PHILIPS sense and simplicity

Key Security Challenges in Smart Swarm of Things

NIST/CETA Workshop, Gaithersburg (USA), November 2011

Oscar Garcia-Morchon, Sye Loong Keoh, Sandeep Kumar Philips Research Europe

Agenda

- Smart Swarm of Things
- Key establishment
- ID-based symmetric-key agreement
- Conclusions

Smart Swarm of Things

Smart Swarm of Things (1/2)

Smart Swarm of Things (2/2)

Operational Requirements

- Lifecycle of SSoT
- SSoT comprises multi-vendor Things
- SSoT is featured by multi-user control
- Heterogeneous applications and networks comprise the SSoT

SecurityNeeds

http://tools.ietf.org/html/draft-garcia-core-security-03

Identification and Key Establishment

Goals (and reasons)

- Suitable for SSoT operation
 for simple usage
- Feasible in constrained devices/networks
 - to guarantee a basic & interoperable solution
- Mutual identification/authentication
 to verify the involved parties
- Establish a secure connection

 to ensure the secure data exchange

SSoT operation

At which level?

- e.g., in the IP-based SSoT -

(D)TLS	Application level: Security connection bound to a socket
HIP	Device level: Security connection bound to a HIT
IPSec	Interface level: Security connection bound to an IP address

- SSoT should be able to identify "Things"
- Conceptually, the device level seems to be the most suitable

A single solution to ensure interoperability?

- Online Key Distribution Center
 - scalability
- Public-key infrastructure
 - Resources needs/message exchange
- Identity-based Crypto
 - ID can be bound to a Thing identifier, e.g., HIT
 - But...bad performance
- Existing ID-based symmetric-key
 - Good performance,
 - But bad scalability

ID-based scheme for direct lightweight symmetric-key generation??

ID-based symmetric-key agreement

ID-based symmetric-key agreement (1/4)

Fully pairwise scheme

• Each pair of *Things* shares a pairwise key

Features

- Each Thing stores N-1 keys
- In the system N(N-1)/2 keys
- It does not scale

ID-based symmetric-key agreement (2/4)

Polynomial scheme (*)

- TTP owns a symmetric polynomial f(x,y)
- Each *Thing* with identifier ID receives f(ID,y)
- Optionally,
 - ID = hash (Identification Information)
 - ID could be the network address

Features

- Effortless key establishment between any pair of Things
- Implicit verification of identification information
- But, scalability & performance limited by the polynomial degree

ID-based symmetric-key agreement (3/4)

(*)LDC = Identification Information

ID-based symmetric-key agreement (4/4)

- Polynomial schemes
 - Nice operational features
 - But limited scalability
- If we had... an ID-based scheme
 - with the operational features of a polynomial scheme,
 - but without the t-threshold
 - Any pair of Things would be able to
 - directly generate a pairwise key from their identities (IP, HIT,...)
 - mutually authenticate to each other
 - verify configuration parameters
- Attempt to create such a scheme based on "perturbation-polynomials"
 - However, it is broken

Conclusions

Conclusions

- SSoT: evolution & revolution
- Identification and key establishment are key in SSoT
 - at which level?
 - a single solution to ensure interoperability?
- An interesting way: ID-based symmetric-key agreement @ device level

