
Forensic Protocol Filtering of Phone Managers

Wayne Jansen and Aurélien Delaitre
Information Technology Laboratory, National Institute of Standards and Technology

Gaithersburg, MD, USA

Abstract – Phone managers are non-forensic tools
sometimes used by forensic investigators to recover data
from a cell phone when no suitable forensic tool is available
for the device. While precautions can be taken to preserve
the integrity of data on a cell phone, inherent risks exist.
Applying a forensic filter to phone manager exchanges with
a device is suggested as a safer alternative that could be
pursued as a solution to reduce risk.

Keywords: Cell Phone, Computer Forensics, Protocol Filter

1. Introduction
Over 2.5 billion cell phones are estimated to be in use in the
world today – with 3 billion expected before 2010. Digital
evidence recovered from a cell phone can provide a wealth
of information about the user, and technical advances in
device capabilities generally offers opportunity for recovery
of a broader range of information. Numerous forensic tools
abound for automatic data recovery from cell phones.
While the outlook should be positive, a number of factors
conspire to impede progress in cell phone forensics. A key
issue is the delay between the availability of a cell phone to
the public and support for the phone by a forensic tool.

When a new phone appears, a forensic tool manufacturer
must decide whether to adapt its tool for the phone,
purchase exemplars for study, create and test an update
containing support for the phone, and finally release the tool
update to the user. The decision factors involved include
the popularity of the phone model, the requirements of the
customer base, and the overall support objectives of the
company. The time required for needed tool updates to

reach users, therefore, can be lengthy and for the least
popular models may never occur. Validation of the updated
tool for use in casework increases the delay, putting forensic
specialists further behind the power curve of having a
suitable means for automated data recovery. Figure 1
illustrates the situation.

Phone managers are sometimes turned to as a way to
recover data when no suitable forensic tool is available.
Phone managers are typically available from the
manufacturer of the cell phone and kept up to date with
support for newly released models. They allow various
operations, including retrieval of core user data such as
phonebook entries and photos. Tools not designed
specifically for forensic purposes are questionable, however
[4]. In particular, phone managers have the ability to both
read and write data to a phone, which is problematic from a
forensic perspective, if used without applying proper testing
and procedural controls. Many anecdotes abound of a
practitioner accidentally or unknowingly writing data to a
phone when using such a tool.

To simplify the content recovery process, a forensically-
sound access method would exist across all cell phones.
More realistically, cell phones would support a common
interface and protocol standard for handset communications
that could be used for data recovery. A recently proposed
standard from the Open Mobile Terminal Platform specifies
the use of micro Universal Serial Bus (USB) as a universal,
cross-manufacturer cable interface for power and
communications. Its data synchronization capabilities might
provide an opportunity, if adopted by manufacturers.

Figure 1: Forensic Tool Timeline

Until then, avenues to reduce latency need to be pursued.
For example, tool manufacturers could improve their
relationships with phone manufacturers or network carriers
to gain a head start on development before phones are
available to the general public. Another approach to reduce
latency called phone manager protocol filtering is described
in this paper. The idea is to build on the functionality of
available phone managers by augmenting them with a
protocol filter that limits their functionality to allow only
safe exchanges to occur.

2. Background♦
More than a billion cell phones were sold worldwide in
2007 and projections beyond continue to rise. Over the last
decade the capabilities and features of cell phones, such as
increases in performance and storage capacity, and additions
of document and multimedia handling functionality, have
also continued to improve rapidly, turning cell phones into
data reservoirs with the capability to hold a broad range of
personal and organizational information.

Forensic software tools are the preferred means for
recovering digital evidence from supported cell phones.
Data recovery is usually carried out through logical instead
of physical acquisition, using one or more procedure
supported by the device. The protocols include standardized
and proprietary device synchronization protocols, command
interface protocols, and diagnostic protocols.

The number and variety of phone models unveiled on the
world market each year is considerable, creating a burden
for forensic tool manufacturers to keep their product
coverage up to date. Models introduced into one national
market can be used elsewhere by replacing the identity
module of a phone with one from another carrier, or through
roaming features. Models of older functioning phones,
though out of date, can also remain in use for years after
their initial release.

Unlike the situation with personal computers, mobile phone
manufacturers often employ different proprietary operating
systems and storage structures. New phone models often
have functional differences from previous models that must
be taken into account to recover and report data properly.
Complicating matters further are variations in data storage
location assignments, which can occur in a specific model
of phone subsidized and supplied by different network
carriers, due to adaptations made for the carriers by the
manufacturer. Firmware updates sent out by a network
carrier can also affect data locations, creating additional
hurdles for developing and maintaining a tool [3].

♦ Certain commercial products and trade names are identified in this paper
to illustrate technical concepts. However, it does not imply a
recommendation or an endorsement by NIST.

Six manufacturers control about 80 percent of the cell phone
market at any one time, while approximately forty others
compete for the remaining 20 percent share. Nokia and
Motorola led the group in 2006 with more than 50 percent;
in 2007 Nokia and Samsung were in front with more than
50 percent [1, 2, 10]. New manufacturers occasionally enter
the marketplace and others leave. For example, the iPhone
from Apple was a new entrant in 2007.

Cell phone manufacturers such as Nokia, Motorola, and
Samsung normally keep their phone manager software up to
date for new and current phone models in the product line.
Forensic specialists have long recognized the potential for
phone managers as a tool for automated recovery of
common types of core user data. Because phone managers
are not forensically sound, additional steps must be
followed, if used to recover data. They include validating
the operation of the phone manager, testing and verifying
the procedures to be followed for acquisition to safeguard
against altering data on the phone, and producing a
cryptographic hash of the acquired data.

Regrettably, even an experienced forensic specialist taking
all available precautions could accidentally write data to a
phone using a phone manager. Phone manager protocol
filtering helps to safeguard against accidental modifications
to data on the phone and provides a stopgap measure until a
forensic tool update that supports the phone in question
becomes available.

3. Filtering Considerations
Forensic cell phone tools often recover data employing the
same protocols used by phone managers. To avoid the
problem of altering data on a phone, forensic tools restrict
the protocol used to communicate with the device to only
functions that are either known to be safe or involve very
minor forensic issues. A potential way to gain the same
advantage for phone managers is to apply a filter between
the phone manager application and the device being
managed, which blocks harmful protocol commands from
propagating. Filtering is an often used technique in
computer forensics, commonly implemented in hardware or
software write blockers for disk and USB device interfaces.

Most phone managers run under the Windows operating
system and are distributed in binary form for installation.
Communications with cell phones occur over a serial COM
or USB port. Most serial port data transmission for
Windows systems is done the same way as writing to a file.
For example, the WriteFile function can be used to send
data via a serial COM port. The same function also works
with virtual serial ports established over USB, infrared, or
Bluetooth communications. The technique used for the
filter prototype involves intercepting the call from the phone
manager to the Application Programming Interface (API)

for this function to capture the data, interpret the content,
and return an appropriate response to the phone manager.
Similarly, calls to other related functions, such as CreateFile
and ReadFile, would need to be intercepted for the filter to
work overall.

API hooking is a term used to describe intercepting calls to
a function for some purpose, usually to customize and
extend its functionality and also to monitor aspects of an
application. The target function may be in an executable
application, a library, or a system Dynamic Link Library
(DLL). In the case of Windows operating systems, the
functions of interest are part of the so-called Win32 API.
Hooking Win32 APIs is not new; security add-ons, such as
personal firewalls and anti-virus applications, as well as
malicious code such as rootkits, have used these techniques
to insert themselves seamlessly into an operating system.
The interception process is performed at run time against a
running process rather than modifying static binary images
at rest.

Several different techniques have been used to hook
Windows APIs. A common way is to alter the import
address table (IAT) of a given module and replace the target
function with the substitute function. The IAT contains the
address of each imported function and is used by the loader
to map function calls to entry points of loaded routines.
Alternatively, an unconditional jump can be inserted in the
first few bytes of a target function to change the flow of
execution to the substitute function. When the substitute
function completes its task, control is returned to the
modified function or, optionally, back to the calling
program.

Figure 2: API Interception

The approach used for the phone manager filter is to have
the substitute function serve as a wrapper for the target
function, as illustrated in Figure 2. The first few
instructions of the target function are replaced with a jump
to the filter function, and the replaced instructions from the

target function are preserved in a so-called trampoline
function [6]. The trampoline function acts like a relay,
ending with a jump back to the target function to complete
processing after the preserved instructions are executed.
The filter function can either call the trampoline function to
invoke the target function, or return directly to the calling
program and bypass the target function altogether. The
target function is also adjusted to return control to the filter
function upon completion to allow the filter to perform any
needed post-function operations.

The use of this technique makes the filter somewhat system-
dependent. Certain functions of the Win32 API are partially
overwritten and the binary code of the Win32 API can vary
with the version of the operating system. The operation also
must observe the right alignment with the next, not
overwritten instruction. It is typically a simple task to adapt
the filter to a particular release of Windows, including the
version of its service pack.

4. Phone Manager Protocol
Considerations

The Nokia PC Suite provides a good example of a candidate
phone manager for protocol filtering. The current version
for the U.S. market supports approximately 75 models,
including the very latest. The versions for other countries
support about the same number of models, some of which
are different from the models in the U.S. version. PC Suite
can be used for a number of things, including copying
personal data (e.g., phonebook entries) to a computer for
safekeeping; transferring images, video clips, and other files
from the phone to a computer; and viewing contacts and
messages on a device. Certain features work only when
used with those models of Nokia phone that employ
compatible functionality. Various types of communications
with the phone are supported, including serial COM and
USB cables. Wireless options also exist.

Figure 3: Phone Manager Protocol Stack

Byte 0 1 2 3 4 - 5 6 - n n+1 - n+2
Contents Frame ID Destination Source Command Length Data Checksum

Figure 4: FBUS Frame

The Nokia PC Suite uses a proprietary protocol called the
FBUS protocol to perform its functions. An AT modem
command is sent to the phone to switch into FBUS mode.
The FBUS protocol is used to extract the model number of
the phone, presumably to determine how to proceed. The
FBUS protocol can also be used to recover other
information, such as phonebook, call logs, SMS messages
and calendar entries. Another protocol, OBEX, which rides
over the FBUS frames, is also used to extract media files,
ring tones and downloaded applications that are present.
The physical interface is a bidirectional serial
communication bus that runs at 115,200 bits per second [7].
Figure 3 illustrates the situation.

The FBUS frame is byte oriented. The first byte of the
frame, byte 0, holds the hexadecimal value of the identifier
for the FBUS protocol. The value 1E is the frame identifier
for cable. Bytes 1 and 2 respectively contain the destination
and source addresses [7, 8]. For data sent to the phone, the
destination address is 00. The source address for the
personal computer is 10 or 0C. Byte 3 contains the
command identifier, which potentially supports up to 256
(i.e., 28) commands. Bytes 4 and 5 hold the length of the
data that follows. The bytes following byte 5 convey the
data segment of the frame. The last byte of the data
segment contains a 3-bit sequence number and fragment
flag, while the penultimate byte indicates the remaining
frames to go to complete the payload. The last two bytes of
the frame contain a checksum [7, 8]. Only frames of an
even length are transmitted. A byte of all zeros is inserted
before the checksum, if needed, to make the total length of
the frame even. Figure 4 illustrates the frame composition.

The FBUS protocol is an acknowledged request-response
protocol, with the phone manager issuing command requests
and the phone answering [7, 8]. Responses use the same
command identifier as the request being answered, but
reverse the source and destination address. Every request or
response, except for the first request, is prepended with an
acknowledgment frame indicating receipt of the last
protocol element sent by the other party. This convention
means that for a blocked request, the filter may need to
forge a receipt acknowledgment, in addition to an
appropriate negative response, to prevent the phone
manager from resending a disallowed frame.

Because the FBUS protocol is proprietary, the function of
all command identifiers is not known. However, over the
years many of the commands have been determined through
experimentation by various parties. Furthermore, the
communications of available cell phone forensic tools can
be monitored to help to identify commands considered safe

by tool manufacturers. To avoid propagating frames
containing unsafe commands to a phone, the phone manager
filter incorporates a white list of known commands deemed
safe; all other command frames are blocked.

The Object Exchange Protocol (OBEX) performs a function
similar to HTTP for devices that are resource constrained.
OBEX consists of the following pieces:
 An object model that conveys information about the

objects being sent, as well as the objects themselves
 A session protocol, which uses a binary packet-based

client/server request-response model.

The OBEX File Transfer Protocol (OBEXFTP) service is
used to access the file structure of the device. The OBEX
Object Push (OBEXOBJECTPUSH) service is used to
exchange objects such as vCard and vCalendar and, for
some devices, to access the file structure. In addition, other
proprietary methods can be defined by the manufacturer.

5. PC Suite Design and Operation
Nokia PC Suite (PCS) release 6.84.10.3 is made of several
standalone programs. The Graphical User Interface (GUI),
LaunchApplication.exe, allows the user to start other
operational subprograms such as PCSync2.exe and
ContactsEditor.exe, used respectively to synchronize data
with a computer and to edit phonebook entries. These
programs use a Remote Procedure Call (RPC) channel for
communications with ServiceLayer.exe, a resident PCS
service. The service is started automatically by the
operating system and is responsible for communicating with
the phone. It makes use of the different protocols supported
by Nokia phones (i.e., AT, FBUS, and OBEX over FBUS).

PCS can be envisaged as two distinct parts: the application,
which bundles the GUI and the operational subprograms,
and the service layer, which is a sublayer of the application.
Figure 5 illustrates the design. The upper-level applications
run with the privileges of the user executing them. In
contrast, the service layer runs with System privileges,
which gives it total access to the operating system and the
resources of the computer.

The PCS service uses the Win32 API provided by the
operating system. In this case, to communicate with a
Nokia 6101 device, it uses a variant of the CreateFile
function, CreateFileA, to get a handle on the serial port to
which the phone is connected. In the main thread, the
service runs a loop that scans for available devices on a
regular basis. Once a device is detected, it calls CreateFileA
to open a communication channel to the device. The

Figure 5: PC Suite Design

functions WriteFile and ReadFile are used respectively to
send requests to the phone and to receive the responses.
Depending on the upper-level application being used,
several threads are created to send requests over the newly
created channel. A different thread is used to read the
responses from the device using the functions ReadFile and
GetOverlappedResult. GetOverlappedResult is used to read
the data after a call to ReadFile to accommodate the
asynchronous communication channel to the phone.

In the beginning of a data exchange, the phone is in the
default AT mode. PCS sends the standard AT command
“at&f” to initialize the phone’s modem, followed by a
second non-standard AT command, “at*nokiafbus”, to have
the phone switch to the FBUS mode. Using FBUS, PCS
requests the phone’s model. For example, for a Nokia 6101,
the application asks for the phone capabilities using an
OBEX over FBUS session. The phone replies with an XML
file containing the requested information. The rest of the
operations are performed, ending with an FBUS command
that switches the phone back to the default AT mode.

6. Filter Design and Operation
The filter is injected in the memory of the service layer,
ServiceLayer.exe. It serves as a wrapper for the Win32
API, intercepting calls to the functions used to communicate
with the phone, as illustrated in Figure 6. Instead of calling
the genuine function of the Win32 API, the service calls the
matching detour functions of the filter. The filter then
decides how to handle calls to the Win32 API.

During a data exchange, PCS controls the whole operation,
sending requests for the phone to answer. Hence, the
filtering is done primarily by analyzing the data sent to the
phone by the computer (i.e., through the intercepted
WriteFile function). Only requests that are considered safe
are forwarded onward. Unsafe requests are blocked and an
error status is returned, but they also could be used to trigger
a negative response (e.g., object unavailable) from the filter.

Responses sent back by the phone are not blocked by the
filter. The filter analyzes and logs them using the
intercepted ReadFile and GetOverlappedResult functions,
before forwarding them onto the service layer. Since
blocked requests are not received by the phone, no
responses are sent back. In general, there should be no need
to filter the data sent to the computer by the phone.

6.1 Injection of the filter
The filter consists of a DLL that is loaded into the service
layer’s address space by a loader. The goal of the loader is
to find the right process to inject, namely ServiceLayer.exe,
and to load the DLL into its memory. Since the service
layer runs with System privileges, the loader also needs
System privileges to carry out its work. System privileges
are not granted to regular users, or even administrators, on
Windows computers.

One way to obtain System privileges is to use the
administrator’s ability to create new services [9]. A
member of the Administrator group can create a service that
runs a command prompt, cmd.exe, with System privileges.
The Service Create tool, Sc.exe, with the syntax: sc

Figure 6: Filter Loaded into PCS

Command Servicename [Optionname= Optionvalue...] is
used as follows: sc create systemprompt binpath= “cmd.exe
/K start” type= own type= interact [11]. Once this new
service is created, it can be started at any time to launch a
System level command shell (i.e., sc start systemprompt).

From the command shell, the user navigates to the directory
containing the filter’s DLL and the loader. Before running
the loader, it is necessary to ensure no phone is connected to
the computer. It is safer to stop PCS’s service first and then
start it again, before injecting the filter. Once the loader is
executed and the filter is injected into the service layer, the
phone can be plugged in and used with PCS. It is not
possible to unload the filter once it is injected. The only
safe way to resume the regular work of PCS is to stop its
service and start it again.

6.2 Operation of the Filter
The operation of the filter is illustrated in Figure 7. The
filter is first activated when the main loop of the PCS
service layer tries to open a device, while scanning for a
connected phone. PCS calls the Win32 function
CreateFileA, which jumps straight to the filter’s
CreateFileADetour. The filter, then, calls the genuine
Win32 CreateFileA function to open the file as expected by
the caller. If the operation is successful, the name of the
open file or device is tested and, if it happens to be a serial
device, the filter stores the resulting handle for later use. In
the last step, the handle is returned to the caller.

Later, when an upper-level application asks for an operation
to be performed on the phone, a new thread is created by the

Figure 7: Filter Sequence of Operations

service to send a request through the previously opened
device. This thread calls WriteFile to send these data and,
since this function is intercepted, jumps to the filter’s
WriteFileDetour. If the handle to be written to is the same
as the handle saved by CreateFileADetour, the caller is
trying to send data to the phone. The request is analyzed by
the filter to determine whether it is safe or not. If it is safe,
the data is sent through the handle, by calling the genuine
Win32 WriteFile, and the status of the operation is returned
to the caller. If it is unsafe, then the data is not forwarded to
the phone and an error status is returned to the caller.

The service layer has a thread dedicated to reading
asynchronously received data coming from the phone.
From within a loop, it asks for data to read by calling
ReadFile, and then tries to read it with a call to
GetOverlappedResult. During the first call, the filter’s
function ReadFileDetour is executed in place of the
expected Win32 function. The filter stores the parameters
of this reading request for later use by
GetOverlappedResultDetour. It then calls the genuine
ReadFile function and returns the status of the operation. If
it is successful, the service calls GetOverlappedResult and
executes the filter’s GetOverlappedResultDetour function,
which jumps to the genuine Win32 function. When
returning, the read data is analyzed and logged by the filter,
and then forwarded to the calling service.

The entire data exchange between the phone and the
computer is analyzed. Every event of interest is logged in
the file C:\NPSfilter.log. For example, if a frame is not
understood, it is blocked and the action logged along with a
dump of the frame. When a frame is allowed through, it is
appended to the log file, with much of the data translated to
a human-readable form.

The log file is not accessible during the operation of PCS
due to access restrictions placed on non-System users by the
operating system. The filter must be unloaded for the file to
be opened, requiring the PCS service layer to be stopped.

7. Conclusions
Cell phone forensics is an emerging discipline. Various
impediments exist that create problems for forensic
specialists working in this area, and need to be overcome for
the discipline to flourish. The technique presented in this
paper attempts to resolve the problem with the latency in
forensic tool coverage of newly available phone models by
phone manager protocol filtering. It is intended as a stopgap
measure until forensic tool support becomes available.

Initial testing of the prototype implementation indicates that
the approach could provide a practical and effective solution
for addressing the latency in forensic tool coverage of
available phones. The basic technique described is

extendable beyond the specific phone manager example
given. Intercepting low-level Windows APIs in the
application, as opposed to higher-level internal APIs, allows
components of the solution to be applied to phone managers
from other cell phone manufacturers. Reprogramming the
filter for the different protocols involved would, of course,
be required. As with any forensic tool, the resulting filtered
phone manager program requires validation before its use.

8. References
[1] Nokia and Motorola Gain Market Share as Arena

Grows, International Herald Tribune, Tech/Media
November 22, 2006,
<http://www.iht.com/articles/2006/11/22/yourmoney/
mobile.php>.

[2] Nokia and Motorola Account for Nearly 50% of
Worldwide Sales, Mobiledia, August 25, 2005,
<http://www.mobiledia.com/news/35125.html>.

[3] Robert Vamosi, Cell Phone ‘CSI,’ CNET Reviews,
May 25, 2007, < http://reviews.cnet.com/4520-
3513_7-6737586-1.htm>.

[4] Annalee Newitz, Courts Cast Wary Eye on Evidence
Gleaned from Cell Phones, WIRED, May 10, 2007,
<http://www.wired.com/politics/law/news/2007/05/cel
lphone_forensics>.

[5] Tyler Moore, The Economics of Digital Forensics,
Fifth Annual Workshop on the Economics of
Information Security, June 2006,
<http://www.cl.cam.ac.uk/~twm29/weis06-
moore.pdf>.

[6] Galen Hunt, Doug Brubacher, Detours: Binary
Interception of Win32 Functions, 3rd USENIX
Windows NT Symposium, Seattle, WA, July 1999, <
http://research.microsoft.com/~galenh/Publications/Hu
ntUsenixNt99.pdf>.

[7] Wayne Peacock, An Introduction to Nokia F-Bus,
Embedtronics, April 2005,
<http://www.embedtronics.com/nokia/fbus.html>.

[8] Paul McCarthy, Forensic Analysis of Mobile Phones,
BS CIS Thesis, University of South Australia, School
of Computer and Information Science, October 2005,
<http://esm.cis.unisa.edu.au/new_esml/resources/publi
cations/forensic%20analysis%20of%20mobile%20pho
nes.pdf>.

[9] SincereHacker, DOS Help (Includes obtaining system
privileges on windows), July 2007,
<http://www.elitehackers.info/forums/showthread.php
?p=50838>.

[10] Global cellphone sales slowing, IDC says, CBC News,
January 25, 2008,
<http://www.cbc.ca/technology/story/2008/01/25/tech-
cellphones.html?ref=rss>.

[11] How to create a Windows service by using Sc.exe,
Microsoft, Article ID 251192, Revision 3.6, December
5, 2007, <http://support.microsoft.com/kb/251192>.

	1. Introduction
	2. Background(
	3. Filtering Considerations
	4. Phone Manager Protocol Considerations
	5. PC Suite Design and Operation
	6. Filter Design and Operation
	6.1 Injection of the filter
	6.1
	6.2 Operation of the Filter
	7. Conclusions
	8. References

