

MS Cryptographic Service Provider

Design,

Build and Installation Procedure

Prepared for:

Date: 10/21/2009

Version: 1.3

(Draft)

Electrosoft

11417 Sunset Hills Road, Suite 228

Reston, VA 20190

(703) 953-1017

http://www.electrosoft-inc.com

 i

Tables of Contents

1. INTRODUCTION .. 1

1.1 BACKGROUND... 1
1.2 PURPOSE AND SCOPE .. 1
1.3 ASSUMPTIONS ... 1
1.4 DOCUMENT ORGANIZATION ... 2

2. ARCHITECTURE AND DESIGN OF THE NIST-ESI CRYPTOGRAPHIC SERVICE PROVIDER 3

2.1 MICROSOFT CSP ARCHITECTURAL OVERVIEW ... 3
2.2 APPLICATION CALL STACK USING THE NIST-ESI CSP ... 4
2.3 INVOKED CRYPTOSPI FUNCTIONS DURING WINDOWS SMART CARD LOGON ... 5
2.4 HIGH LEVEL DESIGN OF THE NIST-ESI CSP .. 6
2.5 CRYPTOSPI FUNCTION SEQUENCE FOR WINDOWS LOGON .. 7
2.6 DETAILED DESIGN OF THE NIST-ESI CSP .. 16

2.6.1 CryptoSPI Functions Implementation Descriptions .. 17
2.6.1.1 CPAcquireContext .. 17
2.6.1.2 CPReleaseContext ... 17
2.6.1.3 CPDecrypt ... 17
2.6.1.4 CPImportKey .. 17
2.6.1.5 CPDestroyKey .. 18
2.6.1.6 CPGenRandom .. 18
2.6.1.7 CPGetKeyParam ... 18
2.6.1.8 CPSetKeyParam .. 18
2.6.1.9 CPGetUserKey .. 19
2.6.1.10 CPGetProvParam .. 19
2.6.1.11 CPHashData .. 19
2.6.1.12 CPCreateHash ... 19
2.6.1.13 CPDestroyHash ... 19
2.6.1.14 CPSignHash .. 20
2.6.1.15 CPSetHashParam .. 20
2.6.1.16 CPSetProvParam ... 20
2.6.1.17 CPGetHashParam .. 20
2.6.1.18 CPVerifySignature .. 21
2.6.1.19 CPHashSessionKey ... 21
2.6.1.20 CPDuplicateHash .. 21
2.6.1.21 CPDuplicateKey .. 21
2.6.1.22 CPDeriveKey .. 21
2.6.1.23 CPExportKey .. 21
2.6.1.24 CPGenKey .. 21
2.6.1.25 CPEncrypt ... 21

3. FUNCTIONAL PROCESS FOR WINDOWS LOGON USING SMART CARDS 23

3.1 COMPONENTS ... 23
3.1.1 Winlogon .. 23
3.1.2 Graphical Identification and Authentication ... 24
3.1.3 Local Security Authority (LSA) .. 24
3.1.4 Authentication Package ... 24

3.2 FUNCTIONAL PROCESS .. 24

4. NIST-ESI CSP BUILD AND INSTALLATION PROCEDURE .. 27

4.1 BUILD AND INSTALLATION PROCEDURE ... 27
4.1.1 Machine Prerequisite ... 27
4.1.2 Build and Install for Windows Logon .. 27

4.2 NIST-ESI CSP INSTALLATION PROCEDURE ... 28
4.3 REGISTRY MODIFICATION FOR SMART CARD – CSP ASSOCIATION .. 28

 ii

4.3.1 Determine Card ATR ... 28
4.3.1.1 Determine ATR of PIV Card... 28
4.3.1.2 Determine ATR of PIV Reference Implementation .. 29

4.3.2 Associate ATR with CSP .. 29
APPENDIX A— ACRONYMS AND ABBREVIATIONS ... 30
APPENDIX B— REFERENCES .. 31

List of Figures

FIGURE 1 - INVOCATION OF CSPS BY APPLICATIONS.. 3
FIGURE 2 – WINDOWS SMART CARD LOGON CALL STACK FOR PIV .. 5
FIGURE 3 - NIST-ESI CSP DESIGN .. 6
FIGURE 4 - INTERACTIVE LOGON COMPONENTS ... 23

List of Tables

TABLE 1 - CRYPTOSPI FUNCTIONS ... 4
TABLE 2 - CRYPTOSPI FUNCTIONS REQUIRED TO SUPPORT WINDOWS SMART CARD LOGON .. 6
TABLE 3 - ENTRY POINTS ON PIV CLIENT APPLICATION PROGRAMMING INTERFACE .. 16
TABLE 4- INTERACTIVE LOGON AUTHENTICATION PACKAGES .. 24

 1

1. Introduction

1.1 Background

The National Institute of Standards and Technology (NIST) Federal Information Processing Standard 201

(FIPS 201) - Personal Identity Verification (PIV) of Federal Employees and Contractors, was developed

to establish standards for a secure and reliable form of identity credentials. FIPS 201 along with its

associated publications provide detailed specifications for Federal agencies and departments, in order for

them to deploy PIV Cards to their personnel.

FIPS 201 is accompanied by three main documents:

1 Special Publication 800-73-1 (NIST SP 800-73-1) - Interfaces for Personal Identity Verification,

specifies interface requirements for retrieving and using the identity credentials from the PIV Card. It

also defines a PIV data model, which details the structure and format of the information stored on the

PIV Card;

2 Special Publication 800-76 (NIST SP 800-76) - Biometric Data Specification for Personal Identity

Verification, contains technical specifications for biometric data mandated in FIPS 201; and

3 Special Publication 800-78 (NIST SP 800-78) - Cryptographic Algorithms and Key Sizes for

Personal Identity Verification, specifies the cryptographic algorithms and key sizes for performing

cryptographic operations on PIV data objects defined as part of the PIV data model.

Once implemented and deployed by the various Federal agencies, the PIV card is envisioned to provide

the attributes of security, authentication, trust and privacy using this commonly accepted identification

credential.

1.2 Purpose and Scope

Microsoft provides an Application Programming Interface (API) called Crypto API (CAPI) to support

cryptographic and PKI operations. Microsoft CAPI works with a number of Cryptographic Service

Providers (CSPs) that contain actual implementations of cryptographic standards and algorithms.

Different vendors develop various CSPs that have different cryptographic capabilities.

The main purpose of this document is to describe the design of the NIST-ESI CSP and how the

CryptoSPI functions have been implemented. The primary and only intent of this CSP is to perform

Windows Logon using a PIV Card or the PIV Reference Implementation. In this respect, the NIST-ESI

CSP uses the SP 800-73-1 Client API for all communications with the PIV Card or PIV Reference

Implementation.

This document also provides details on the sequence of function calls that are made to the NIST-ESI CSP

for logging into a Window’s domain using smart cards. It goes on to describe the components that are

responsible for interactive logon and the communications that occur between these components.

1.3 Assumptions

As mentioned earlier, the NIST-ESI CSP has been developed solely for demonstrating Windows Smart

Card Logon. Considering the intent of the NIST-ESI CSP, it is currently not capable of performing any

 2

enrollment functions (i.e. generating key pairs and requesting corresponding certificates from a

Certification Authority (CA)). This CSP assumes that the PIV Card/PIV Reference Implementation has

been populated with the necessary credentials (PIV Authentication Key and Certificate for Windows

Logon) and the PIV Authenticate Certificate profile is compliant with the certificate profile required for

MS Windows Smart Card Logon.

1.4 Document Organization

The structure of the document is as follows:

• Section 1, Introduction, provides an introduction to this document and includes the purpose, scope

and assumptions with which this document has been developed.

• Section 2, Architecture and Design of the NIST-ESI Cryptographic Service Provider, provides a

brief introduction of the Microsoft Cryptographic API Architecture, and provides the reader with

the background of the role of a CSP within this architecture. The latter half of this section goes

into the details of the design and implementation of the NIST-ESI CSP.

• Section 3, Functional Process for Windows Logon using Smart Cards, describes briefly the

components that are responsible for an interactive logon using a smart card, and discusses the

interaction amongst these components.

• Section 4, NIST-ESI CSP Build and Installation Procedure, discusses the build and installation

procedure for the Cryptographic Service Provider.

• Appendix A, Acronyms and Abbreviations, lists the full form of acronyms and abbreviations used

in this document.

• Appendix B, References, provides a list of reference material used to develop this document.

 3

2. Architecture and Design of the NIST-ESI Cryptographic Service Provider

2.1 Microsoft CSP Architectural Overview

The Microsoft Cryptographic API contains functions that allow applications to encrypt or digitally sign

data in a flexible manner, while providing protection for the user's sensitive key data. As described above,

these cryptographic operations are performed by independent modules known as cryptographic service

providers.

A Cryptographic Service Provider contains implementations of cryptographic standards and algorithms.

At a minimum, a CSP consists of a dynamic-link library (DLL) that implements the functions in

CryptoSPI (a system program interface). Many CSPs contain the implementation of all of the CryptoSPI

functions in software. Some CSPs, however, implement the CryptoSPI functions in hardware, such as a

smart card or secure coprocessor. Sometimes, a CSP does not implement its own functions, but acts as a

pass-through layer, facilitating the communication between the operating system and the module that

actually implements the functions.

Applications do not communicate directly with a CSP. Instead, applications call CryptoAPI functions

exposed by the operating system's Advapi32.dll and Crypt32.dll files. The operating system filters these

function calls and passes them on to the appropriate CSP functions through CryptoSPI. These applications

use handles to refer to data objects within the CSP. Objects that are referenced by their handles include

key containers, hash objects, session key objects, and public/private key pair objects.

Figure 1 - Invocation of CSPs by Applications

Custom CSPs can be developed to work within the Microsoft environment. Custom CSPs must support

all of the functions within the CryptoSPI; each function corresponds directly to a CryptoAPI

cryptographic function. Custom CSPs must support the following DLL entry points:

No. CryptoSPI Function Name

1. CPAcquireContext

2. CPReleaseContext

3. CPDecrypt

4. CPImportKey

 4

5. CPDestroyKey

6. CPGenRandom

7. CPGetKeyParam

8. CPSetKeyParam

9. CPGetUserKey

10. CPGetProvParam

11. CPHashData

12. CPCreateHash

13. CPDestroyHash

14. CPSignHash

15. CPSetHashParam

16. CPSetProvParam

17. CPVerifySignature

18. CPGetHashParam

19. CPHashSessionKey

20. CPDuplicateHash

21. CPDupicateKey

22. CPDeriveKey

23. CPExportKey

24. CPGenKey

25. CPEncrypt

Table 1 - CryptoSPI Functions

2.2 Application Call Stack using the NIST-ESI CSP

Figure 2 depicts the layers involved when the Windows Logon application invokes the NIST-ESI CSP to

utilize credentials loaded on a PIV Card. The NIST-ESI CSP is used by the Windows Logon application

to obtain cryptographic services in support of the mutual authentication that needs to occur for a

successful logon using the PIV Card.

The NIST-ESI CSP interfaces with the PIV Middleware, which may be configured to invoke the PC/SC

interface to exchange APDUs with a PIV Card. In this configuration, the smart card reader driver and I/O

drivers are part of the call stack.

Alternately, the PIV Middleware may be configured to invoke the PC/SC interface to exchange APDUs

with the PIV Card Simulator. This simulator provides a reference implementation of the PIV interfaces,

runs in a Java Runtime environment, and uses a loadable file system. In this configuration, the NIST

Virtual Smart Card Reader (VSCR) driver and service are part of the call stack.

 5

Figure 2 – Windows Smart Card Logon Call Stack for PIV

2.3 Invoked CryptoSPI functions during Windows Smart Card Logon

Table 2 lists the CryptoSPI functions that are invoked during Windows Smart Card Logon:

No. CryptoSPI Functions
Required for Windows Smart

Card Logon

1. CPAcquireContext X

2. CPReleaseContext X

3. CPDecrypt X

 6

4. CPImportKey X

5. CPDestroyKey X

6. CPGenRandom X

7. CPGetKeyParam X

8. CPSetKeyParam X

9. CPGetUserKey X

10. CPGetProvParam X

11. CPHashData X

12. CPCreateHash X

13. CPDestroyHash X

14. CPSignHash X

15. CPSetHashParam X

16. CPSetProvParam X

17. CPVerifySignature

18. CPGetHashParam

19. CPHashSessionKey

20. CPDuplicateHash

21. CPDupicateKey

22. CPDeriveKey

23. CPExportKey

24. CPGenKey

25. CPEncrypt

Table 2 - CryptoSPI Functions Required to support Windows Smart Card Logon

2.4 High Level Design of the NIST-ESI CSP

The NIST-ESI CSP was developed primarily to support the use of a PIV Card for Windows Smart Card

Logon. Hence, this CSP provides full functionality implementation of only those CryptoSPI functions that

are required to enable Windows Smart Card Logon as per Table 2 . The remaining CryptoSPI functions

are implemented as stub functions only.

Figure 3 - NIST-ESI CSP Design

 7

Figure 3 provides a graphic description of the high level design of the NIST-ESI CSP. The CAPIGLUE

layer code handles calls to each of the CryptoSPI functions. The PIV Middleware represents a dynamic

linked library that implement the PIV Client API (as specified in NIST SP 800-73-1) and sends out

APDUs to a PIV Card or PIV Card Simulator using the PIV Card Command Interface (also specified in

NIST SP 800-73-1). The Microsoft Strong Cryptographic Service Provider (STR-PROV) is used by the

NIST-ESI CSP for performing various cryptographic operations in software.

The interactions between the components described in Figure 3 are as follows. The CAPIGLUE layer

performs all of the non-cryptographic operations. However, when cryptographic operations are required,

it either invokes the PIV Middleware or the STR-PROV. For all cryptographic operations that require use

of the PIV authentication key (e.g. signature using a private key, private key decryption), the CAPIGLUE

layer calls the PIV Middleware. For other cryptographic operations (e.g., cryptographic hash, public key

encryption, symmetric key operations etc.) the CAPIGLUE layer invokes the STR-PROV. The

CAPIGLUE and PIV Middleware do not implement any cryptographic algorithms; the STR-PROV and

the PIV Card are the modules where all cryptographic algorithms are implemented.

2.5 CryptoSPI function sequence for Windows Logon

This section describes the sequence of function calls made to the CSP during Windows Smart Card

Logon. This sequence has been captured by tracing the function calls made to the NIST-ESI CSP.

Sr. No. CSP Function General Purpose NIST-ESI CSP

Implementation

1. CPAcquireContext � Acquire a handle to the

default container on the

card

� Returns handle to default

container context

� Connect to and Select the

PIV Card Application for

the first time and store

handle

� Acquire Context to STR-

PROV

2. CPGetUserKey � Get a handle to the key

exchange key pair in the

default container.

� Gets a handle to the PIV

Authentication Certificate

3. CPGetKeyParam � Called to retrieve the size

of the certificate on the

card (using the context

acquired in #1)

� Returns the certificate

size in bytes

� Gets and returns the size of

the PIV Authentication

Certificate

4. CPGetKeyParam � Get the certificate

corresponding to the

exchange key from the

card

� Gets the PIV

Authentication Certificate

5. CPGetProvParam � Called with the

PP_CONTAINER flag to

retrieve the size of the

name of the current

� Returns the size of an

arbitrary string created for

the name of the container

 8

Sr. No. CSP Function General Purpose NIST-ESI CSP

Implementation

container (using the

context acquired in #1)

� Returns the size of the

name of the current

container in bytes

6. CPGetProvParam � Called with the

PP_CONTAINER flag to

retrieve the name of the

current container (using

the context acquired in

#1)

� Returns the name of the

current container

� Returns the arbitrary

container name string

7. CPGetProvParam � Called with the

PP_NAME flag to

retrieve the size of the

name of the CSP (using

the context acquired in

#1)

� Returns the size of the

name of the CSP in bytes

� Returns the size of the

name of the NIST-ESI

CSP.

8. CPGetProvParam � Called with the

PP_NAME flag to

retrieve the name of the

CSP (using the context

acquired in #1)

� Returns the name of the

CSP

� Returns the name of the

CSP

9. CPDestroyKey � Release the handle to the

key exchange pair in the

default container (using

the context acquired in

#1)

� Release the handle to the

PIV Authentication

Certificate obtained in #2

10. CPAcquireContext � Acquire a handle to the

default container on the

card

� Returns handle to default

container context

� Returns the handle

previously created in #1

� Acquire Context to STR-

PROV

11. CPGetProvParam � Called with the

PP_ENUMALGS

parameter and the

CRYPT_FIRST flag to

� The NIST-ESI CSP

declares that it can handle

DES, 3DES, RC2 and RC4

algorithms.

 9

Sr. No. CSP Function General Purpose NIST-ESI CSP

Implementation

get information about the

first algorithm supported

by the CSP (card) (using

the context acquired in

#10)

� Returns a

PROV_ENUMALGS

structure filled out with

information about the

first algorithm

� This function is called

repeatedly to get the

ALGO structure

12. CPSetProvParam � Present the PIN to the

card (using the context

acquired in #10)

� Log into the PIV Card

Application using the PIN

presented.

13. CPCreateHash � Get a handle to an MD5

hash object (using the

context acquired in #1)

� Returns a handle to a

hash object

� Call CryptCreateHash in

STR-PROV to create and

initiate the hash

� Return the handle of the

hash object

14. CPHashData � Hash the data passed in

(using the context

acquired in #1)

� Call CryptHashData in

STR-PROV

15. CPSignHash � Sign the hash (using the

context acquired in #1)

� Call pivCrypt to sign the

data with key reference 9A

16. CPDestroyHash � Release the handle to the

hash object

� Release the handle to the

hash object created in #13

17. CPSetProvParam � Present the PIN to the

card (using the context

acquired in #10)

� Log into the PIV Card

Application using the PIN

presented.

� If the cached PIN matches

the presented PIN then a

logging into the card

application is not

performed.

18. CPCreateHash � Get a handle to an MD5

hash object (using the

context acquired in #1)

� Returns a handle to a

hash object

� Call CryptCreateHash in

STR-PROV to create and

initiate the hash

� Return the handle of the

hash object

19. CPHashData � Hash the data passed in

(using the context

acquired in #1)

� Call CryptHashData in

STR-PROV

 10

Sr. No. CSP Function General Purpose NIST-ESI CSP

Implementation

20. CPGetHashParam � Called with

HP_HASHVAL to

retrieve the size of the

hash value (using the

context acquired in #1)

� Returns the size of the

hash value in bytes

� Call CryptGetHashParam

in STR-PROV to return

the size of the hash value

21. CPGetHashParam � Called with

HP_HASHVAL to

retrieve the hash value

(using the context

acquired in #1)

� Returns the hash value

� Call CryptGetHashParam

in STR-PROV to return

the hash value

22. CPCreateHash � Get a handle to an MD5

hash object (using the

context acquired in #1)

� Returns a handle to a

hash object

� Call CryptCreateHash in

STR-PROV to create and

initiate the hash

� Return the handle of the

hash object

23. CPSetHashParam � Called with the

HP_HASHVAL

parameter and no data

(using the context

acquired in #1)

� Call CryptSetHashParam

in STR-PROV

24. CPSignHash � Call SignHash to get the

size of the signature

(using the context

acquired in #1) (for hash

created in #22)

� Returns the size of the

signature in bytes

� Call pivCrypt to sign the

data with key reference 9A

� Calculate the signature

length and return the

length of the signature

25. CPSignHash � Sign the hash signature

(using the context

acquired in #1) (for hash

created in #22)

� Returns the signed hash

� Call pivCrypt to sign the

data with key reference 9A

26. CPDestroyHash � Release the handle to the

hash object (using the

context acquired in #1)

(for hash created in #22)

� Release the handle to the

hash object created in #22

27. CPDestroyHash � Release the handle to the � Release the handle to the

 11

Sr. No. CSP Function General Purpose NIST-ESI CSP

Implementation

hash object (using the

context acquired in #1)

(for hash created in #18)

hash object created in #18

28. CPSetProvParam � Present the PIN to the

card (using the context

acquired in #10)

� Log into the PIV Card

Application using the PIN

presented.

� If the cached PIN matches

the presented PIN then a

logging into the card

application is not

performed.

29. CPSetProvParam � Present the PIN to the

card (using the context

acquired in #10)

� Log into the PIV Card

Application using the PIN

presented.

� If the cached PIN matches

the presented PIN then a

logging into the card

application is not

performed.

30. CPGetUserKey � Get a handle to the key

exchange key pair in the

default container.

� Gets a handle to the PIV

Authentication Certificate

31. CPImportKey � Import a key (using the

context acquired in #1)

� Encrypted session key is

passed into NIST-ESI

CSP.

� NIST-ESI CSP decrypts

the encrypted session key

by using pivCrypt (using

key reference 9A)

� The unencrypted session

key is imported into the

STR-PROV by:

1. Creating an

asymmetric key

pair in STR-PROV

2. Encrypting the

session key with

the generated

public key

3. Finally this

encrypted key is

structured into a

BLOB and

imported into the

 12

Sr. No. CSP Function General Purpose NIST-ESI CSP

Implementation

STR-PROV

32. CPSetKeyParam � Set the initialization

vector to all zeroes (using

the context acquired in

#1)

� Call CryptSetKeyParam in

STR-PROV and pass in a

handle to the key obtained

in #31

33. CPDestroyKey � Release the handle to the

key

� Release the handle to key

obtained in #31

34. CPDecrypt � Decrypt a chunk of data

with the imported key

(using the context

acquired in #1)

� Call CryptDecrypt in STR-

PROV to perform

decryption with the help of

the symmetric key

imported in #31

35. CPDestroyKey � Release the handle to the

key exchange pair in the

default container (using

the context acquired in

#1)

� Release the handle to the

PIV Authentication

Certificate obtained in #30

36. CPGenRandom � Generate 32 random

bytes (using the context

acquired in #10)

� Call CryptGenRandom in

STR-PROV to generate the

random bytes

37. CPGenRandom � Generate 32 random

bytes (using the context

acquired in #10)

� Call CryptGenRandom in

STR-PROV to generate the

random bytes

38. CPCreateHash � Get a handle to a hash

object (using the context

acquired in #10)

� Returns a handle to a

hash object

� Call CryptCreateHash in

STR-PROV to create and

initiate the hash

� Return the handle of the

hash object

39. CPHashData � Hash the data passed in

(using the context

acquired in #10)

� Call CreateHashData in

STR-PROV

40. CPSetProvParam � Present the PIN to the

card (using the context

acquired in #10)

� Log into the PIV Card

Application using the PIN

presented.

� If the cached PIN matches

the presented PIN then a

logging into the card

application is not

performed.

 13

Sr. No. CSP Function General Purpose NIST-ESI CSP

Implementation

41. CPSignHash � Call SignHash to get the

size of the signature

(using the context

acquired in #10)

� Returns the size of the

signature in bytes

� Call pivCrypt to sign the

data with key reference 9A

� Calculate the signature

length and return the

length of the signature

42. CPSignHash � Sign the hash (using the

context acquired in #10)

(for hash created in #38)

� Returns the signed hash

� Call pivCrypt to sign the

data with key reference 9A

43. CPDestroyHash � Release the handle to the

hash object (using the

context acquired in #10)

� Release the handle to the

hash object created in #38

44. CPCreateHash � Get a handle to a hash

object (using the context

acquired in #10)

� Returns a handle to a

hash object

� Call CryptCreateHash in

STR-PROV to create and

initiate the hash

� Return the handle of the

hash object

45. CPHashData � Hash the data passed in

(using the context

acquired in #10)

� Call CryptHashData in

STR-PROV

46. CPSetProvParam � Present the PIN to the

card (using the context

acquired in #10)

� Log into the PIV Card

Application using the PIN

presented.

� If the cached PIN matches

the presented PIN then a

logging into the card

application is not

performed.

47. CPSignHash � Call SignHash to get the

size of the signature

(using the context

acquired in #10)

� Returns the size of the

signature in bytes

� Call pivCrypt to sign the

data with key reference 9A

� Calculate the signature

length and return the

length of the signature

48. CPSignHash � Sign the hash (using the

context acquired in #10)

(for hash created in #44)

� Returns the signed hash

� Call pivCrypt to sign the

data with key reference 9A

 14

Sr. No. CSP Function General Purpose NIST-ESI CSP

Implementation

49. CPDestroyHash � Release the handle to the

hash object (using the

context acquired in #10)

� Release the handle to the

hash object created in #44

50. CPAcquireContext � Acquire a handle to the

default container on the

card

� Returns handle to default

container context

� Returns the handle

previously created in #1

51. CPGetProvParam � Called with the

PP_CONTAINER flag to

retrieve the size of the

name of the current

container (using the

context acquired in #52)

� Returns the size of the

name of the current

container in bytes

� Returns the size of an

arbitrary string created for

the name of the container

52. CPGetProvParam � Called with the

PP_CONTAINER flag to

retrieve the name of the

current container (using

the context acquired in

#52)

� Returns the name of the

current container

� Returns the arbitrary

container name string

53. CPAcquireContext � Acquire a handle to the

default container on the

card

� Returns handle to default

container context

� Returns the handle

previously created in #1

54. CPGetUserKey � Get a handle to the key

exchange key pair in the

default container (using

the context acquired in

#53)

� Gets a handle to the PIV

Authentication Certificate

55. CPGetKeyParam � Called to retrieve the size

of the certificate on the

card (using the context

acquired in #53)

� Returns the certificate

size in bytes

� Gets and returns the size of

the PIV Authentication

Certificate

 15

Sr. No. CSP Function General Purpose NIST-ESI CSP

Implementation

56. CPGetKeyParam � Get the certificate

corresponding to the

exchange key from the

card

� Gets the PIV

Authentication Certificate

57. CPDestroyKey � Release the handle to the

key exchange pair in the

default container (using

the context acquired in

#53)

� Release the handle to the

PIV Authentication

Certificate obtained in #54

58. CPGetUserKey � Get a handle to the key

exchange key pair in the

default container (using

the context acquired in

#53)

� Gets a handle to the PIV

Authentication Certificate

59. CPGetKeyParam � Called to retrieve the size

of the certificate on the

card (using the context

acquired in #53)

� Returns the certificate

size in bytes

� Gets and returns the size of

the PIV Authentication

Certificate

60. CPGetKeyParam � Get the certificate

corresponding to the

exchange key from the

card

� Gets the PIV

Authentication Certificate

61. CPDestroyKey � Release the handle to the

key exchange pair in the

default container (using

the context acquired in

#53)

� Release the handle to the

PIV Authentication

Certificate obtained in #58

62. CPGetProvParam � Called with the

PP_CONTAINER flag to

retrieve the size of the

name of the current

container

� Returns the size of the

name of the current

container in bytes

�

� Returns the size of an

arbitrary string created for

the name of the container

63. CPReleaseContext � Release the handle to the

default container

� Verify if the handle is null,

if yes, then call

pivDisconnect.

 16

Sr. No. CSP Function General Purpose NIST-ESI CSP

Implementation

64. CPReleaseContext � Release the handle to the

default container

� Disconnect from the PIV

Application and Release

the handle to STR-PROV.

2.6 Detailed Design of the NIST-ESI CSP

This section describes the detailed design of the NIST-ESI CSP. The subsection below provides the high-

level implementation details for the CAPIGLUE implementation of each CryptoSPI function within the

NIST-ESI CSP.

Table 3 lists the entry points on the PIV client-application programming interface, as implemented by the

PIV Middleware. The NIST SP 800-73-1 document provides full detail on these interfaces. These

interfaces are invoked by CAPIGLUE to obtain access to the credentials on the PIV Card.

Type Name

Entry Points for Communication

pivConnect

pivDisconnect

Entry Points for Data Access

pivSelectCardApplication

pivLogIntoCardApplication

pivGetData

pivLogoutOfCardApplication

Entry Points for Cryptographic

Operations

pivCrypt

Entry Points for Credential

Initialization and Administration
1

pivPutData

pivGenerateKeyPair

Table 3 - Entry Points on PIV Client Application Programming Interface

1 The Entry points for credential initialization and Administration have not been used by the NIST-ESI CSP, since this

functionality is currently beyond the scope of the functionality of the CSP.

 17

2.6.1 CryptoSPI Functions Implementation Descriptions

The following section describes the details for the CryptoSPI functions implemented by the NIST-ESI

CSP.

2.6.1.1 CPAcquireContext

Description: Used to acquire a context handle to a CSP and the key container

NIST-ESI CSP

Implementation:

• Call pivConnect and pivSelectCardApplication from PIV Middleware

• Call CryptAcquireContext on STR-PROV and store the handle

2.6.1.2 CPReleaseContext

Description: Used to release the context handle to the CSP created by CPAcquireContext

Note: Key and Hash handles associated with the CSP handle cannot be used

after calling this function

NIST-ESI CSP

Implementation:

• Call pivDisconnect on the PIV Middleware

• Call CryptReleaseContext on STR-PROV

2.6.1.3 CPDecrypt

Description: Used to decrypt the cipher text

NIST-ESI CSP

Implementation:

• Call CryptDecrypt on STR-PROV to perform decryption

2.6.1.4 CPImportKey

Description: Imports a cryptographic key into the CSP key container

NIST-ESI CSP

Implementation:

• Decrypt the data passed in with a call to pivCrypt on the PIV

Middleware

• Imports the encrypted key

• Encrypted session key is passed into NIST-ESI CSP.

• NIST-ESI CSP decrypts the encrypted session key by using pivCrypt

 18

(using key reference 9A)

• The unencrypted session key is imported into the STR-PROV by:

o Creating an asymmetric key pair in STR-PROV

o Encrypting the session key with the generated public key

o Finally this encrypted key is structured into a BLOB and

imported into the STR-PROV

2.6.1.5 CPDestroyKey

Description: Used to release the handle to the cryptographic key stored in the CSP key

container. The key may no longer be used after this call

NIST-ESI CSP

Implementation:

• Free the handle and release memory to keys in the NIST-ESI CSP

• Call CryptDestroyKey on STR-PROV to destroy the key (in certain

cases)

2.6.1.6 CPGenRandom

Description: Used to fill a buffer with random bytes. The algorithm used is based on the

secure hash standard random number generation

NIST-ESI CSP

Implementation:

• Call CryptGenRandom on STR-PROV to generate the random bytes

2.6.1.7 CPGetKeyParam

Description: Retrieves data that governs the operations of a key.

NIST-ESI CSP

Implementation:

• The NIST-ESI CSP currently only handles type KP_CERTIFICATE

• Copy the already fetched certificate blob (during CPGetUserKey) to the

user buffer

2.6.1.8 CPSetKeyParam

Description: Used to allow applications to customize various aspects of the operations of

a key

NIST-ESI CSP

Implementation:

• Call CryptSetKeyParam on STR-PROV and pass in a handle to the key

 19

2.6.1.9 CPGetUserKey

Description: Retrieves the handle to one of the user’s key pairs in the key container

NIST-ESI CSP

Implementation:

• Call pivGetData to get PIV Authentication Certificate on PIV

Middleware

2.6.1.10 CPGetProvParam

Description: Used to allow applications to get various aspects of a Cryptographic Service

provider

NIST-ESI CSP

Implementation:

• The NIST-ESI CSP passes the following data for the following flags:

PP_CONTAINER - Pass hard coded value

PP_ENUMALGS - Currently passing DES, 3DES, RC2 and RC4

PP_KEYEXCHANGE_PIN - Pass cached PIN if available

PP_NAME - Pass hard coded value

PP_PROVTYPE - Pass PROV_RSA_FULL

PP_SIGNATURE_PIN - Pass cached PIN if available

PP_VERSION - Pass Hard coded version

2.6.1.11 CPHashData

Description: Used to add data into an existing hash.

NIST-ESI CSP

Implementation:

• Call CryptHashData on STR-PROV to hash a string of bytes

2.6.1.12 CPCreateHash

Description:
Used to initiate the hashing of a stream of data.

NIST-ESI CSP

Implementation:

• Call CryptCreateHash on STR-PROV to create and initiate the hash

2.6.1.13 CPDestroyHash

Description: Used to destroy the hash object

 20

NIST-ESI CSP

Implementation:

• Call CryptDestroyHash on STR-PROV

2.6.1.14 CPSignHash

Description: Used to create a digital signature from a hash

NIST-ESI CSP

Implementation:

• Call pivCrypt on the PIV Middleware to sign the data with key reference

‘9A’

• Call CryptGetHashParam on STR-PROV to get the size and value of the

hash

2.6.1.15 CPSetHashParam

Description: Used to allow applications to customize various aspects of the operations of

a hash

NIST-ESI CSP

Implementation:

• Call CryptSetHashParam on STR-PROV

2.6.1.16 CPSetProvParam

Description: Used to allow applications to customize various aspects of the operations of

a Cryptographic Service provider

NIST-ESI CSP

Implementation:

• Call pivLogIntoCardApplication on the PIV Middleware to log into the

card

2.6.1.17 CPGetHashParam

Description: Used to retrieve data about the operations of a hash object. Also used to

obtain the actual hash value

NIST-ESI CSP

Implementation:

• Call CryptGetHashParam on STR-PROV

 21

2.6.1.18 CPVerifySignature

Note: This function has been stubbed in the NIST-ESI CSP, as it is not a necessary

call for Windows logon

2.6.1.19 CPHashSessionKey

Note: This function has been stubbed in the NIST-ESI CSP, as it is not a necessary

call for Windows logon

2.6.1.20 CPDuplicateHash

Note: This function has been stubbed in the NIST-ESI CSP, as it is not a necessary

call for Windows logon

2.6.1.21 CPDuplicateKey

Note: This function has been stubbed in the NIST-ESI CSP, as it is not a necessary

call for Windows logon

2.6.1.22 CPDeriveKey

Note: This function has been stubbed in the NIST-ESI CSP, as it is not a necessary

call for Windows logon

2.6.1.23 CPExportKey

Note: This function has been stubbed in the NIST-ESI CSP, as it is not a necessary

call for Windows logon

2.6.1.24 CPGenKey

Note: This function has been stubbed in the NIST-ESI CSP, as it is not a necessary

call for Windows logon

2.6.1.25 CPEncrypt

Description: Used to encrypt the cipher text

 22

NIST-ESI CSP

Implementation:

• Call CryptEncrypt on STR-PROV to perform encryption

 23

3. Functional Process for Windows Logon using smart cards

This section describes the interactive logon architecture and the process of an interactive logon.

3.1 Components

Figure 4 provides an illustration of the components of the interactive logon process that are responsible

for helping to establish secure user authentication.

Workstation

KerberosGINA

WinLogon

Local Security

Authority (LSA)

Key Distribution

Center (KDC)

Domain Controller

Active Directory

Logon Process

Initiated

Local Security

Authority (LSA)

Authentication Service

(AS) Request

Authentication Service

(AS) Reply

Figure 4 - Interactive Logon Components

The Windows Server 2003 interactive logon architecture components are explained in the following

subsections.

3.1.1 Winlogon

Winlogon is the application responsible for managing secure user interactions. Winlogon initiates the

logon process for Windows Server 2003, Windows XP, Windows 2000, and Windows NT 4.0.

 24

3.1.2 Graphical Identification and Authentication

Winlogon loads the Graphical Identification and Authentication (GINA) early in the boot process. GINA

is a DLL module that operates in the security context of Winlogon, which is responsible for processing

Secure Attention Sequence (SAS) events
2
 and activating the user’s shell.

The default MS GINA provided as part of Windows can be replaced to support specific and unique

authentication methods. GINA customization is enabled to accommodate the use of authentication

hardware tokens, such as retinal scanners and proprietary smart card solutions

3.1.3 Local Security Authority (LSA)

The LSA is a protected security subsystem that helps create secure user interactions within Windows

Server 2003. Winlogon and the GINA call the LSA to process logon credentials.

The following components involved in user logon run in the security context of the LSA for logging on in

a Windows Server 2003 domain environment:

� Authentication packages

� Active Directory

3.1.4 Authentication Package

Authentication packages on the user’s local computer communicate with server authentication

packages to authenticate users. The following table lists the Windows Server 2003 authentication

packages used for interactive logons.

Name Environment

Kerberos Version 5 Windows 2000, Windows XP, and Windows Server 2003

NTLM Windows NT 4.0 and mixed environments

Table 4- Interactive Logon Authentication Packages

Note: There is an extension to the Kerberos version 5 protocol proposed by the IETF called PKINIT that

allows for the use of a public key certificate in place of a password during the initial authentication. The

PKINIT extension is the basis for smart card logon support in Windows 2003 and does not change the

requirement for a long-term symmetric key used in the Kerberos Protocol.

3.2 Functional Process

In order to successfully logon to a Windows machine, the Local Security Authority (LSA) evaluates the

user’s credentials to determine if the logon should be processed as a logon to a local account or a logon to

a domain account. If the authenticating domain controller is a computer running Windows 2000 Server or

Windows Server 2003, the LSA will use Kerberos, the default authentication package for domain and

2 The CTRL+ALT+DEL keystroke or the insertion of a smart card into the reader are examples of a secure attention sequence

(SAS). Winlogon registers this sequence during the boot process to keep other programs and processes from using it.

 25

network logons. The LSA uses NTLM to process domain logons in Windows NT 4.0 mixed

environments. Since this document assumes an environment comprising of a Windows 2003 Server and a

Windows XP client machine, details will be limited to the use of Kerberos.

The steps outlined in this section describe the activities that are carried out in order to authenticate the

user to the Windows domain. Please note that these steps are not necessarily listed in the order in which

they are performed as different functions are performed by different components. However, all of the

steps need to occur in order for user identification and authentication into the domain environment.

The following steps occur at the client’s machine:

� User inserts smart card into reader

� The Window Logon Service dispatches this event to MS GINA

� MS GINA prompts the user to enter a PIN

� After a user inputs a PIN to the logon dialog, Winlogon begins a sequence of actions to determine

whether the user can be identified and authenticated based on credential information the user has

provided (PIN and credentials on the smart card).

� The logon request first goes from the Windows Logon Service to the LSA that subsequently

forwards it to the Kerberos authentication package running on the client.

� The Kerberos package sends an authentication service (AS) request to the Key Distribution

Center (KDC) service running on a domain controller to request authentication and a Ticket

Granting Ticket (TGT).

� As part of the AS request, the client-side Kerberos package includes the following items:

o User Principal Name

o The account domain name

o Pre-authentication data

� The user’s X.509 version 3 certificate, retrieved from the smart card

� An authenticator
3
 (containing a timestamp) that is digitally signed by the user’s

private key so that the KDC can verify the AS request originated from the owner

of the accompanying certificate.

The next set of steps occurs at the domain controller:

� Before the KDC can satisfy the AS request, it must first verify the certification path of the user’s

certificate to ensure that it can be trusted. The KDC uses CryptoAPI to build a certification path

from the user’s certificate to a root CA certificate residing in the system root store. If the KDC

fails to build a valid certificate chain for any reason (e.g., the root certificate is not trusted, it

cannot find parent certificates, the revocation status cannot be determined) the KDC will return

an error and fail the request.

3 The authenticator to be signed is first hashed using the MD-5 algorithm, which is the standard algorithm used during Windows

Logon.

 26

� The KDC must also verify that the issuing CA is authorized to issue certificates whose name

information can be used as a basis for authentication within the domain. For this reason, the

issuing CA must be published in the Active Directory.

� Upon successful verification of the user’s certificate, the KDC then uses CryptoAPI to verify the

digital signature on the authenticator that was included as signed data in the pre-authentication

data fields. The signature verification is done using the public key from the user’s certificate to

prove that the request originated from the owner of the public key.

� After verifying the signature, the KDC service must then validate the timestamp in the

authenticator to ensure the request is not a replay attack.

� Upon verifying the user’s identity and that the certificate can be used to authenticate to the

domain, the KDC service then queries the domain’s directory for account information. The KDC

service retrieves user account information from Active Directory based on the User Principal

Name (UPN) specified in the Subject Alternative Name field in the user’s public key certificate.

The account information that the KDC retrieves from the directory is used to construct a TGT.

� The KDC creates credentials that the Kerberos client on the workstation can present to the ticket-

granting service.

� The KDC signs the AS reply using its private key so that the client can verify the AS reply is

from a trusted KDC.

� As part of the AS reply, the KDC encrypts the TGT using a generated logon session key. The

logon session key is encrypted using the public key from the user’s certificate. The encrypted key

is then included in the pre-authentication data field of the KDC’s Authentication Service (AS)

response.

� The KDC also signs the TGT authorization data with the server’s key (so that a rogue service

cannot alter the authorization data after the TGT has been issued) and encrypts the TGT using the

server’s secret key
4
.

The last set of steps occurs at the client:

� The client verifies the KDC’s signature by first building a certification path from the

KDC’s certificate to a trusted root CA and then using the KDC’s public key to verify the

reply signature.

� The client, then, will extract the encrypted logon session key, decrypt it using the client’s private

key, and use the session key to decrypt the TGT. If the client is able to decrypt the TGT, then that

proves to the KDC that the client was successfully able to get to the session key by decrypting it

with its private key.

� Once in possession of the TGT, the standard Kerberos version 5 protocol is used to request tickets

from the Ticket Granting Service (TGS) for other domain resources. Both the client and the KDC

use the logon session key in all further communications with one another. There are no more

interactions with the CSP.

4 The client cannot read the Ticket Granting Ticket. Only KDC server’s can read TGTs to secure access to user credentials,

session keys, and other information.

 27

4. NIST-ESI CSP Build and Installation Procedure

This section of the document describes the steps necessary to build and/or install the NIST-ESI CSP in

order to be used for logging into the Windows domain. Please note that developers who wish to make

changes to the code should follow the directions found in section 4.1. To demonstrate functionality of an

already-built CSP, follow the directions found in section 4.2.

4.1 Build and Installation Procedure

The procedure outlined in this subsection needs to be followed in the event that the NIST-ESI CSP is

used in a development environment. It assumes that the developer is familiar with utilizing Visual Studio

.NET 2003.

4.1.1 Machine Prerequisite

In order for a Windows XP machine to use a CSP which has not been signed by Microsoft, a system file,

advapi32.dll, must be patched and copied to the Windows system folder. This patched file has been

provided as part of the NIST-ESI CSP. It is important to note that this file only works with Windows XP

Professional Service Pack 2 (SP-2).

1. Unzip the nist-csp.zip file to a preferred location

2. Copy the advapi32.dl_ file in the .\Source\cspdk\WinXP\sp2 folder to the Windows\system32

folder

3. Re-boot the machine in Safe Mode

4. In the Windows\system32 folder, find the advapi32.dll system file and rename it to advapi32.bak

5. Rename the advapi32.dl_ file to advapi32.dll

6. Re-boot the machine in Normal mode

4.1.2 Build and Install for Windows Logon

This procedure assumes that the user has obtained a PIV smart card or the PIV Reference Implementation

and populated it with the appropriate certificates prior to using the NIST-ESI CSP.

When using the PIV Reference Implementation (which consists of the PIV Card Simulator and Virtual

Smart Card Reader), this procedure assumes that the user has previously built it. The

“File_System_Initial_Configuration.inc” file of the PIV Card Simulator must be properly populated and

the compiled PIV Card Simulator must be running on a separate machine which is accessible by the client

machine on the local network. In addition, to invoke the NIST-ESI CSP at logon, the Virtual Smart Card

Reader must be configured on the client machine to insert a virtual smart card at the logon prompt, which

will trigger MS GINA to initiate the logon sequence. The PIV Reference Implementation must also be

associated with the NIST-ESI CSP. Instructions for this procedure can be found in Section 4.3.

1. In the .\Source\dev\escsp folder, open the workspace escsp.sln

2. Build the entire solution in Release mode

3. Create a folder named “csp-setup” on the local machine (e.g., c:\csp-setup)

4. Copy the contents of the .\Binaries folder to the newly created folder

 28

5. Copy the escsp.dll file located in the .\Source\dev\escsp\Release folder to the newly created

folder

6. Copy the escspinstall.exe file located in the .\Source\dev\escsp\escspinstall\Release folder to the

newly created folder

7. Run the prepcsp.bat file located in the newly created folder

8. Select option 1 “Install NIST CSP for PIV Card”

9. A message is displayed indicating installation is complete. Press any key to exit installation.

10. Proceed to Section 4.3 – “Registry Modification for Smart Card – CSP Association”

Note: If you rebuild the CSP at any time, you will need to run this batch file again

4.2 NIST-ESI CSP Installation Procedure

The procedure outlined in this subsection needs to be followed to use the NIST-ESI CSP without

requiring any modification to the source code.

1. In the .\Binaries folder, run the file prepcsp.bat

2. Select option 1 “Install NIST CSP for PIV Card”

3. A message is displayed indicating installation is complete. Press any key to exit installation.

4. Proceed to Section 4.3 – “Registry Modification for Smart Card – CSP Association”

4.3 Registry Modification for Smart Card – CSP Association

Typically, smart cards contain a unique Answer-To-Reset (ATR) byte string that can be used to identify a

smart card. In order to associate a smart card with a particular CSP, an association is made between the

smart card’s ATR and the CSP. The following subsections discuss the procedures for associating the PIV

Card and PIV Reference Implementation with the NIST-ESI CSP.

4.3.1 Determine Card ATR

4.3.1.1 Determine ATR of PIV Card

The ATR of a PIV card can be determined by using the TestResMan
5
 tool to establish a connection with

the card and retrieve its ATR.

1. Launch TestResMan

2. Click Select Reader. A list of available smart card readers is displayed.

3. Select the smart card reader the card is inserted in and click OK

4. Click Card Connect. Share mode and protocol types are displayed.

5. Click OK to accept the default values and connect to the card

6. If a connection was successfully established with the card then no error messages should be

displayed in the bottom left corner of the TestResMan dialog

7. Click Card State

8. The ATR is displayed in the Output as a string of hex characters

5 TestResMan is available for download at http://www.scmmicro.com/support/pcs_downloads.php?lang=en.

 29

9. Copy the ATR (TestResMan does not allow the Output's contents to be copied to the clipboard so

it will have to be typed manually)

10. Click Card Disconnect

11. Select “Leave Card” and click OK. The card is now disconnected.

12. Click Cancel to close TestResMan

4.3.1.2 Determine ATR of PIV Reference Implementation

The ATR of the PIV Reference Implementation is set to 3B 90 96 40 0A. Hence, no additional steps are

required to determine its ATR.

4.3.2 Associate ATR with CSP

The procedure outlined in this subsection needs to be followed to associate an ATR with the NIST-ESI

CSP.

1. Open the registry editor and browse to the key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Calais\SmartCards

2. Right-click on the SmartCards key and select New->Key

3. Enter a name for the card (e.g. PIV Card)

4. Right-click on the newly created key and select New->Binary Value

5. Name this new binary value: ATR

6. Double-click ATR to edit its value and enter the ATR from section 4.3.1

7. Click OK to save

8. Add another binary value called: ATRMask

9. Double-click ATRMask to edit its value and enter FF for the number of bytes in the ATR above.

For example, if the ATR is 17 bytes then enter: FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF.

10. Click OK to save

11. Right-click on the key created in step 3 and select New->String Value

12. Name this new string value: Crypto Provider

13. Double-click Crypto Provider to edit its value and enter the following: NIST-ESI CSP

14. Click OK to save

 30

Appendix A—Acronyms and Abbreviations

ADPU Application Protocol Data Unit

API Application Programming Interface

AS Authentication Service

ATR Answer To Reset

CA Certification Authority

CSP Cryptographic Service Provider

DLL Dynamic Linked Library

FIPS Federal Information Processing Standard

GINA Graphical Identification and Authentication

HSPD Homeland Security Presidential Directive

IETF Internet Engineering Task Force

KDC Key Distribution Center

LSA Local Security Authority

MSCAPI Microsoft Cryptographic Application Programming Interface

NIST National Institute for Standards and Technology

NTLM New Technology Loadable Module

PC/SC Personal Computer/ Smart Card

PIN Personal Identification Number

PIV Personal Identity Verification

PKINIT Public Key Cryptography for Initial Authentication in Kerberos

SAS Secure Attention Sequence

SCCSP Smart Card Cryptographic Service Provider

SP Special Publication

TGS Ticket Granting Service

TGT Ticket Granting Ticket

USB Universal Serial Bus

 31

Appendix B—References

[1] FIPS Publication 201, Personal Identity Verification (PIV) for Federal Employees and

Contractors. Available at http://csrc.nist.gov/publications/fips/fips201/FIPS-201-022505.pdf

[2] NIST, PIV Middleware Reference Implementation User’s Guide, Version 1.1, June 27, 2005

[3] http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnscard/html/smartcardcspcook.asp

[4] http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/secauthn/security/basic_authentication_concepts.asp

[5] NIST Special Publication 800-73, Integrated Circuit Card for Personal Identity Verification,

NIST, February 2005. Available at http://csrc.nist.gov/publications/nistpubs/800-73/SP800-73-

Final.pdf

[6] NIST, PIV Windows Logon Reference Implementation: Best Practices and Troubleshooting, June

2007

