With only 10 tests, we 
can test all 3-event sequences, shown in Table 2. In other words, 
any sequence of three events taken from a..f arranged in any 
order can be found in at least one test in Table 2 (possibly with 
interleaved events).

Table 1. Example system events.

Table 2. All 3-event sequences of six events. 



16     CrossTalk—July/August 2012

THE END OF THE PC

Returning to the example set of events {b, d, e}, with six 
permutations: [bde] is in Test 5, [bed] is in Test 4, [dbe] is in Test 
8, [deb] is in Test 3, [ebd] is in Test 7, and [edb] is in Test 2. 

A larger example system may have 10 devices to connect, 
in which case the number of permutations is 10!, or 3,628,800 
tests for exhaustive testing. In that case, a 3-way sequence 
covering array with 14 tests covering all 3-way sequences is a 
dramatic improvement, as is 72 tests for all 4-way sequences 
(see Table 4). 

Example 2
A 2-way sequence covering array can be constructed by list-

ing the events in some order for one test and in reverse order 
for the second test, as shown in Table 3: 

Generating Sequence  
Covering Arrays 

Sequence covering arrays, as the name implies, are analogous 
to standard covering arrays [7], which include at least one of every 
t-way combination of any n variables, where t < n. We have devel-
oped several methods of generating SCAs, but the most efficient 
approach is a simple greedy algorithm that iteratively generates 
multiple candidate tests, then selects the one that covers the larg-
est number of previously uncovered sequences, repeating until 
all sequences have been covered. This algorithm produces more 
compact arrays than others developed so far. 

Table 4 shows the number of 3-way and 4-way sequence 
tests for event sets of varying sizes generated using the algo-
rithm. In another paper [6], we have shown the number of tests 
generated is proportional to log n, for n events, making it practi-
cal to test complex systems with a large number of events using 
a reasonable number of tests. Logarithmic growth in number of 
tests can also be seen in Table 4. 

Using Sequence Covering Arrays 
The motivation for this work was a USAF mission-critical sys-

tem that uses multiple devices with inputs and outputs to a laptop 
computer. (Confidentiality rules do not permit a detailed descrip-
tion of this system.) System functionality depends on the order 
in which events occur, though it does not matter whether events 
are adjacent to one another (in any sub-sequence), nor which 
step an event falls under, without regard to the other events. The 
test procedure for this system has eight steps: boot system, open 
application, run scan, and connect peripherals P-1 through P-5. It 
is anticipated that because of dependencies between peripherals, 
the system may not function properly for some sequences. That 
is, correct operation requires cooperation among multiple periph-
erals, but experience has shown that some may fail if their partner 
devices were not present during startup. Thus the order of con-
necting peripherals is critical. In addition, there are constraints on 
the sequence of events: cannot scan until the app is open; cannot 
open app until the system is booted. There are 40,320 permuta-
tions of eight steps, but some are redundant (e.g., changing the 
order of peripherals connected before boot), and some are invalid 
(violates a constraint). Around 7,000 are valid, and non-redundant, 
but this is far too many to test for a system that requires manual, 
physical connections of devices. 

The system was tested using a seven-step sequence covering 
array, removing boot-up from test sequence generation. The initial 
test configuration for 3-way sequences was generated using the 
algorithm given in Sect. 2. Covering all 3-way sequences allowed 
testing a much larger set of states than using 2-way sequences, 
but could be accomplished at a reasonable cost. Some changes 
were made to the pre-computed sequences based on unique 
requirements of the system test. If 6=‘Open App’ and 5=‘Run Scan’, 
then cases 1, 4, 6, 8, 10, and 12 are invalid, because the scan 
cannot be run before the application is started. This was handled by 
swapping items when they are adjacent (1 and 4), and out of order. 
For the other cases, several were generated from each that were 
valid permutations of the invalid case. A test was also embedded 
to see whether it mattered where each of three USB connec-

Table 3. 2-way sequence covering array. 

Table 4. Number of tests for combinatorial 3-way and 4-way sequences. 

Test  Sequence  

1  a b c d  

2  d c b a  

	
  

Events 3-seq Tests 4-seq Tests 
5  8  26  

6  10  36  

7  12  46  

8  12  50  

9  14  58  

10  14  66  

11  14  70  

12  16  78  

13  16  86  

14  16  90  

15  18  96  

16  18  100  

17  20  108  

18  20  112  

19  22  114  

20  22  120  

21  22  126  

22  22  128  

23  24  134  

24  24  136  

25  24  140  

26  24  142  

27  26  148  

28  26  150  

29  26  154  

30  26  156  

40  32  182  

50  34  204  

60  38  222  

70  40  238  

80  42  250  
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tions were placed. The last test case ensures at least strength 2 
(sequence of length 2) for all peripheral connections and ‘Boot’, i.e., 
that each peripheral connection occurs prior to boot. The final test 
array is shown in Table 5. Errors detected in testing included sev-
eral that could not be attributed to 2-way sub-sequences. These er-
rors would not have been detected using a simple 2-way sequence 
covering array (which could consist of only two tests, as in Example 
2), and may not have been caught with more conventional tests. 

Conclusions 
Sequence covering arrays can have significant practical value 

in testing. Because the number of tests required grows only loga-
rithmically with the number of events, t-way sequence coverage is 
tractable for a wide range of testing problems. Using a sequence 
covering array for system testing described here made it possible 
to provide greater confidence that the system would function 

correctly regardless of possible dependencies among peripherals. 
Because of extensive human involvement, the time required for a 
single test is significant, and a small number of random tests or 
scenario-based ad hoc testing would be unlikely to provide t-way 
sequence coverage to a satisfactory degree. 
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Original Case Case Step1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 

1 1 Boot P-1 (USB-RIGHT) P-2 (USB-BACK) P-3 (USB-LEFT) P-4 P-5 Application Scan 

2 2 Boot Application Scan P-5 P-4 P-3 (USB-RIGHT) P-2 (USB-BACK) P-1 (USB-LEFT) 

3 3 Boot P-3 (USB-RIGHT) P-2 (USB-LEFT) P-1 (USB-BACK) Application Scan P-5 P-4 

4 4 Boot P-4 P-5 Application Scan P-1 (USB-RIGHT) P-2 (USB-LEFT) P-3 (USB-BACK) 

5 5 Boot P-5 P-2 (USB-RIGHT) Application P-1 (USB-BACK) P-4 P-3 (USB-LEFT) Scan 

6A 6 Boot Application P-3 (USB-BACK) P-4 P-1 (USB-LEFT) Scan P-2 (USB-RIGHT) P-5 

6B 7 Boot Application Scan P-3 (USB-LEFT) P-4 P-1 (USB-RIGHT) P-2 (USB-BACK) P-5 

6C 8 Boot P-3 (USB-RIGHT) P-4 P-1 (USB-LEFT) Application Scan P-2 (USB-BACK) P-5 

6D 9 Boot P-3 (USB-RIGHT) Application P-4 Scan P-1 (USB-BACK) P-2 (USB-LEFT) P-5 

7 10 Boot P-1 (USB-RIGHT) Application P-5 Scan P-3 (USB-BACK) P-2 (USB-LEFT) P-4 

8A 11 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-LEFT) Application Scan P-5 P-1 (USB-BACK) 

8B 12 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-BACK) P-5 Application Scan P-1 (USB-LEFT) 

9 13 Boot Application P-3 (USB-LEFT) Scan P-1 (USB-RIGHT) P-4 P-5 P-2 (USB-BACK) 

10A 14 Boot P-2 (USB-BACK) P-5 P-4 P-1 (USB-LEFT) P-3 (USB-RIGHT) Application Scan 

10B 15 Boot P-2 (USB-LEFT) P-5 P-4 P-1 (USB-BACK) Application Scan P-3 (USB-RIGHT) 

11 16 Boot P-3 (USB-BACK) P-1 (USB-RIGHT) P-4 P-5 Application P-2 (USB-LEFT) Scan 

12A 17 Boot Application Scan P-2 (USB-RIGHT) P-5 P-4 P-1 (USB-BACK) P-3 (USB-LEFT) 

12B 18 Boot P 2 (USB RIGHT) Appli ti Sc P 5 P 4 P 1 (USB LEFT) P 3 (USB BACK) 

Table 5. Final test array. 
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