
A Unified Framework for Mobile Device Security

Wayne Jansen

 The National Institute of Standards and Technology
Wjansen@nist.gov

Vlad Korolev

Booz-Allen Hamilton
Vkorolev@nist.gov

Serban Gavrila
VDG, Inc.

Serban.Gavrila@nist.gov

Thomas Heute, Clément Séveillac

The National Institute of Standards and Technology
{Thomas.Heute, Cseveillac}@nist.gov

Abstract: Present-day handheld devices, such as PDAs,
are a useful blend of hardware and software oriented
toward the mobile workforce. While they provide the
capability to review documents, correspond via electronic
mail, manage appointments and contacts, etc., they
typically lack a number of important security features.
Concerned individuals and organizations aware of the
associated risks involved, mitigate them with such add-on
mechanisms as improved user authentication, content
encryption, organizational policy controls, virus
protection, firewall and intrusion detection filtering, and
virtual private network communication. Unfortunately,
such piecemeal solutions often present problems in
software integration, usability, and administration. This
paper describes a framework for incorporating core
security mechanisms in a unified manner that avoids these
problems.

Keywords
Mobile Security, User Authentication, Policy
Enforcement, File Encryption, Security Frameworks

1. Introduction
The use of mobile handheld devices within the workplace
is expanding rapidly. These devices are no longer viewed
as coveted gadgets for early technology adopters, but
have instead become indispensable tools that offer
competitive business advantages for the mobile
workforce. While these devices provide productivity
benefits, they also pose new risks to an organization’s
security, not only from the sensitive information held and
the organizational networks accessible by them, but also
from their propensity to become physically separated
from the user.

Adequate user authentication is the first line of defense
against unauthorized use of a lost or stolen handheld
device. Multiple modes of authentication increase the
work factor needed to compromise a device; however,
very few devices support more than one mode, usually
password-based authentication. Moreover, integrating a
second mode of authentication under an operating system,
especially a proprietary one, can be a daunting task
[Mic03].

With enough time and effort, any authentication
mechanism can be overcome or circumvented, especially
if weaknesses are present [Kin01]. Content encryption
serves as a second line of defense, opening the
information repository to only those individuals with the
correct cryptographic key. A cryptographic key can be
determined dependently or independently of an
authentication event. For example, for a user who
authenticates with a USB or MMC smart card, the key for
decrypting content could be contained on the card.
Alternatively, for a user who authenticates with a
biometric, the key could be determined subsequently from
a separate graphical [Blo96, Jer99, sfr00] or textual
password entry dialogue, using password-based
encryption to form the key [Atr00].

Mobile devices lie at the periphery of an organization’s
infrastructure, which makes them difficult to administer.
While mobile computing opens up new application areas,
it also introduces new vulnerabilities. To reduce or
eliminate common risks, a security officer requires the
means to express, monitor, and enforce organizational
security policies effectively, particularly over external
communications and interfaces. Policies should not only
restrict and filter external communications, but also
constrain user privileges on handheld devices [Jan03a,
Poi02, Uti03]. When implemented correctly, security
policy management mechanisms can be applied to govern
user behavior automatically and unobtrusively.

Contribution of the National Institute of Standards and Technology
(NIST). The identification of any commercial product or trade name
does not imply endorsement or recommendation by NIST.

This paper describes a general framework for PDA
security that incorporates multi-mode user authentication,
content encryption, and policy enforcement in a unified
fashion. The approach requires the application of
organizational security policies, organized into distinct
policy contexts known as echelons, among which a user
may transition. Besides the policy context, an echelon
can be associated with one or more authentication steps
and with a distinct repository of encrypted information.
The approach aims at helping users easily comply with
their organization’s security policy, yet be able to exercise
a significant amount of flexibility and discretion. The
design of the framework allows various types of
authentication technologies to be incorporated readily and
provides a simple interface for supporting different types
of policy enforcement mechanisms. The goal is to
provide a sound basis for the security of devices issued
organizationally in sectors such as medical, financial,
defense, and law enforcement.

2. Concept of Operation
For this discussion, only single-user systems apply. That
is, the user is considered the sole operator of the device,
once it is issued. Policy rules govern both the behavior of
the user and the device.

An organizational security policy may involve several
sets of policy rules that are organized into echelons.
Conceptually, echelons are graded into sensitivity levels,
level 1 being the least sensitive and level 3 being the most
sensitive. Level 0 represents the most restrictive policy
for device lockdown, and is the starting point whenever a
device is powered on or rebooted. While the framework
allows the user discretion in selecting among echelon
levels at which to operate, it also can impose one or more
authentication steps, where needed, before permitting a
transition to a higher echelon level. Thus, authentication

steps are cumulative and hierarchical – all lower level
authentication steps plus those required at some desired
level must be successfully completed to reach the desired
level. Though the authentication steps are hierarchical,
the policies at each echelon are independent of one
another from the perspective of the framework. The
framework also allows a distinct encrypted information
repository to be associated with any echelon above level 0
and its contents to be made available once a successful
transition to that level occurs.

The implementation of the framework uses our own
policy enforcement engine to govern behavior [Jan03a];
however, its design allows it to interface with other policy
enforcement engines that may be available, such as the
Linux Intrusion Detection System or Security Enhanced
Linux. The implementation also supports up to thirty-one
echelon levels, if needed. In practice, however, three
levels or less have normally been sufficient. At its
simplest, the framework can support a single
authentication mechanism and an associated policy,
comparable to present-day PDA configurations.

Figure 1 gives an example of a 3-echelon configuration,
where each echelon comprises a distinct set of policy
rules, prerequisite authentication steps, and an optional
security repository. For level 1, authentication steps 1A
and 1B are needed. For level 3, authentication step 3A is
needed, and the condition for authentication steps 1A and
1B must still hold. A successful transition to level 3,
allows the user to gain access to a repository of encrypted
files. No additional authentication steps are needed to
transition from level 1 to level 2, though the condition for
steps 1A and 1B must still hold. Transition among levels
is initiated at the discretion of the user. Though echelon
levels range from low to high to differentiate escalating
sensitivity, hierarchical policy rules are not a requirement.

Figure 1: Echelon Example

That is, after successfully completing a number of
authentication steps, the user may be granted more or less
restrictive permissions than at a lower echelon level. For
example, the policy at a higher level may disable
communications that were available at a lower level, but
be granted access to additional applications that were
previously unavailable.

The framework supports both polled and non-polled
forms of authentication. Non-polled authentication is
resolute – once the verdict is determined, it is inviolate
until the next authentication attempt. Examples of non-
polled authentication include passwords, fingerprints, and
voice verification. Polled authentication on the other
hand is irresolute – once the initial verdict is determined,
the status can change based on the absence or presence of
some logical or physical token involved in reaching the
initial verdict. Examples of polled authentication include
smart cards, security tokens, and communications signals
(e.g., a trusted beacon), whereby the absence of the device
or signal triggers a non-authenticated condition.

3. Transition Flow
Figure 2 illustrates the transition flow between echelons
for the example configuration. The darkened circles
represent the echelon levels 0 through 3 and the lightened
circles represent any required authentication steps. The
arrows represent the transitions among levels and
authentication steps. For clarity, a box circumscribes the
set of authentication steps needed to be accomplished to
transition between adjacent levels, and apply
cumulatively between non-adjacent levels. Some
transitions can occur manually (i.e., Man Tran) or
automatically (i.e., Auto Tran), and are labeled
accordingly.

On reboot and power on events, the system begins at the
default level, level 0, and automatically attempts to
transition the user to echelon level 1. Level 1 requires the
successful completion of two authentication steps for
entry: 1A and 1B. If any of the authentication steps fail,
the user remains at level 0 and the system automatically
reattempts to transition again to level 1. However, access
is blocked for a period of time, as a penalty for failing to
successfully transition there in the previous attempt.
Similarly, if the user successfully transitions to level 1,
but the status of a polled authentication step used to reach
that level changes (e.g., 1B authenticated the user through
a token, which is then removed), triggering a non-
authenticated condition, the user is returned to level 0.
The system then automatically reattempts to transition the
user to level 1, after blocking access for a specified period
of time.

Blocking access during a transition attempt for which an
authentication failure previously occurred is done by
bracketing the execution of those authentication steps
with pre- and post-authentication steps (e.g., 1p and 1p),
designated respectively with superscript and subscript
letter P. The pre- and post-authentication steps are a
useful but optional technique for the framework. These
pseudo authentication steps work in tandem to allow
authentication failures to be dealt with collectively by the
framework, rather than individually by each
authentication mechanism.

To understand how this works, an explanation of
“handlers” is needed. Handlers are code modules that
carry out each authentication step, such as 1A or 1B. One
handler exists for every authentication step and also for
the pre- and post- authentication steps, if used. Because
handlers are synonymous with authentication steps, the
same name assigned to one is normally used to refer to

Figure 2: Transition Flow

the other (e.g., pre-authentication step 1p versus pre-
authentication handler 1p or, in shorthand, pre-handler 1p).

The pre-handler maintains a penalty file where the
number of failures is recorded. If the file does not exist, it
creates the file and sets the value to 1, in anticipation of
an upcoming failure. Otherwise, failures have previously
occurred, and the pre-handler imposes a delay penalty
commensurate with the recorded value, before
incrementing the value by 1. The delay penalty can be
programmed for linear, exponential, or any other scheme
the implementer chooses, including total lockout of a
level. If the authentication steps proceed successfully, the
post-handler deletes the penalty file when it executes to
clear out the count. This approach allows the number of
attempts for a user to authenticate to be controlled
independently at each authentication step by the
associated handler, yet a penalty to be applied collectively
for the entire set of authentication steps by the pre- and
post-handlers.

Once echelon level 1 is reached, transitioning among the
remaining levels is done at the user’s discretion.
Downward transitions do not involve any authentication
steps. It may require the successful completion of one or
more additional authentication steps, however, to make
the transition upwards to a higher level. All of the sets of
authentication steps from the current echelon level up to
the requested level, including any intervening levels, are
initiated in their logical sequence. If any of the
authentication steps fail, the user transitions to the highest
level permitted, based on authentication condition of
those steps that still hold.

For the example configuration, transitioning to level 3 can
be attempted from either level 1 or 2, and requires the
successful completion of one additional authentication
step, 3A. A user attempting to transition from level 1 to
level 3 could attain level 2, should the user successfully
complete all authentication steps for level 2 (i.e., in this
case none), but fail the authentication step for level 3.
However, because the user unsuccessfully attempted a
transition to level 3, access will be blocked for a period of
time on the next transition attempt to that level. Note that
the blocking is done selectively, permitting the user to
continue operation at level 2, as the penalty time for level
3 expires. After the user successfully transitions to level
3, a cryptographic repository is deciphered and its
contents are made available.

While the user typically initiates a transition among
echelon levels, the framework also allows the possibility
for polled authentication mechanisms to request that a
transition attempt be initiated. For example, the presence
of a smart card in the smart card reader could be made to
trigger the system to attempt a transition to the level for

which this authentication step is associated. This facility
is fairly intuitive and appropriate for most authentication
mechanisms; however, it could be troublesome for tokens
that are not under the control of the user. For example, if
the presence of a signal broadcast from a trusted beacon is
used as one of the authentication steps for completing a
transition to a higher level, an unwanted transition attempt
might occur. The framework allows the user to control
whether a polled authentication mechanism can initiate a
transition attempt, by providing the option to cap the level
from which requests from polled handlers are enacted
upon by the system, so that those requests are ignored.

4. High-Level Design
The design of the multi-mode authentication solution
involves four main types of components: kernel modules,
authentication handlers, user interface (UI) components,
and the level selector. Figure 3 below illustrates the
different components of the solution and the flow of data
between them. The echelon level selector is the user’s
control window for the framework. It allows the user to
transition among echelons and to exert control over the
behavior of some polled authentication mechanisms, such
as a communications signal, essentially preventing them
from attempting to transition automatically up to a level
that the user does not yet want to attain. The level
selector is visible as an active icon in the system tray that
shows the current status as an accumulative stack of
colored bars (i.e., locked, low, medium, and high), and
expands to a full interaction window when selected.

The user interface for the various authentication
mechanisms is implemented as components of a plug-in
module. Their function is to interact with the user, for
example, to accept a password or prompt the user to insert
a smart card. The plug-in module supports a socket
interface to receive commands from the authentication
handler components that run as separate processes, and
route the commands to the correct interior user interface
component. Similarly, the reverse process is also
supported between components and the module for
responses.

As mentioned earlier, handlers embody the mechanism
that performs the actual authentication. They interact
with the user interface components to tell them to bring
up the specific screens, accept input, display messages,
etc. They also communicate with any peripheral
hardware devices needed for authentication, such as a
security token, and access the file system to store and
retrieve information as needed. For example, for the
picture password visual authentication mechanism shown
in Figure 3 [Jan03b], the handler uses files containing the
theme identifier, button code mapping, and the cyphertext
password to verify the sequence of user-selected images.
Handlers communicate with the kernel module, listening

Figure 3: Top-Level Components

for when to initiate authentication, and reporting back
whether authentication was successful.

The kernel has been augmented with three key
modifications: the multi-mode authentication
functionality, the secure repository functionality, and the
policy enforcement functionality. Policy enforcement’s
main responsibility is to impose different sets of policy
rules on the device, as signaled by multi-mode
authentication. For example, it blocks the I/O ports on the
device and other means to bypass the authentication
sequence until the user is authenticated at level 1. It also
protects authentication information files, the user
interface and handler components, and policy
enforcement information. Moreover, it also has the
means to register and start up registered components if
they are not running or restart them if they terminate for
some reason, which is used for the authentication
handlers.

The main responsibility of multi-mode authentication
functionality within the kernel is to govern the
authentication steps as they relate to the various echelon
levels that are configured. It is the source of all
knowledge about the mappings between authentication
mechanisms and echelon levels, simplifying the
complexity of the authentication handlers that carry out
the authentication steps. One of its key functions is to
initiate user authentication when the device is powered
on. It also controls the order and frequency in which the
handlers are awakened from suspended state and begin
execution, and ensures that messages from only
recognized handlers are accepted and processed.

The communication between the kernel and either an
authentication handler or the echelon selector is done via
the /proc file system. There are several different
messages that can be communicated. Overall, two classes
of messages exist: those related to authentication and
those related to echelon transitions. The purpose of these
messages is described below. To simplify developing
handlers, a common messaging programming interface
was established.

• Handler Ready - When a handler process is ready to

perform authentication it signals the kernel with this
message. When the kernel receives this message it
first verifies that this process is indeed a registered
handler and, if it is, it puts the process on a wait
queue until there is a need to perform the
authentication step.

• Authenticate - The kernel uses this message to wake

up authentication handlers and have them perform an
authentication step. The handlers are awakened one
at a time in the same order they occur in the handler’s
table.

• Poll - This message is used by the kernel to wake up

authentication handlers periodically to have them
check for the presence of a token.

• Error - With this message, the kernel signals a

specific handler to exit.

• Authentication Failed - This message is conveyed to

the kernel to indicate a failed authentication attempt.

The kernel verifies that the message comes from a
registered handler.

• Authentication Successful - This message is conveyed

to the kernel to indicate a successful authentication
attempt. The kernel checks if this message indeed
comes from the handler that is supposed to be
running at a present time. When all of the registered
handlers report successful authentication at some
level, the kernel transitions the device accordingly.

• Level n - This message is conveyed to the kernel

from the echelon level selector and indicates that a
transition to echelon level n should be attempted. An
authentication handler may also use the message in
special situations (e.g., a polling handler sensing the
presence or absence of a token and needing to trigger
a transition).

• Maxl n - This message is conveyed to the kernel from

the echelon level selector and indicates that the
maximum echelon level for automatic transition
attempts should be set to n.

• Key k - This message is conveyed to the kernel from

a handler to convey the cryptographic key for
opening the cryptographic repository for the level at
which the handler is operating. When the kernel
receives this message it verifies that this process is a
registered handler and uses the key to open the
repository.

5. Conclusions
While mobile devices provide productivity benefits, they
also pose new risks. This paper demonstrates that a
unified framework for incorporating core security
mechanisms in mobile devices is both possible and
practical. The approach provides users the flexibility to
switch among security contexts to perform their tasks, yet
ensures that organizational policy can be administered
and enforced at the edges of the organization.

References
[Atr00] Mohan Atreya, Password Based Encryption,

<URL:
http://www.rsasecurity.com/products/bsafe/
whitepapers/Article3-PBE.pdf>.

[Blo96] Greg E. Blonder; Graphical password, US

Patent 5559961, Lucent Technologies Inc.,
Murray Hill, NJ, August 30, 1995.

[Jan03a] Wayne Jansen, Tom Karygiannis, Michaela

Iorga, Serban Gavrila, and Vlad Korolev,
Security Policy Management for Handheld

Devices, The 2003 International Conference
on Security and Management (SAM'03),
June 2003.

[Jan03b] Wayne Jansen, Serban Gavrila, Vlad

Korolev, Rick Ayers, and Ryan Swanstrom,
Picture Password: A Visual Login
Technique for Mobile Devices, NISTIR
7030, July 2003, <URL:
http://csrc.nist.gov/publications/nistir/nistir-
7030.pdf >.

[Jer99] Ian Jermyn, Alain May, Fabian Monrose,

Michael Riter, and Avi Rubin, The Design
and Analysis of Graphical Passwords,
Proceedings of the 8th USENIX Security
Symposium, August 1999.

[Kin01] Kingpin and Mudge, Security Analysis of

the Palm Operating System and its
Weaknesses Against Malicious Code
Threats, USENIX Security Symposium,
August 2001.

[Mic03] Let Me In: Pocket PC User Interface

Password Redirect Sample, Microsoft
Knowledge Base Article – 314989,
Microsoft Corporation, July 2003, <URL:
http://support.microsoft.com/default.aspx?sc
id=kb;en-us;314989>.

[Poi02] Pointsec for Pocket PC, Pointsec Mobile

Technologies, November 2002, <URL:
http://www.pointsec.com/news/download/Po
intsec_PPC_POP_Nov_02.pdf>.

[sfr00] visual Key – Technology, sfr GmbH, 2000,
<URL:
http://www.viskey.com/technik.html>.

[Uti03] SafeGuard PDA, Utimaco Safeware AG,

March 2003, <URL:
http://www.utimaco.com/eng/content_pdf/sg
_pda_eng.pdf>.

http://www.rsasecurity.com/products/bsafe/whitepapers/Article3-PBE.pdf
http://www.rsasecurity.com/products/bsafe/whitepapers/Article3-PBE.pdf
http://support.microsoft.com/default.aspx?scid=kb;en-us;314989
http://support.microsoft.com/default.aspx?scid=kb;en-us;314989
http://www.viskey.com/technik.html
http://www.utimaco.com/eng/content_pdf/sg_pda_eng.pdf
http://www.utimaco.com/eng/content_pdf/sg_pda_eng.pdf

	Keywords
	1. Introduction
	2. Concept of Operation
	3. Transition Flow
	4. High-Level Design
	5. Conclusions
	References

