

Security and Attacks: Thinking About

the Future

John Kelsey, NIST

•

•

•

Overview

Why do you care about security in your cool
new application?
What can you do with existing crypto to secure
your application?
What happens when existing crypto doesn't
solve the problem?

•

•

•

Doing something new

The point of this workshop is how cryptography
can be used for emerging technologies.
That is, you're doing something new, and you'd
like to do it securely.
Some of the new things being discussed at the
workshop:
• Cloud applications
• Sensor networks
• Smart grid
• Mobile applications

It's common to come up with reasons

your application doesn't need much

security

•

•

•

•

It's a small, obscure system
The stakes are low
The environment is restricted and not
connected to the world.
It doesn't have to be any better than the existing
(small, obscure, low-stakes) alternative

What happens if your

application is wildly successful?

It expands into new environments!

• Ultimately, it lives in an environment you never
imagined.

• It is used for things you never expected or
imagined.

• Examples: Credit card payment system, HTTP,
WEP

Successful systems become
widespread

• A widespread system is a bigger target.
• “Successful systems attract parasites.”
• Examples:

• Email
• Web content and browsers
• Smart phones/mobile apps

Successful applications

live in the future.

• Attackers know more

• Processing power, memory, bandwidth
cheaper.

• Attackers adapt and evolve over time.

• Example: Malware writers in 2001 vs 2011

The result is big security headaches

later.

• Big installed base = hard to retrofit fixes.
• Incompatible weak and strong versions

• SSL 2 vs 3, WEP vs WPA vs WPA2, etc.
• Changing message lengths or performance a

lot can break existing applications.

Other systems can depend on your

insecurity

• Successful systems also become part of the
environment

• Other systems grown up around yours--
sometimes expect continued insecurity to keep
working!
• Example: Packet inspection vs end-to-end

encryption.
• Redirecting connections to login screen vs. HTTPS

everywhere.
• Credit card payments and merchants using CC#s as

customer identifiers

•

•

•

Preaching to the choir....

Security decisions made early on can stick
around for a long time.
It's usually easy to make an argument for why
you shouldn't have to worry too much about
security in your system.
That usually doesn't turn out too well.

•

•

•

•

Building security in with crypto

Most security problems can't be solved with
crypto....
...but some can.
Encryption, authentication, signatures, random
number generation, etc. are pretty well-
understood.
Existing standards (see Elaine Barker's talk
tomorrow) provide good tools.

•

•

•

•

When should you use crypto?

If you're sending data over a network, and it's
not intended to be read by everyone, it should
probably be encrypted.
If you're sending data over a network, and it's
not intended to be altered in transit, it should
probably be authenticated.
Designing in the use of crypto from beginning
will save a lot of trouble later.
The tricky part is likely to be managing the keys.

•

•

•

How secure do you have to be?
Nothing new should be fielded with less than
112 bit security level.
• 3-key triple-DES and AES
• SHA2, SHA3
• RSA and DSA with 2048-bit moduli
• DSA and ECDSA with 224-bit subgroup size
Designing a new application with less security
for performance reasons is almost certainly a
huge mistake. (DES, MD5)
See SP800-131A for more details

•

•

•

What happens when things go
wrong?

Algorithms get broken (like MD5, SHA1)
• Design your application with the ability to use

different algorithms in the future
• Just thinking about this in message formats and stuff

can save a lot of heartache later.
Protocols get broken (WEP, SSLv2, PKCS#1 v1)
• Often, by misusing crypto algorithm in some way.
Keys get compromised (like SecureID token)
• Think through how your system can recover.

What if existing crypto doesn't solve

your application's problems?

• Sometimes there's existing crypto but it's not in
standards yet
• IBE, short signatures, stream ciphers

• Sometimes, there's not an existing solution.
• There are lots of crypto researchers looking for

problems to solve.
• Bad news: Tend to be academics focused on proofs

and papers instead of your application.
• Good news: They're smart and motivated and may

produce something useful

•

•

Summary

Think about what security your application will
need if it is very successful.
• It is used widely
• It expands out into new environments
• It is used in ways you didn't expect
• It lives in the future
• It may become a big target
There are nice existing crypto tools that can
help design security in.

