

A Framework for Multiple Authorization Types
in a Healthcare Application System

Ramaswamy Chandramouli
Computer Security Division, ITL
NIST, Gaithersburg, MD 20899

(mouli@nist.gov)

Abstract

In most of the current authorization frameworks in
application systems, the authorization for a user operation
is determined using a static database like ACL entries or
system tables. These frameworks cannot provide the
foundation for supporting multiple types of authorizations
like Emergency Authorizations, Context-based
Authorizations etc, which are required in many vertical
market systems like healthcare application systems. In this
paper we describe a dynamic authorization framework
which supports multiple authorization types. We use the
acronym DAFMAT (Dynamic Authorization Framework
for Multiple Authorization Types) to refer to this
framework. The DAFMAT framework uses a combination
of Role-based Access Control (RBAC) and Dynamic Type
Enforcement (DTE) augmented with a logic-driven
authorization engine. The application of DAFMAT for
evaluating and determining various types of authorization
requests for the Admissions, Discharge and Transfer
System (ADT) in a healthcare enterprise is described.

1. Introduction

The need to support sophisticated authorization
policies has grown tremendously in the last few years for
many vertical market applications. For example, healthcare
application systems dealing with patient-identifiable
information will shortly be required to comply with
requirements in the HIPAA Security Standards [9]. These
standards stipulate that healthcare application systems
should have features for user-based, role-based and
context-based authorizations as well as capabilities for
making emergency authorizations.

In most of the current authorization frameworks in
application systems, the authorization for a user operation
is determined using a static database like ACL entries or
system tables. These frameworks cannot provide the
foundation for supporting multiple types of authorizations
like Emergency Authorizations, Context-based
Authorizations etc, as required by HIPAA security

standards. An authorization framework that can provide
this critical functionality is proposed in this paper. The
framework is based on a combination of Role-based
Access Control (RBAC) and Domain Type Enforcement
(DTE) access control models augmented with a logic-
driven authorization engine. We have used the acronym
DAFMAT (Dynamic Authorization Framework for
Multiple Authorization Types) to refer to this framework.
The application of DAFMAT to derive various types of
authorizations for an important class of healthcare
application system called the Admissions, Discharge and
Transfer System (ADT) is also illustrated in this paper.

The organization of the rest of the paper is as follows:
We start off by giving an overview of the DAFMAT
framework by outlining its salient features in section 2. A
comparison of the approach adopted in this paper to some
related approaches in the area of authorization frameworks
is discussed in section 3. A detailed description of the
development of DAFMAT framework is given in section
4. The application of the DAFMAT framework for the
ADT system is described in section 5. The assurance
measures needed for DAFMAT administration are given in
section 6. Section 7 presents conclusions and scope for
future work.

2. Underlying Concepts in DAFMAT
Framework

The DAFMAT authorization framework consists of
the following components:

(a) An Hybrid Access Control Model and
(b) A logic-driven authorization engine.

The Access Control Model in DAFMAT is a combination
of RBAC and DTE while the logic-driven authorization
engine is first order predicate logic-based. The
justifications for using a combined RBAC-DTE access
control model and an augmenting logical inference engine
are given in the following sections.

RBAC is a higher-level access control model that uses
the abstraction concept of roles to reduce the complexity of
an authorization management scheme [3]. The most

important constructs are users, roles and permissions and
the relations involving these constructs. In RBAC users are
assigned to roles and permissions are assigned to roles.
Users derive all their permissions by virtue of their role
memberships. A single user can be assigned to multiple
roles and a single role can be assigned to multiple users. In
addition we can also define structures for organizing roles
found within an enterprise (e.g., a hierarchical structure).

RBAC being a high-level model requires intermediate
structures to implement its abstraction concepts on lower
level access control mechanisms on a platform (e.g.,
permission bits in Unix). A candidate for such a structure
is a lower level mandatory access control mechanism that
predates RBAC and is called the Domain and Type
Enforcement (DTE) model [2]. In DTE subjects (or
transaction programs) are assigned “Domain” labels and
objects are assigned “Type” labels. Associated with each
Domain-Type pair is a set of allowable access modes. The
data structure that gives the access modes for all Domain-
Type pairs is called the Domain-Type Access Matrix. The
operations available to a subject are thus constrained by
the domain to which it is assigned.

Combining DTE with RBAC lends a structure to the
universe of permissions on a platform by providing ways
of organizing subjects, objects and operations that are its
constituent components. More specifically the definition of
a domain in a DTE model reflects the semantics of
processes that are relevant to the platform. Hence in the
DTE model for a Unix operating system the daemons, file
systems and administration utilities form domains. For
application systems, a domain can be defined to represent
a specific business process. Since the role in an RBAC
model represents an organizational job function, one or
more roles can be assigned to a domain based on policy
concepts that have gone into the definition of the role.
Now the business processes are carried out using chunks of
executable code called transactions. These transactions are
embedded within programs called subjects that can be
invoked by a user. Hence it follows that the right to invoke
a subject could be provided to multiple RBAC roles
although the semantics of execution of transactions within
a subject depends upon the role that operates the subject.
In other words, the behavior of a subject depends upon the
role from which it is invoked. Typical examples of such
subjects are Oracle Stored Procedures and Oracle
Dictionary Access Routines.

From the above discussions it should be clear that
since both the execution logic for the subjects and the
domain assignment are tied to the semantics of the role,
these twin relationships constrain the assignment of
subjects to domains. It is these tightly coupled constraints
that help in the realization of policy concepts which have
gone into the role definition by helping prevent arbitrary
assignments of subjects to roles which could potentially
defeat the purpose of defining the role in the first place. An

implementation of RBAC on a type-enforced operating
system called LOCK6 has been well described by
Hoffman [5].

So far we have discussed only the hybrid access
control model of the DAFMAT framework. The second
component, the logical-driven authorization engine, has
the following two functions:
(a) From the user action (e.g., choosing a menu option

from an application), formulate the authorization
request predicate using some session-related
functions. Based on the value of the priority code and
the context variable in the authorization request
predicate, the request is designated as one of the three
types of authorization (Normal, Emergency and
Context-based).

(b) Using the validation conditions for each authorization
type, determine whether the current authorization
request is valid.

If the current request has been determined to be valid by
the logical-driven authorization engine, then the
appropriate domain corresponding to the invoked subject
(as given in the subject-domain mapping table) is assigned
to the user session. Based on the activated domain in the
user session, the actual object-level permissions are read
off from the Domain-Type Access Matrix.

3. Comparison with Related Work

Combining RBAC with DTE was first illustrated by
Hoffman [5]. Making use of the fact that RBAC provides
good higher-level abstraction mechanisms for expressing
different types of policies ([8], [1]) like the Principle of
Least Privilege and Conflict of Interest etc, this work
illustrated a way of implementing those policies using the
control mechanisms of DTE on a secure operating system.
However Hoffman’s implementation is based on static
associations between users, roles, subjects and domains
and did not provide a mechanism for incorporating
transient information since it is not relevant from an
operating system perspective. Tidswell and Potter [10]
illustrated a method of dynamically changing the
configuration of a DTE Model. They came up with a set of
Prolog rules for making changes to Domain-Type Access
Matrix (adding or deleting new domains and types or
changing permission sets for a domain-type pair) in such a
way that those changes maintain the security level of the
current configuration. Just like Hoffman, Tidswell and
Potter’s work is also in the context of an operating system
(specifically a Unix OS) and hence there was no necessity
to incorporate any context-based information within the
Prolog rules so as to affect the user permissions during
run-time. Even in instances of DTE deployment for
application systems ([4], [7]) there was no attempt to
incorporate any context-based information. Hence in all

DTE implementations that do not incorporate contextual
information, authorizations are based on entries in the
Domain-Type Access Matrix and the question of
classifying an individual authorization request does not
arise.

The authorization framework described in this paper
differs from the approaches described in the previous
paragraph in two ways: First, the focus of the authorization
framework described in this paper is in the context of an
application system and not an operating system. The
second difference is that with the inclusion of contextual
information, each individual authorization request is
assigned a type and the conditions needed to satisfy the
requirements for that authorization type are checked
dynamically. Once the conditions are checked using
certain contextual information such as the “current user
work assignments”, the DTE subject-domain table is read
to assign the correct domain (based on the invoked subject)
to the user session. The actual permissions required for the
subject to carry on its intended operation are read off from
another DTE table – i.e., the Domain-Type Access Matrix.
Thus the DAFMAT framework strives to use as much
information as possible using the hybrid RBAC-DTE
model structure while providing support for dynamic
multiple authorization types instead of obtaining all the
data needed for authorization from logical rules as in [6].
This design goal reduces the information that is to be
processed by the logic-driven authorization engine and
hence the complexity of the logical implications as well.

4. Development of DAFMAT Framework

Let us now examine in detail each of the two
components (i.e., hybrid RBAC-DTE access control model
and logic-driven authorization engine) of DAFMAT
framework mentioned in section 2. The hybrid access
control model consists of:

(a) Authorization Entities
(b) Relationships among Authorization Entities and
(c) Constraints governing the relationships.

The logic-driven authorization engine consists of a first
order predicate logic based processor capable of
processing Prolog-like rules. The authorization engine will
also have additional capabilities to print out the predicates
and the binding values that determined the approval or
denial of an authorization request.

4.1 Authorization Entities

The main authorization entities in DAFMAT
framework are:

(a) USER
(b) ROLE
(c) SUBJECT

(d) DOMAIN and
(e) OBJECT-TYPE.

Roles in DAFMAT framework represent job positions.
Subjects represent the programs or executables that contain
transactions for carrying out business process functions
that a job position demands. Domains represent the higher-
level enterprise functional area within which roles should
perform. For example, doctor roles and nurse roles
perform within the domain of patient care. The roles of
Lab Technicians and Radiologists fall within the domain
of clinical testing. An Object-Type represents a grouping
of objects carrying related information with reference to an
application system or a healthcare function. For example a
Patient-Registration Type may consist of a collection of
objects or records pertaining to patient demographic,
insurance and allergies information. A Patient-Clinical
Type may consist of a collection of objects or records
pertaining to various clinical tests performed on a patient
like X-rays, MRIs, EKG, blood tests etc.

4.2 Relationships among Authorization Entities

The relationships in DAFMAT are mappings from a

set of source authorization entities to target authorization
entities. There are two types of mappings that are used in
DAFMAT. If several (two or more) instances of source
entities map to a single instance of target entity, such a
mapping is designated as a many-to-one (denoted by the
symbol N:1) mapping and the mapping function is
represented by the symbol: >>_>. On the other hand, if
several instances of source entities map to several
instances of target entities, such a mapping is designated as
a many-to-many (denoted by the symbol M:N) mapping
and the mapping function is represented by the symbol:
>>_>>. In the logic database (which is used by the
authorization engine) both types of mapping are
represented as predicates. The predicate corresponding to
each of the mapping functions in DAFMAT is given in
parenthesis in italicized font following the mapping
function representation.

4.2.1 User-Role Mapping

In DAFMAT every user is assigned a unique role and

each role may be assigned several users since a role is a
semantic construct for a job position within the healthcare
enterprise. Hence the user to role mapping is a many-to-
one mapping represented as:

UserRole(user) >>-> role
(User_Role(user,role)) (4.2.1)

In the above mapping function representation, “UserRole”
is the name of the mapping function, the parameter “user”
stands for the source entity USER, the symbol >>->

denotes the many-to-one mapping type and the symbol
“role” stands for the target entity ROLE. The
corresponding predicate that is used by the authorization
engine is given in parenthesis. The name of the predicate is
“User_Role” and the predicate variables are: user and role.

4.2.2 Role-Domain Mapping

A domain represents a functional area within an
enterprise. In a healthcare enterprise a person occupying a
job position (which is represented by a role) rarely
performs any tasks outside his/her general functional area
as it involves legal and professional competency issues.
Hence several roles may be associated with a domain but
a role always belongs to a unique domain. Therefore the
role to domain mapping is a many-to-one mapping
defined using the function name RoleDomain as:

RoleDomain(role) >>-> domain (Role_Domain

(role, domain)) (4.2.2)

4.2.3 Subject Mappings

Subjects stand for program entities or user agents that
perform one or more transactions on behalf of a user and
their execution semantics is dictated by the role from
which they are invoked. Subjects are often designed as
generic program entities that can be invoked by multiple
roles and the semantics of execution of a given subject
will depend upon the role from which it is invoked.
Similarly a role may have to invoke multiple subjects in
order to perform a designated task. Hence the subject to
role mapping is a many-to-many mapping defined using
the function name SubjectRole as:

SubjectRole (subject) >>->> role (Subject_Role

(subject, role)) (4.2.3)

A subject’s access to objects is to be mediated based
on the domain to which it belongs and therefore the
domain associated with a subject must be unique. In other
words every subject is assigned a unique domain
(although many subjects may be assigned to a single
domain) making the subject to domain mapping a many-
to-one mapping which is defined using the function name
SubjectDomain as:

SubjectDomain (subject) >>-> domain

(Subject_Domain (subject, domain)) (4.2.4)

4.2.4 Object-Type Mapping & Domain-Type Access
Matrix

 An Object-Type stands for a collection of objects

carrying related information. Hence each object maps to a

unique object-type and there could be many objects within
an object- type. Hence the object to object-type mapping
is a many-to-one mapping defined using the function
name TypeMap as:

TypeMap(object) >>-> object-type

(Type_Map(object, type)) (4.2.5)

Associated with each object (and hence object-type) is
a set of valid access modes (Create, Update, Delete, View
etc). In a DTE implementation accesses from a subject to
an object are based on the subject’s domain and object’s
type. The set of allowable access modes are represented in
the form of a matrix called Domain-Type Access Matrix
with domains as rows, object-types as columns and each
cell in the domain-object-type pair contains the valid set
of access modes granted for that pair. Also an access
mode denotes a particular way of accessing an object
which is generic to any type of object. Hence the mapping
from a domain-object-type pair to an access mode is a
many-to-many mapping defined using the function name
DteEntry as:

 DteEntry (domain, object-type) >>->> access

(Dte_Entry(domain,type,access)) (4.2.6)

The entire set of relationships among authorization entities
in DAFMAT showing the type of mapping between any
two entities is given in Figure 4.1.

4.3 Constraints on Relationships among

Authorization Entities

While describing relationships among authorization
entities, we have concerned ourselves with mappings
involving only a pair of entities. Constraints in DAFMAT
are concerned with restrictions imposed on mapping
instances for a given pair of entities when taking into
account the mapping instances each member of the pair
has with a third entity. To give a concrete example let us
consider the pair of authorization entities – subject and role
and the domain as the third entity. The constraint – “all the
roles from which a subject can be invoked should all be
assigned to the same unique domain which is associated
with the subject” is expressed as:

∀ (s,d,r) {Subject_Domain (s,d) & Subject_Role(s,r) →
Role_Domain (r,d) }

4.4 Dynamic Authorization Rules and Relevant

Facts

The purpose of using a logic-driven authorization
engine in DAFMAT in addition to the hybrid access

control model is to support multiple authorization types.
Since an authorization type is determined based on context
parameters, contextual information is the major type of
information that the dynamic authorization rules processed
by the authorization engine use. It must be mentioned that
the major portion of information that an authorization
module based on DAFMAT framework uses pertains to all
the mapping information (that forms the hybrid access
control model) described in section 4.2. The contextual
information and the number of dynamic authorization rules
to be evaluated are kept to the minimum to limit the
processing requirements of the logic driven authorization
engine. The context-based authorization rules are
expressions of organizational policies within a healthcare

enterprise that seek to limit the locality of service function
(e.g., specialty, ward assignment etc) for various
healthcare workers like Doctors and Nurses. The locality
assignments are done to realize multiple objectives like
accountability, integrity and competency of service. For
example to order a test, prescribe a medication or authorize
a diagnostic procedure for a patient in a Cardiology Ward
can only be done by the attending physician for the ward at
that time.

The various processing steps involved in DAFMAT
framework for authorizing a user action are described in
the following sub-sections:

USER

SUBJECT

ROLE DOMAIN

(D)

OBJECT-

TYPE

(T)

D-T PAIR

N:1

ACCESS

MODES

N:1

N:1 N:1
M:N

M:N

OBJECT

Figure 4.1 – Relationships between Authorization Entities in DAFMAT

4.4.1 Formulation of Authorization Request
Predicate

DAFMAT is an authorization framework for

supporting applications. Hence it should have mechanisms
for translating user actions in an application to the
appropriate authorization request which can then be
validated. This translation process is enabled by
information linking the invoked menu option and
application session with the user, role, the subject invoked,
the relevant context variable and the priority code. These

linkages are obtained using the following session-related
functions in DAFMAT.

Current_Action (menu_option, session) – the menu option
and session pertaining to the current user action.
 (4.4.1)
Session_User (session, user) – the user associated with the
application session (4.4.2)
Session_Role(session, role) – the role activated for the
session (4.4.3)

Menu_Operation(menu_option, subject) – subject invoked
by the menu option (4.4.4)
Menu_Context(menu_option, cv) – the context variable
associated with menu option (4.4.5)
Session_Priority(session, pc) – the priority code for the
session (4.4.6)
(pc = NR for normal request and pc = ER for emergency
request)
The usage of the data obtained through above mappings is
as follows. Corresponding to the exercise of a menu option
in an application session (given by mapping 4.4.1), the
variables associated with the action (i.e., the user, role,
subject, context variable and priority code) are obtained
from predicates 4.4.2 through 4.4.6 respectively. In
addition there is a variable required for holding the value
string associated with a context variable value (e.g., the
value string ‘PEDIATRIC’ associated with the context
variable value ‘wardname’). Including this variable
(named cv_value) along with other variables discussed
above, the authorization request predicate is formulated as
follows:

Auth_Req(user,role,subject,cv,cv_value,pc)
 (4.4.7)

4.4.2 Designating Authorization Type to an
Authorization Request

The values for variables ‘pc’ and ‘cv’ in an instance of

the authorization request predicate 4.4.7 (which represents
a specific authorization request) helps to categorize the
request into one of the following authorization types:

(a) Normal Authorization Request
(b) Emergency Authorization Request
(c) Context-based Authorization Request

The logic used to categorize the current request (called the
authorization type designation logic) into one of above
three types is as follows:

4.4.2.1 Authorization Type Designation Logic
IF pc = ‘ER’
THEN Emergency_Auth_Req(user,role,subject)
ELSE
 IF cv = ‘NONE’
 THEN
Normal_Auth_Req(user,role,subject)
 ELSE
Context_Auth_Req(user,role,subject,cv,cv_value)

4.4.3 Rules for Validating Different Authorization
Types

The last step in approving or denying a user

authorization request is to determine the validation
conditions for each of the authorization type designations

yielded by the logic in section 4.4.2.1. These validation
conditions are given below:

4.4.3.1 Validation Conditions for Normal Authorization
Request (Normal_Auth_Req):

Normal authorization involves checking whether the

role currently active in the user session is one of the roles
assigned to the subject under invocation. No other
information is involved in this type of authorization.

Subject_Role(subject,role) à
Normal_Auth_Req(user,role,subject) (4.4.8)

4.4.3.2 Validation Conditions for Emergency
Authorization Request (Emer_Auth_Req):

Emergency authorizations are required in situations
where a person who is called upon to perform a healthcare
task has the competence and qualifications but does not
have the association relationship like the Attending
Physician or the Doctor-on-call. Hence the context
variable is not relevant for the emergency authorization.
When a user creates an application session for making an
emergency request (through a stronger form of
authentication like two-factor authentication), that session
is created with priority code pc equal to ER. Based upon
the user clearance for certain emergency tasks, an
emergency role instead of a regular role is assigned to the
user through the Session_Role function (4.4.3). The
mapping from this emergency role to a normal/regular role
of the model is stored in a secure area that is different from
the location where the hybrid model data for DAFMAT is
stored. Verifying whether a mapped regular role is
authorized to invoke the subject then becomes the
validation condition for authorizing an emergency request.

ER_Role_Map(role,mapped_role) &
Subject_Role(subject,mapped_role) à
Emer_Auth_Req(user,role,subject)

 (4.4.9)

In summary, an emergency authorization is obtained by a
stricter form of authentication and by checking whether the
emergency role activated by the session is a valid proxy
for a regular role that has the permission to invoke the
subject. This is equivalent to finding a binding for the
mapped_role variable that will make the above implication
true.

4.4.3.3 Validation Conditions for Context-based
Authorization Request (Context_Auth_Req)

The validation conditions for emergency authorization
and normal authorizations yielded only a single validation

rule. However the validation conditions for context-based
authorization will depend upon the context variable (cv)
and each context variable gives rise to a different
validation rule. Expressing this as a decision tree:

IF cv = ‘CTXT_VAR1’
THEN
Subject_Role(subject,role) & <Context Predicate relevant
for CTXT_VAR1> à
 Context_Auth_Req(user,role,subject,cv,cv_value)
 (4.4.10)

4.4.4 The Last Step of the Authorization Process

As already stated in section 2, the last step performed
by the DAFMAT-based authorization module of the
application, after verification of the validation conditions
for the authorization request of the designated
authorization type, is to assign the appropriate domain
(based on Subject-Domain table entries) to the user
session. It is useful to point out at this stage that the
verification of the validating conditions for different types
of authorizations is the key process that distinguishes
DAFMAT from a static authorization framework. In the
static framework, the authorization required for invoking
the subject is directly obtained from the entries in the
Domain-Type Access Matrix by determining the subjects,
objects/access involved in the operation after the system
determines the domains associated with subjects and types
associated with objects. However, in a typical healthcare
facility, the eligibility to invoke a subject by a user is not
determined solely through a static role-subject relationship,
but through some temporal relationships each user has
with application domain specific variables (e.g., Attending
Physician for a patient). The incorporation of such
temporal relationships (which we have called as contextual
information) into the evaluation of role-subject association
means that the authorization process has to be dynamic
involving processing of rules at the time of authorization
requests.

5. DAFMAT Framework for ADT System

Let us now illustrate the application of DAFMAT

authorization framework described in the previous section
to the Admissions, Discharge and Transfer system (ADT).
Before we do this a brief explanation of the functionality
of the ADT system and the type of information it handles
is in order.

The Admissions, Discharge and Transfer system
(ADT) is designed to perform all functions relating to
admission, discharge and internal transfer of patients in a
healthcare facility. Examples of internal transfer functions
include transfer of patients from one bed/room to another
within a ward, from one hospital service/ward to another

or from one status to another (e.g., inpatient to outpatient
etc). The ADT system is the entry- point for capture of all
patient-related information like patient demographics,
insurance and allergies. In this paper we have coined the
name “Patient Registration Object” to stand for an
encapsulated object that contains several types of patient-
related information referred to earlier. Similarly we have
given the name “Patient Location Object” that contain
information about the bed, room and type of wards where
the patient had undergone treatment at the healthcare
facility. In addition, we have the “Patient Clinical Object”
that is composed of a set of objects carrying information
about all the clinical tests the patient has undergone (e.g.,
lab tests, radiology tests etc).

Since the underlying objective in describing the
application of DAFMAT framework for ADT is only to
demonstrate the logic used for arriving at different
authorization types, we have chosen to give only a sample
of the set of authorization entities and their relevant
relationships in ADT. Hence the set of roles, subjects,
domains and types discussed here is not a complete list of
authorization entities and relationships found in any
practical ADT system deployed in a healthcare setting.

The data regarding users, roles, subjects and domains
(which constitute the RBAC-DTE hybrid access control
model data for ADT) and their relationships are given in
section 5.1 while the data that is needed for use by the
logic-driven authorization engine is given in section 5.2.

5.1 RBAC-DTE Model Data for ADT

The sample “RBAC-DTE Model Data” set used in our
illustration consists of the following – 4 users, 4 roles, 4
subjects and 3 domains. The user John is an Admissions
Clerk and hence assigned to the admissions_clerk role.
Smith is in charge of making and altering the assignment
of patients to rooms/beds within a ward and hence
assigned to the ward_scheduler role. Susan is a registered
nurse who puts in orders for lab tests for patients (after
being authorized by the attending physician) and hence
assigned to the registered_nurse role. Patricia is a facilities
specialist who is in charge of handling the entry of patients
to acute care facilities like Intensive Care Units (ICUs) and
Chemotherapy facilities. The assigned role for Patricia is
facilities_specialist. The users assigned to the
admissions_clerk role invoke the Admission_proc and
Discharge_proc to perform their job functions. The
ward_scheduler and facilities_specialist roles invoke the
Transfer_proc to perform the functions of transferring
patients into the general wards and special wards
respectively. The registered_nurse role can invoke the
Lab_Orders_proc. The relevant user-role, role-domain,
subject-role, subject-domain mappings and the
corresponding Domain-Type Access Matrix entries are
given in tables 5.1through 5.5

Table 5.1- User-Role Mapping

User Role Predicate
John admissions_clerk User_Role(john, admissions_clerk)
Smith ward_scheduler User_Role(smith,ward_scheduler)
Susan registered_nurse User_Role(susan,registered_nurse)
Patricia facilities_specialist User_Role(patricia, facilities_specialist)

Table 5.2 - Role-Domain Mapping

Role Domain Predicate
Admissions_clerk patient_mgmt_domain Role_Domain(admissions_clerk,patient_mgmt_domain)
Ward_scheduler facility_mgmt_domain Role_Domain(ward_scheduler, facility_mgmt_domain)
Registered_nurse care_provider_domain Role_Domain(registered_nurse, care_provider_domain)
Facilities_specialist facility_mgmt_domain Role_Domain(facilities_specialist, facility_mgmt_domain)

Table 5.3 - Subject-Role Mapping

Subject Role Predicate
Admission_proc admissions_clerk Subject_Role(admission_proc,admissions_clerk)
Discharge_proc admissions_clerk Subject_Role(discharge_proc,admissions_clerk)
Transfer_proc ward_scheduler,

facilities_specialist
Subject_Role(transfer_proc,ward_scheduler)
Subject_Role(transfer_proc,facilities_specialist)

lab_orders_proc registered_nurse Subject_Role(lab_orders_proc,registered_nurse)

Table 5.4 - Subject-Domain Mapping

Subject Domain Predicate
Admission_proc patient_mgmt_domain Subject_Domain(admission_proc, patient_mgmt_domain)
Discharge_proc patient_mgmt_domain Subject_Domain(discharge_proc, patient_mgmt_domain)
Transfer_proc facility_mgmt_domain Subject_Domain(transfer_proc, facility_mgmt_domain)
lab_orders_proc care_provider_domain Subject_Domain(lab_orders_proc, care_provider_domain)

Table 5.5 - Domain-Type Access Matrix

Domain Object-Type / Access Modes

 Patient

Registration
Type

Patient
Location
Type

Patient
Clinical
Type

Patient_mgmt_domain C, U, D,V D, V
Facility_mgmt_domain C,U,V
Care_provider_domain V V C, U, V

Access Mode Codes: C – Create , U – Update, D – Delete , V – View

The pictorial representation of authorization entities and
their relationships (which constitutes the RBAC-DTE

hybrid-access control model) for ADT is given in Figure
5.1.

John

lab_orders_
proc

SusanSmith Users

Domains

Subjects

Roles

transfer_
proc

patricia

discharge_
proc

admission_
proc

patient_management_
domain

care_provider_
domain

facility_management_
domain

 admissions_

clerk

registered_

nurse

ward_

scheduler

facilities_

specialist

Figure 5.1 – RBAC-DTE HYBRID ACCESS CONTROL MODEL FOR ADT

(NOTE: The Role to Domain Mapping is shown in dashed lines)

5.2 Data for Logic-Driven Authorization Engine
for ADT

Recall that the first processing step in DAFMAT, after
building the RBAC-DTE model for the application, is the
formulation of Authorization Request Predicate 4.4.7. In
this predicate, the bindings for the variables user, role,
subject and pc (priority code) are obtained using values of
the session-related mapping functions (4.4.2 through 4.4.6)
and the RBAC-DTE model data given in the tables of
section 5.1. The value for cv_value (value string
corresponding to the context variable value –e.g.,
PEDIATRIC for context variable value ‘wardname’) is an
intrinsic parameter value in the user action in the
application. Now the only value required is for cv (context
variable) in predicate 4.4.7. This value can be obtained
from table 5.6 which provides a mapping of Menu Options
to Context Variable value in ADT system. The next

category of data that we need is the instantiation of the
context predicate (in expression 4.4.10) that is relevant for
context variable values encountered in the ADT system.
Incorporating the relevant context predicate the
instantiated “validation condition for context-based
authorization request” for the menu options – “Change
Beds/Room” and “Transfer to Acute Care” respectively
are:

Subject_Role(subject,role) & Equals(cv,wardname) &
Ward_Assignment(user,cv_value) à
Context_Auth_Req(user,role,subject,cv,cv_value)
 (5.2.1)

Subject_Role(subject,role) & Equals(cv, facilitytype) &
Specialist_in_Charge(cv_value,user) à
Context_Auth_Req(user,role,subject,cv,cv_value)
 (5.2.2)

The last but not the least important category of DAFMAT
data required in ADT is for establishing the truth values
for ward_assignment and specialist_in_charge predicates
(in the instantiated validation conditions 5.2.1 and 5.2.2)

and for the validation condition for emergency
authorization. These are given in tables 5.7 through 5.9
respectively.

Table 5.6 - Menu Option to Context Variable Mapping in ADT

Menu Option Context Variable (CV)
1. Admit Patient NONE
2. Change Beds/ Room wardname
3. Transfer to Acute Care facilitytype
4. Order Lab Tests patientname
5. Discharge Patient NONE

Table 5.7 – Truth Values for Predicate Ward_Assignment

Ward Administrator Predicate
PEDIATRIC smith Ward_Assignment(smith,’PEDIATRIC)
MATERNITY mell Ward_Assignment(mell,’MATERNITY’)

Table 5.8 – Truth Values for Predicate Specialist_in_Charge

Facility Specialist Predicate
ICU mike Specialist_in_Charge(ICU,mike)
CHEMO_THERAPY patricia Specialist_in_Charge (CHEMO_THERAPY,patricia)

Table 5.9 – Emergency to Regular Role Mappings (for validating Emergency Authorization Requests)

Emergency Role Regular Role Predicate
Facilities_manager facilities_specialist ER_Role_Map(facilities_manager,facilities_specialist)
Facilities_manager ward_scheduler ER_Role_Map(facilities_manager,ward_scheduler)

5.3 Authorization Processing in ADT

Based upon the data needed for ADT authorization
given in the previous three sections, let us now illustrate as
to how the following three user requests will be processed
by the DAFMAT framework for ADT.

5.3.1 The user ‘smith’ wants to swap beds for a

couple of patients in the pediatric ward and
makes a normal request :

The menu option ‘smith’ will use is item 2 in table 5.6

(i.e., Change Beds/Room). Making use of mapping
functions 4.4.2 through 4.4.6, the values for the various
session-related variables for smith’s current ADT session
are obtained as follows:

user = smith
role= admissions_clerk
subject = transfer_proc
cv=wardname
pc=NR

In addition since smith is invoking this menu for
performing the bed-swapping operation for patients in the
pediatric ward the value string associated with context
variable value ‘wardname’ will be:

cv_value = ‘PEDIATRIC’

Hence the authorization request predicate that will be
formulated for authorizing smith’s request will be:

Auth_Req(smith,ward_scheduler,transfer_proc,wardname,
’PEDIATRIC’,NR)

As per the logic given in section 4.4.2.1 this request will
be designated as a context-based authorization type and
hence transformed into

Context_Auth_Req(smith,ward_scheduler,transfer_proc,w
ardname, ‘PEDIATRIC’)

Based on the value of the context variable (i.e., wardname)
the validation condition on the left hand side of logical
implication 5.2.1 becomes the relevant condition to be
checked for smith’s request and the instantiation of this
condition will yield:

Subject_Role(transfer_proc,ward_scheduler) &
Equals(cv,wardname) &
Ward_Assignment(smith,’PEDIATRIC’)

Out of the three predicates above, the first one is true
because of entry in table 5.3, the second one is trivially
satisfied and third is true because of the entry in truth value
table 5.7. Since the condition for smith’s request is
satisfied, smith’s request to swap beds for a couple of
patients in the pediatric ward will be authorized.

5.3.2 The user ‘patricia’ wants to transfer a patient

to ICU and makes a normal request :

The menu option ‘patricia’ will use is item 3 in table
5.6 (i.e., Transfer to Acute Care). Again making use of
mapping functions 4.4.2 through 4.4.6, the authorization
request predicate for patricia’s current ADT session will
be:

Auth_Req(patricia,facilities_specialist,transfer_proc,facilit
ytype,’ICU’,NR)

Again as per the logic given in section 4.4.2.1 this request
will be designated as a context-based authorization type
and hence transformed into:

Context_Auth_Req(patricia,facilities_specialist,transfer_pr
oc,facilitytype,’ICU’)

Based on the context variable (i.e., facilitytype) the
validation condition on the left hand side of logical
implication 5.2.2 becomes the relevant condition to be
checked for patricia’s request and the instantiation of this
condition will yield:

Subject_Role(transfer_proc,facilities_specialist) &
Equals(cv, facilitytype) &
 Specialist_in_Charge(‘ICU’,patricia)

Since a binding cannot be obtained for the third predicate
in the condition (i.e., Specialist_in_Charge(‘ICU’,patricia)
from the truth table 5.8, the authorization request will be
denied.

5.3.3 The user ‘patricia’ wants to transfer a patient
to ICU and makes an emergency request :

This is an identical to the authorization request in

5.3.2 except that it is an emergency request instead of a
normal request from the same user for the same operation.
Now the authorization request predicate for this request
will be (assuming that an emergency role called
facility_manager is assigned to patricia by the session):

Auth_Req(patricia,facilities_manager,transfer_proc,
 facilitytype,’ICU’,ER)

Again as per the logic given in section 4.4.2.1 this request
will be designated as an emergency authorization type and
hence transformed into

Emergency_Auth_Req(patricia,facilities_manager,transfer
_proc,facilitytype,’ICU’)

The validation condition for this request becomes (using
expression 4.4.9):

ER_Role_Map(role,mapped_role) &
Subject_Role(subject,mapped_role)

Based on the following entries in tables 5.9 and 5.3:
ER_Role_Map(facilities_manager,facilities_specialist) and
Subject_Role(transfer_proc,facilities_specialist, we have
satisfied the above condition and hence the application will
approve this authorization request.

6 Assurance Measures for DAFMAT

Administration

Let us now at the look at some of the assurance
measures that may be required for the administration of
DAFMAT framework in an enterprise setting. As far as the
“hybrid access control model” component is concerned,
the inherent structural constraints of the model augmented
with application-specific constraints provide a measure of
protection against unsafe configurations. The following
assurance measures are suggested for the ‘logic-driven
authorization engine” component: (a) Authorization Rules
are created with a named Rule Set and associated with a
named “hybrid access control model set”. (b) Rules in the
Authorization Rule set are maintained centrally by a
trusted administrator while the “hybrid access control
model set” for each application is maintained by the
individual application/system administrators. (c) The

Authorization Type Designation assigned to each
authorization request and the predicate bindings used in
approving or denying the request are recorded in an audit
log and periodically reviewed for correct authorization
assignments.

7. Conclusions and Scope for Future Work

Authorization mechanisms that support multiple

authorization types can provide effective control of access
to resources in many vertical market applications. The
DAFMAT framework can provide this critical
functionality using a hybrid access control model and a
logic-driven authorization engine that makes use of
contextual information. The same authorization engine can
be used for dynamic reconfiguration of Domain-Type
access matrix entries as well as for dynamic User-Role and
Subject-Role assignments. However the inclusion of these

features may make the authorization engine difficult to
build and result in performance penalties for the
authorization mechanism. However sophisticated
authorization rules can be implemented (without
significant degradation of system response times) through
the use of a common security kernel that will mediate
access to a family of application systems within a
healthcare enterprise as has been done in the VA
healthcare settings. However the presence of a security
kernel may make integration of COTS application systems
into the IT resources of a healthcare enterprise an
expensive operation. Since IT infrastructures in most
healthcare enterprises are heterogeneous, the most
preferred alternative is to build application-level controls
for authorizations by making sure that appropriate access
control models and mechanisms are used to capture the
enterprise authorization policy requirements.

8. References

[1] J.F.Barkley, A.V.Cincotta, D.F.Ferraiolo,S.Gavrila and
D.R.Kuhn. “Role based access control for world wide web”
http://hissa.ncsl.nist.gov/rbac/rbacweb/paper.ps, April 1997.

[2] W.Boebert and R.Kain. “A Practical Alternative to
Hierarchical Integrity Policies” Proc. 8th National Computer
Security Conference, October 1985.

[3] D.Ferraiolo, J.Cugini, and D.R.Kuhn. “Role Based Access
Control (RBAC): Features and Motivations” Proc. 11th Annual
Computer Security Applications Conference, December 1995.

[4] P.Greve, J.Hoffman and R.Smith. Using Type Enforcement to
assure a configurable guard. Proc. 13th Annual Computer
Security Applications Conference, December 1997.

[5] J.Hoffman. “Implementing RBAC on a type enforced system”
Proc. 13th Annual Computer Security Applications Conference,
December 1997.

[6] S. Jajodia, P.Samarati and V.S.Subrahmanian. “A Logical
Language for Expressing Authorizations” IEEE Symposium on
Security and Privacy 1997, p31-42.

[7] K.A. Oostendorp, L.Badger, C.D. Vance, W.G. Morrison,
M.J. Petkac, D.L Sherman, D.F Sterne “Domain and type
enforcement firewalls” Proc 13th Annual Computer Security
Applications Conference, December 1997.

[8] R.S. Sandhu, E.J.Coyne, H.L.Feinstein and C.E.Youman.
“Role Based Access Control Models” IEEE Computer, vol 29,
Num 2, February 1996, p38-47.

[9] Security and Electronic Signature Standards; Proposed Rule.
Federal Register, Vol 63, No. 155, August 12, 1998.

[10] J. Tidswell and J. Potter “An Approach to Dynamic Domain
and Type Enforcement” Microsoft Research Institute,
Department of Computing, Macquarie University, NSW
Australia.

