
© 2011 Galois, Inc. All rights reserved.1

Cryptographic Module Design with
Domain Specific Languages

NIST Workshop on Cryptography for Emerging Technologies and Applications

John Launchbury, Nov 2011

© 2011 Galois, Inc. All rights reserved.2

Crypto Verification &
Validation

Validation is
complex and tediousVariety of

target architectures

Variety of
requirements

Creating a crypto algorithm requires
skills in math AND programming

© 2011 Galois, Inc. All rights reserved.3

Requirements for a
Crypto Domain-Specific Language



High-level domain-specific language for design capture and
exploration



Specifications guide and document implementations



Neutral to implementation platform



Language should be high-level, yet detailed
• Can talk about the bits, but in a platform-independent way

© 2011 Galois, Inc. All rights reserved.4

One Specification - Many Uses

Design

Validate

Build

Domain-specific
design capture

w0=u-I*I mod p + u-I*wl mod p
s=f * (w0 +pw2) mod q Assured

implementation

Verify crypto

implementations

Formal Models
and test cases
Formal Models
and test cases

Special purpose

processor

Software
Implementation

C, Haskell,…

Software
Implementation

C, Haskell,…

Hardware
Implementation

Hardware
ImplementationCryptol

Workbench
Cryptol

WorkbenchCryptolCryptol FPGA

© 2011 Galois, Inc. All rights reserved.5

Cryptol:
Specifications and Formal Tools



Domain-specific declarative specification language
• Language tailored to the crypto domain
• Designed with feedback from NSA
• Non-proprietary language



Execution and Validation Tools
• Tool suite for different implementation and

verification applications
• In use by crypto-implementers

© 2011 Galois, Inc. All rights reserved.6

Key Ideas in Cryptol



Domain-specific data and control abstractions
• Sequences
• Recurrence relations (not for-loops)



Powerful data transformations
• Data may be viewed in many ways
• Machine independent



Algorithms parameterized on size
• Size constraints are explicit in many specs
• Number of iterations may depend on size
• A sized type system captures and maintains size constraints

Choosing what to leave out is critical

© 2011 Galois, Inc. All rights reserved.7

Cryptol Programs



File of mathematical definitions
• Two kinds of definitions: values and functions
• Definitions may be accompanied by a type declarations (a

signature)



Definitions are computationally neutral
• Cryptol tools provide the computational content (interpreters,

compilers, code generators, verifiers)

x : [4][32];
x = [23 13 1 0];

F : ([16],[16]) -> [16];
F (x, x’) = 2 * x + x’;

© 2011 Galois, Inc. All rights reserved.8

blockEncrypt : {k} (k >= 2, 4 >= k) => ([128], [64*k]) -> [128]

Cryptol: Specify interfaces unambiguously

For all k …between
2 and 4

First input is
a sequence
of 128 bits

Second input
is a sequence
of 128, 192,
or 256 bits

Output is a
sequence of

128 bits

From the Advanced Encryption Standard definition†

†http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

© 2011 Galois, Inc. All rights reserved.9

Cryptol
interpreter

Cryptol
interpreter

Test
Vectors

Test
Vectors

Quick
check
Quick
check

Cryptol
reference

specification

Cryptol
reference

specification

Basic Cryptol Use Case



Create a Cryptol reference
specification



Execute the specification, including
assertion checks



Generate test vectors with
Quickcheck to bundle with the
reference specification

Benefits:


A clear and unambiguous model
• E.g. bit-order and endian-ness



Natural notation
• Simplifies expression, inspection,

and re-use



Specification can be validated
• Validate any part of algorithm



Re-usable models
• Validate, re-use many times
• Specification for both hardware and

software implementations



Specifications can easily be re-
factored

© 2011 Galois, Inc. All rights reserved.10

Case Study: Cryptol in the development process

Description/Purpose Language Artifact
Eg: NIST / NSA spec, technical paper Pseudo‐code/Mathematics Conventional specification

Test understanding of specification Cryptol Reference model

Capture structure of implementation Cryptol Implementation model

Capture semantics of code fragments Cryptol Fragment models

Create code for proprietary platform Microcode with Cryptol annotations Implementation

Cryptol
Interpreter

Cryptol
Interpreter

Cryptol
Code

Cryptol
Code

Published
Test Vectors
Published

Test Vectors

Reference
Model

Reference
Model

Current
Model

Current
Model

Assurance
Evidence

Assurance
Evidence

Equivalence
Checker

Equivalence
Checker

Evaluation

© 2011 Galois, Inc. All rights reserved.11

User Experience



“The Cryptol specification removes ambiguities that are inevitable in
the English-language descriptions and removes platform dependencies
(like word-size) that creep into the C snippets.”



“...an experienced Cryptol programmer given a new crypto program
specification and a soft copy of test vectors can be expected to learn
the algorithm and have a fully functional and verified Cryptol model in a
few days to a week.”

Alan Newman, General Dynamics C4 Systems

© 2011 Galois, Inc. All rights reserved.12

The SHA-3 Candidates in Cryptol



Skein (Schneir et al.)
• Galois verified two third-party VHDL implementations



Blake (Aumasson et al., Switzerland)
• Verification of third-party VHDL implementation in process



CubeHash (Bernstein, USA)


MD-6 (Rivest et al, since withdrawn from competition)


SANDstorm (Sandia, since withdrawn from competition)


Groestl (Knudsen et al, Denmark)
• Students at U.Minho in Portugal generated a respectable FGPA

implementation and verified it against the Cryptol specification



Shabal (Misarsky, France)
• Cryptol specification written at INRIA

© 2011 Galois, Inc. All rights reserved.13

Examples of Other Cryptol Tools

Cryptol
Specification

Cryptol
Specification

A Domain Specific Specification Language
• Precise, Declarative Semantics
• High level design exploration

Automated Synthesis down to FPGA
• Algebraic rewrite-based compilation
• Traceability back to specification

Automated Verification
• AIG-based Equivalence Checking
• SAT Solver technology

© 2011 Galois, Inc. All rights reserved.14

FPGA Vendor tools

Galois tools

Data files produced by Cryptol tools

Data files produced by vendor toolsInput to tool

Feedback to designer

Specification

Source files

Cryptol in the VHDL Development Process

An FPGA engineer:


Uses the reference
specification to guide the
VHDL implementation



Produces intermediate
specifications to reflect
design decisions



Generates test vectors to
test portions of the VHDL



Uses equivalence checkers
to ensure that the
implementation is correct

Cryptol
reference

specification

Cryptol
reference

specification

Symbolic
evaluator
Symbolic
evaluator

SynthesisSynthesis
Reference

model
Reference

model

handwritten
VHDL

implementation

handwritten
VHDL

implementation

Equivalence
checker

Equivalence
checker

Symbolic
evaluator
Symbolic
evaluator

Netlist
model
Netlist
model

NetlistNetlist BitfileBitfile

© 2011 Galois, Inc. All rights reserved.15

System
Simulation

System
Simulation

Cryptol
compiler
Cryptol
compiler

VHDLVHDL

CC

SynthesisSynthesis

NetlistNetlist

Cryptol
reference

specification

Cryptol
reference

specification
Test

Vectors
Test

Vectors

Symbolic
evaluator
Symbolic
evaluator

Reference
model

Reference
model

Equivalence
checker

Equivalence
checker

Symbolic
evaluator
Symbolic
evaluator

Implementation
model

Implementation
model

Cryptol
interpreter

Cryptol
interpreter

Symbolic
simulator
Symbolic
simulator

Netlist
model
Netlist
model

Equivalence
checker

Equivalence
checker

BitfileBitfile

Cryptol in an FPGA Development Process:
emphasis on high-level design



It is easier to
experiment with
new micro-
archtectures in a
specification
language like
Cryptol than in
VHDL

FPGA Vendor tools

Galois tools

Data files produced by Cryptol tools

Data files produced by vendor toolsInput to tool

Feedback to designer

Specification

Source files

Cryptol
implementation

specification

Cryptol
implementation

specification

© 2011 Galois, Inc. All rights reserved.16

Cryptol
reference

specification

Cryptol
reference

specification

Cryptol
implementation

specification

Cryptol
implementation

specification

VHDLVHDL
handwritten

VHDL
implementation

handwritten
VHDL

implementation

NetlistNetlist

NetlistNetlist

Cryptol in the evaluation process

A crypto-device evaluator:


Creates a reference specification
and associated formal model



Checks the equivalence of the
implementation models at several
points in the tool

Equivalence
checker

Equivalence
checkerEquivalence

checker
Equivalence

checker

The process works for both hand-written
and Cryptol-generated designs

© 2011 Galois, Inc. All rights reserved.17

Questions?

www.cryptol.net



Language open



Free download of
interpreter



Documentation

http://www.cryptol.net/

	Slide Number 1
	Crypto Verification &�Validation
	Requirements for a �Crypto Domain-Specific Language
	One Specification - Many Uses
	Cryptol:�Specifications and Formal Tools
	Key Ideas in Cryptol
	Cryptol Programs
	Cryptol: Specify interfaces unambiguously
	Basic Cryptol Use Case
	Case Study: Cryptol in the development process
	User Experience
	The SHA-3 Candidates in Cryptol
	Examples of Other Cryptol Tools
	Cryptol in the VHDL Development Process
	Cryptol in an FPGA Development Process: emphasis on high-level design
	Cryptol in the evaluation process
	Questions?

