
Combinatorial Testing

Rick Kuhn

National Institute of
Standards and Technology

Gaithersburg, MD

NDIA Software Test and Evaluation Summit Sept 16, 2009

What is NIST?
• A US Government agency
• The nation’s measurement and testing
 laboratory – 3,000 scientists, engineers,
 and support staff including
 3 Nobel laureates
• Research in physics,
 chemistry, materials,
 manufacturing,
 computer science

Among other topics,
analysis of engineering failures, including buildings, materials, and ...

Software Failure Analysis
• NIST studied software failures in a variety of
 fields including 15 years of FDA medical
 device recall data

• What causes software failures?

• logic errors?

• calculation errors?

• inadequate input checking? Etc.

• What testing and analysis would have prevented failures?

• Would all-values or all-pairs testing find all errors, and if not, then how many
interactions would we need to test to find all errors?

e.g., failure occurs if
 pressure < 10 (1-way interaction)
 pressure < 10 & volume > 300 (2-way interaction)

• Pairwise testing commonly applied to software
• Intuition: some problems only occur as the result of

an interaction between parameters/components
• Pairwise testing finds about 50% to 90% of flaws

• Cohen, Dalal, Parelius, Patton, 1995 – 90% coverage with pairwise, all errors in small modules
found

• Dalal, et al. 1999 – effectiveness of pairwise testing, no higher degree interactions
• Smith, Feather, Muscetolla, 2000 – 88% and 50% of flaws for 2 subsystems

Pairwise testing is popular,
but when is it enough?

What if finding 50%
to 90% of flaws is
not good enough?

 When is pairwise testing not enough?

“Relax, our engineers found
 90 percent of the flaws.”

How about hard-to-find flaws?
•Interactions e.g., failure occurs if

• pressure < 10 (1-way interaction)

• pressure < 10 & volume > 300 (2-way interaction)

• pressure < 10 & volume > 300 & velocity = 5
 (3-way interaction)

• The most complex failure reported required
 4-way interaction to trigger

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Interaction

%
 d

et
ec

te
d

Interesting, but
that’s only one

kind of
application!

How about other applications?
 Browser (green)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

These faults more
complex than
medical device
software!!

Why?

And other applications?

 Server (magenta)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Still more?
 NASA distributed database
 (light blue)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Even more?
TCAS module (seeded errors)
 (purple)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Finally
 Network security (Bell, 2006)
 (orange)

 These are most
complex faults
of all.

Why?

• Maximum interactions for fault triggering
for these applications was 6

• Much more empirical work needed
• Reasonable evidence that maximum interaction

strength for fault triggering is relatively small

So, how many parameters are
involved in really tricky faults?

How is this
knowledge

useful?

• Suppose we have a system with on-off switches:

How is this knowledge useful?

• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests

How do we test this?

• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests
• If only 3-way interactions, need only 33 tests
• For 4-way interactions, need only 85 tests

What if we knew no failure involves more
than 3 switch settings interacting?

What is combinatorial testing?
A simple example

How Many Tests Would It Take?

 There are 10 effects, each can be on or off
 All combinations is 210 = 1,024 tests

too many to visually check …

 Let’s look at all 3-way interactions …

Now How Many Would It Take?

 There are = 120 3-way interactions.

 Naively 120 x 23 = 960 tests.
 Since we can pack 3 triples into each test,

we need no more than 320 tests.
 Each test exercises many triples:

 0 0 0 1 1 1 0 1 0 1

We oughtta be able to pack a lot in one test, so
what’s the smallest number we need?

10
3

A Covering Array

Each row is a test:
Each column is
a parameter:

All triples in only 13 tests

0 = effect off
1 = effect on

13 tests for all 3-way combinations

210 = 1,024 tests for all combinations

New algorithms to make it practical
• Tradeoffs to minimize calendar/staff time:

• FireEye (extended IPO) – Lei – roughly optimal, can be used for
most cases under 40 or 50 parameters

• Produces minimal number of tests at cost of run time

• Currently integrating algebraic methods

• Adaptive distance-based strategies – Bryce – dispensing one test
at a time w/ metrics to increase probability of finding flaws

• Highly optimized covering array algorithm

• Variety of distance metrics for selecting next test

• PRMI – Kuhn –for more variables or larger domains
• Randomized algorithm, generates tests w/ a few tunable parameters;
computation can be distributed

• Better results than other algorithms for larger problems

 10 15 20

 tests sec tests sec tests sec

1 proc. 46086 390 84325 16216 114050 155964

10 proc. 46109 57 84333 11224 114102 85423

20 proc. 46248 54 84350 2986 114616 20317

FireEye 51490 168 86010 9419 ** **

Jenny 48077 18953 ** ** ** **

• Smaller test sets faster, with a more advanced user interface
• First parallelized covering array algorithm
• More information per test

12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6

1549 313056 >1 day NA 43.54 4580 >1 day NA 18.41 4226 5

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2

Time Size Time Size Time Size Time Size Time Size

TVG (Open Source) TConfig (U. of Ottawa) Jenny (Open Source) ITCH (IBM) IPOG
T-Way

New algorithms

Traffic Collision Avoidance System (TCAS): 273241102

Tab le 6 . 6 w ay, 5 k con f ig u ra t ion resu lt s com p ar ison
* * insu f f ic ient m em ory

PRMI

(Kuhn, 06)

IPOG

(Lei, 06)

A Real-World Example

Plan: flt, flt+hotel, flt+hotel+car
From: CONUS, HI, Europe, Asia …
To: CONUS, HI, Europe, Asia …
Compare: yes, no
Date-type: exact, 1to3, flex
Depart: today, tomorrow, 1yr, Sun, Mon …
Return: today, tomorrow, 1yr, Sun, Mon …
Adults: 1, 2, 3, 4, 5, 6
Minors: 0, 1, 2, 3, 4, 5
Seniors: 0, 1, 2, 3, 4, 5

• No silver bullet because:
 Many values per variable
 Need to abstract values
 But we can still increase information per test

Example
 Traffic Collision Avoidance

System (TCAS) module
• Used in previous testing research
• 41 versions seeded with errors
• 12 variables: 7 boolean, two 3-value, one 4-

value, two 10-value
• All flaws found with 5-way coverage
• Thousands of tests - generated by model

checker in a few minutes

Tests generated
 t
2-way:
3-way:
4-way:
5-way:
6-way:

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

T
e

s
ts

Test cases
156
461

1,450
4,309

11,094

Results

Detection Rate for TCAS Seeded
Errors

0%

20%

40%

60%

80%

100%

2 way 3 way 4 way 5 way 6 way

Fault Interaction level

Detection
rate

• Roughly consistent with data on large systems

• But errors harder to detect than real-world examples

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 w ay 3 w ay 4 w ay 5 w ay 6 w ay

Fault Interaction level
T

es
ts Tests per error

Bottom line for model checking based combinatorial testing:
Expensive but can be highly effective

Where does this stuff make sense?
• More than (roughly) 7 or 8 parameters and less than 300, depending

on interaction strength desired
• Processing involves interaction between parameters (numeric or

logical)

Where does it not make sense?
• Small number of parameters, where exhaustive testing is
possible

• No interaction between parameters, so interaction testing is
pointless (but we don’t usually know this up front)

Modeling & Simulation Application

• “Simured” network simulator
• Kernel of ~ 5,000 lines of C++ (not including GUI)

• Objective: detect configurations that can
produce deadlock:

• Prevent connectivity loss when changing network
• Attacks that could lock up network

• Compare effectiveness of random vs.
combinatorial inputs

• Deadlock combinations discovered
• Crashes in >6% of tests w/ valid values (Win32

version only)

Simulation Input Parameters
Parameter Values

1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

5x3x4x4x4x4x2x2
x2x4x4x4x4x4
= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

Combinatorial vs. Random
 Deadlocks Detected -

combinatorial

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected –
 random

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0.63 0.25 0.75 0. 50 0. 75
3 161 3 3 3 3 3
4 752 10.13 11.75 10.38 13 13.25

Network Deadlock Detection
Detected 14 configurations that can cause deadlock:
 14/ 31,457,280 = 4.4 x 10-7

Combinatorial testing found one that very few random
tests could find:
 1/ 31,457,280 = 3.2 x 10-8

Combinatorial testing found more deadlocks than
random, including some that might never have been
found with random testing

Risks:
• accidental deadlock configuration: low
• deadlock configuration discovered by attacker: high

ACTS Tool
(NIST & UT Arlington)

Defining a new system

Variable interaction strength

Constraints

ACTS Tool – covering array

Output
Output formats:

• XML
• Numeric
• CSV
• Excel

Post-process output using Perl scripts, etc.

Output options
Degree of interaction coverage: 2
Number of parameters: 12
Number of tests: 100

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 1 1 1
2 0 1 0 1 0 2 0 2 2 1 0
0 1 0 1 0 1 3 0 3 1 0 1
1 1 0 0 0 1 0 0 4 2 1 0
2 1 0 1 1 0 1 0 5 0 0 1
0 1 1 1 0 1 2 0 6 0 0 0
1 0 1 0 1 0 3 0 7 0 1 1
2 0 1 1 0 1 0 0 8 1 0 0
0 0 0 0 1 0 1 0 9 2 1 1
1 1 0 0 1 0 2 1 0 1 0 1
Etc.

Degree of interaction coverage: 2
Number of parameters: 12
Maximum number of values per
parameter: 10
Number of configurations: 100

Configuration #1:

1 = Cur_Vertical_Sep=299
2 = High_Confidence=true
3 = Two_of_Three_Reports=true
4 = Own_Tracked_Alt=1
5 = Other_Tracked_Alt=1
6 = Own_Tracked_Alt_Rate=600
7 = Alt_Layer_Value=0
8 = Up_Separation=0
9 = Down_Separation=0
10 = Other_RAC=NO_INTENT
11 = Other_Capability=TCAS_CA
12 = Climb_Inhibit=true

ACTS Users

Information
Technology

Defense

Finance

Telecom

Summary
 Empirical research suggests that all software failures caused by

interaction of few parameters

 Combinatorial testing can exercise all t-way combinations of
parameter values in a very tiny fraction of the time needed for
exhaustive testing

 New algorithms and faster processors make large-scale
combinatorial testing possible

 Project could produce better quality testing at lower cost

 Beta release of tools available, to be open source

 Rick Kuhn Raghu Kacker
 kuhn@nist.gov raghu.kacker@nist.gov

 http://csrc.nist.gov/acts (Or just search “combinatorial testing” !)

Please contact us if you are interested!

	Slide Number 1
	What is NIST?
	Software Failure Analysis
	
	
	How about hard-to-find flaws?
	How about other applications?
	And other applications?
	Still more?
	Even more?
	Finally
	So, how many parameters are �involved in really tricky faults?
	How is this knowledge useful?
	How do we test this?
	What if we knew no failure involves more than 3 switch settings interacting?
	What is combinatorial testing?�A simple example
	How Many Tests Would It Take?
	Now How Many Would It Take?
	A Covering Array
	
	New algorithms to make it practical
	Slide Number 22
	A Real-World Example
	Example
	Tests generated
	Results
	Where does this stuff make sense?
	Modeling & Simulation Application
	Simulation Input Parameters
	Combinatorial vs. Random
	Network Deadlock Detection
	ACTS Tool �(NIST & UT Arlington)
	Defining a new system
	Variable interaction strength
	Constraints
	ACTS Tool – covering array
	Output
	Output options
	ACTS Users
	Summary

