

Combinatorial
Software Testing

D e v e l op e r s o f l a r g e
d a t a-i n t en s i ve s o f t
wa re of ten notice a n
i ntere s t i ng—t hou g h

not surprising—phenomenon: When
usage of an application jumps dra
mat ic a lly, component s tha t have
operated for months without trouble
suddenly develop previously unde
tected errors. For example, newly
added customers may have account
records with an oddball combination
of va lues that have not been seen
before. Some of these rare combina
tions trigger faults that have escaped
previous testing and extensive use.
Alternatively, the application may
have been insta lled on a different
O S -h a r d wa r e-DBM S -ne t w or k i n g
platform.

Combinatoria l testing ca n help
detect problems like this early in
the testing life cycle. The key insight
u nd erly i n g t-way c om bi na t or ia l
testing is that not every parameter

contributes to every fault and many
fault s a re caused by interactions
between a relatively small number
of parameters.

PAIRWISE TESTING
 Suppose we want to demonstrate

t hat a new sof t wa r e applic at ion
works correctly on PCs that use the
Windows or Linux operating systems,
Intel or AMD processors, and the IPv4
or IPv6 protocols. This is a total of
2 × 2 × 2 = 8 possibilities but, as
Table 1 shows, only four tests are
required to test every component
interacting with every other compo
nent at least once. In this most basic
combinatoria l method, known a s
pairwise testing, at least one of the
four tests covers all possible pairs
(t = 2) of va lues among the three
parameters.

Note that while the set of four test
cases tests for all pairs of possible
values—for example, OS = Linux and
protocol = IPv4—several combina
tions of three specific values are not
tested—for example, OS = Windows,
CPU = Intel, and protocol = IPv6.

Even though pairwise testing is not
exhaustive, it is useful because it can
check for simple, potentially problem
atic interactions with relatively few
tests. The reduction in test set size
from eight to four shown in Table 1

is not that impressive, but consider
a larger example: a manufacturing
automation system that has 20 con
trols, each with 10 possible settings—a
total of 1020 combinations, which is
far more than a software tester would
be able to test in a lifetime. Surpris
ingly, we can check all pairs of these
values with only 180 tests if they are
carefully constructed.

Figure 1 shows the results of a
10-project empirical study conducted
recently by Justin Hunter that com
pared the effectiveness of pairwise
testing with manual test case selec
tion methods.

The projects were conducted at
six companies and tested commer
cia l applications in development;
in each project, two small teams of
testers were asked to test the same
application at the same time using dif
ferent methods. One group of testers
selected tests manually; they relied
on “business as usual” methods such
as developing tests based on func
tional and technical requirements
and potential use cases mapped out
on whiteboa rds. The other group
used a combinatorial testing tool to
identify pairwise tests.

Test execution productivity was
signif ic a ntly higher in a ll of the
projects for the testers using combi
natorial methods, with test execution

Rick Kuhn and Raghu Kacker, National Institute
of Standards and Technology
Yu Lei, University of Texas at Arlington
Justin Hunter, Hexawise

Combinatorial testing can detect hard-to-find software faults
more efficiently than manual test case selection methods.

SOF T WARE TECHNOLOGIES

table 1. pairwise test configurations.

Test
case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

94 computer Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

http:0018-9162/09/$26.00

productivity more than doubling on
average and more than tripling in
three projects. The groups using pair-
wise testing also achieved the same
or higher quality in all 10 projects;
all of the defects identified by the
teams using manual test case selec
tion methods were identified by the
teams using combinatorial methods.
In five projects, the combinatorial
teams found additional defects that
had not been identified by the teams
using manual methods.

These proof-of-concept projects
successfully demonstrated to the
teams involved that manual meth
ods of test case selection were not
nearly as effective as pairwise com
binatorial methods for finding the
largest number of defects in the least
amount of time.

TESTING HIGHER-DEGREE
INTERACTIONS

Other empiric a l invest igat ions
have concluded that from 50 to 97
percent of software faults could be
identified by pairwise combinato
rial testing. However, what about the
remaining faults? How many failures
could be triggered only by an unusual
interaction involving more than two
parameters?

In a 1999 study of faults arising
from rare conditions, the National
Institute of Standards and Technology
reviewed 15 years of medical device
recall data to determine what types of
testing could detect the reported faults
(D.R. Wallace and D.R. Kuhn, “Failure
Modes in Medical Device Software:
An Analysis of 15 Yea rs of Recall
Data,” Int’l J. Reliability, Quality, and
Safety Eng., Dec. 2001, pp. 351-371).
The study found one case in which an
error involved a four-way interaction
among parameter values: demand
dose = administered, days elapsed
= 31, pump time = unchanged, and
battery status = charged.

Pa ir wise combinatoria l testing
is unlikely to detect faults like this

Manual Pairwise

Testing method(a)

Defects
found

per hour

2.4X
higher

Manual Pairwise

Testing method(b)

Total
defects

found

13%
higher

Figure 1. Summary of results from 10 projects. Pairwise combinatorial test case
selection versus manual test case selection: (a) testing efficiency and (b) testing
quality.

 25

0

 50

 75

100

1 2 3 4 5 6

Cu
m

ula
tiv

e p
er

ce
nt

Interactions

Medical devices
Browser
Web server
NASA distributed database

Figure 2. Cumulative error detection rate for fault-triggering conditions. Many faults
were caused by a single parameter value, a smaller proportion resulted from an
interaction between two parameter values, and progressively fewer were triggered
by three-, four-, five, and six -way interactions.

because it only guarantees that all by three-, four-, five,- and six-way
pa irs of parameter va lues will be interactions. Figure 2 summarizes
tested. A particular four-way com these results. Thus far, a fault trig
bination of va lues is statistica lly gered by a seven-way interaction has
unlikely to occur in a test set that only not appeared.
ensures two-way combination cover- With the Web server application,
age; to ensure thorough testing of for example, roughly 40 percent of
complex applications, it is necessary the failures were caused by a single
to generate test suites for four-way or value, such as a file name exceeding
higher-degree interactions. a certain length; another 30 percent

Investigations of other applica were triggered by the interaction of
tions found similar distributions of two parameters; and a cumulative
fau lt-tr ig gering cond itions. Ma ny total of almost 90 percent were trig-
f a u l t s w e r e c a u s e d by a s i n g l e gered by three or fewer parameters.
p a r a m e t e r, a s m a l l e r pr op o r- While not conclusive, these results
tion resulted from a n interaction suggest that combinatorial methods
between two parameter values, and can achieve a high level of thorough-
progressively fewer were triggered ness in software testing.

AuGuSt 2009 95

 -

SOF T WARE TECHNOLOGIES

Figure 3. Three way covering array for 10 p
columns, selected in any order, contain all
000,001,010,011,100,101,110,111.

eig
ameters with two values each. Any three
ht possible values of three parameters:

ar

The key ingredient for this kind What are the pragmatic implica
of testing is a covering array, a math tions of being able to achieve 100
ematical object that covers all t-way percent three-way coverage in 13 test
combinations of parameter values at cases on real-world software testing
least once. For the pairwise testing projects? Assuming that there are 10
example in Table 1, t = 2, and it is defects in this hypothetical applica
relatively easy to generate tests that tion and that 9 are identified through
cover all pairs of parameter values. the 13 tests indicated, testing these
Generating covering arrays for com 13 cases would find 71 times more
plex interactions is much harder, but defects per test case [(9/13)/(10/1,024)]
new algorithms make it possible to than testing exhaustively and uncov
generate covering arrays orders of mag ering all 10.
nitude faster than previous algorithms,
making up to six-way covering arrays
tractable for many applications.

Figure 3 shows a covering array for While the most basic form
of c ombi n a t or i a l t e s t
ing—pa ir w ise—is well

all three-way interactions of 10 binary established, and adoption by soft-
parameters in only 13 tests. Note that ware testing practitioners continues
any three columns, selected in any to increase, industry usage of these
order, contain all eight possible values methods rema ins patchy at best.
of three parameters: 000,001,010,011, However, t he addit iona l t ra in ing
100,101,110,111. required is well worth the effort.

T h r e e-way i ntera ct ion t e s t i ng Teams seeking to maximize test-
detected roughly 90 percent of bugs ing thoroughness given tight time
in all four of the empirical studies in or resource constraints, and which
Figure 2, but exhaustive testing of all currently rely on manual test case
possible combinations in Figure 3 selection methods, should consider
would require 210 = 1,024 tests. pairwise testing. When more time is

build your career
 IN COMPUTING

www.computer.org/buildyourcareer

available or more thorough testing
is required, t-way testing for t > 2 is
better. Practitioners who require very
high quality software will find that
covering arrays for higher-strength
combinations can detect many hard
to-find faults, and variability among
detection rates appears to decrease
as t increases.

Sophisticated new combinatorial
testing algorithms packaged in user-
friendly tools are now available to
enable thorough testing with a man
ageable number of test cases and at
lower cost, and make it practical for
testers to develop empirical results
on applications of this promising test
method.

Rick Kuhn is a computer scientist in
the Computer Security Division of the
US Nat ional Instit ute of Standards
and Technology (NIST). Contact him
at kuhn@nist.gov.

Raghu Kacke r i s a mathe m at ical
statistician in the Mathematical and
Computational Sciences Division of
NIST. Contact him at raghu.kacker@
nist.gov.

Yu Lei is an associate professor in the
Department of Computer Science and
Engineering at the University of Texas
at Arlington. Contact him at ylei@cse.
uta.edu.

Justin Hunter previously led combi
natorial testing efforts at Accenture,
a global management consulting and
technology services firm, and is now
the founder and CEO of Hexawise, a
combinator ial test ing consultanc y
a n d to ol ve n d o r. C o nta c t hi m at
justin.x.hunter@hexawise.com.

Identification of certain commercial
products in this article does not imply
recomme ndation by NIST or othe r
agencies of the US government, nor
does it imply that the products identi
fied are necessarily the best available
for the purpose.

editor: mike Hinchey, Lero—the Irish
Sof tware engineering research centre; mike.
hinchey@lero.ie

96 computer

mailto:hinchey@lero.ie
mailto:justin.x.hunter@hexawise.com
http:nist.gov
mailto:kuhn@nist.gov

