Privacy-Preserving Electronic Transactions

René Peralta
Computer Security Division
National Institute of Standards and Technology

November 2011

Dreaming

SMPC

Milestones

Electronic

Commerce

Circuits

Multiplication

NIST Beacon

Setcert

The End

Some hard problems.

Dreaming

SMPC
Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon
Setcert
The End

Some hard problems.

■ Encrypted medical databases.

Dreaming

SMPC
Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon
Setcert
The End

Some hard problems.

■ Encrypted medical databases.

■ Digital cash.

Dreaming

SMPC
Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon
Setcert
The End

Some hard problems.

■ Encrypted medical databases.

■ Digital cash.

■ Secure Internet voting.

Dreaming

SMPC
Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon
Setcert
The End

Some hard problems.

■ Encrypted medical databases.

■ Digital cash.

- Secure Internet voting.
- and much more ...

Dreaming

SMPC

Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon
Setcert
The End

■ A set of actors with private inputs would like to compute a function of these inputs.

Dreaming

SMPC

Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon
Setcert
The End

■ A set of actors with private inputs would like to compute a function of these inputs.

■ Example: **voting**.

Dreaming

SMPC

Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon
Setcert
The End

■ A set of actors with private inputs would like to compute a function of these inputs.

■ Example: **voting**.

■ Can this be done while keeping the inputs private?

Dreaming

SMPC

Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon
Setcert
The End

■ A set of actors with private inputs would like to compute a function of these inputs.

■ Example: **voting**.

■ Can this be done while keeping the inputs private?

SECURE MULTI-PARTY COMPUTATION.

Milestones

Dreaming SMPC

Milestones

Electronic
Commerce
Circuits
Multiplication

NIST Beacon Setcert

The End

■ Danish sugar beet auctions.

Milestones

Dreaming SMPC

Milestones

Electronic Commerce Circuits Multiplication NIST Beacon Setcert The End ■ Danish sugar beet auctions.

■ (Pinkas et. al.) Secure evaluation of an AES encryption.

Milestones

Dreaming SMPC

Milestones

Electronic Commerce Circuits Multiplication NIST Beacon Setcert The End ■ Danish sugar beet auctions.

■ (Pinkas et. al.) Secure evaluation of an AES encryption.

■ IARPA projects.

Privacy protection in electronic commerce

Dreaming
SMPC
Milestones
Electronic
Commerce

Circuits
Multiplication
NIST Beacon
Setcert
The End

■ During an electronic transaction, reveal as little as is necessary to complete the transaction.

Privacy protection in electronic commerce

Dreaming
SMPC
Milestones
Electronic
Commerce

Circuits
Multiplication
NIST Beacon
Setcert
The End

■ During an electronic transaction, reveal as little as is necessary to complete the transaction.

■ Make your transactions unlinkable to you and to each other.

Dreaming
SMPC
Milestones
Electronic
Commerce

Circuits
Multiplication
NIST Beacon
Setcert
The End

NATIONAL STRATEGY FOR TRUSTED IDENTITIES IN CYBERSPACE

Enhancing Online Choice, Efficiency, Security, and Privacy

APRIL 2011

Example: majority of three

Dreaming SMPC Milestones Electronic Commerce

Circuits

Multiplication NIST Beacon Setcert The End

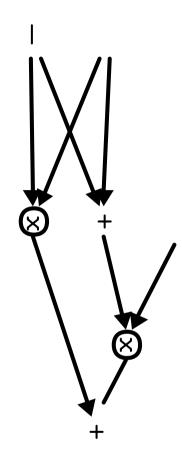


Figure 1: The problem reduces to providing valid bit commitments for each of the wires of the circuit and opening the output.

Dreaming
SMPC
Milestones
Electronic
Commerce
Circuits

Multiplication

NIST Beacon Setcert The End ■ Multiplication is hard, addition easy.

Dreaming
SMPC
Milestones
Electronic
Commerce
Circuits

Multiplication

NIST Beacon Setcert The End

- Multiplication is hard, addition easy.
- Multiplication forces interaction

Dreaming
SMPC
Milestones
Electronic
Commerce
Circuits

Multiplication

NIST Beacon Setcert The End

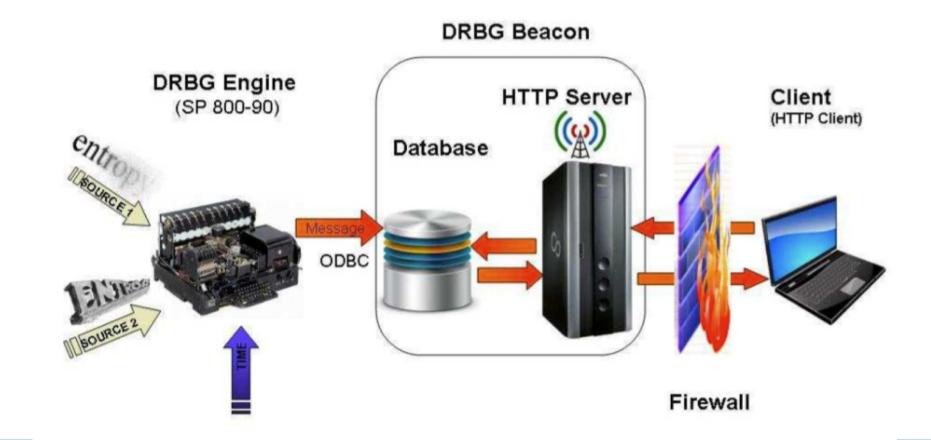
- Multiplication is hard, addition easy.
- Multiplication forces interaction in the standard transaction environment.

Dreaming
SMPC
Milestones
Electronic
Commerce
Circuits

Multiplication

NIST Beacon Setcert The End

- Multiplication is hard, addition easy.
- Multiplication forces interaction in the standard transaction environment.
- Let's enhance the environment.



NIST Randomness Beacon

Dreaming
SMPC
Milestones
Electronic
Commerce
Circuits
Multiplication

NIST Beacon

Setcert The End Prototype architecture.

Dreaming
SMPC
Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon

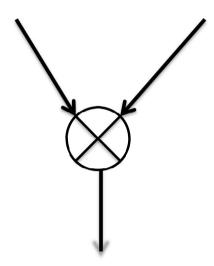
Setcert
The End

■ How about an online service that certifies encrypted values have a given property.

Dreaming
SMPC
Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon

Setcert
The End

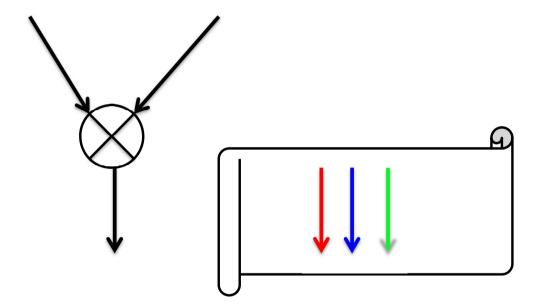
■ How about an online service that certifies encrypted values have a given property.


■ The property is generic. It does not reveal information about any particular attribute of the user.

Dreaming
SMPC
Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon

Setcert

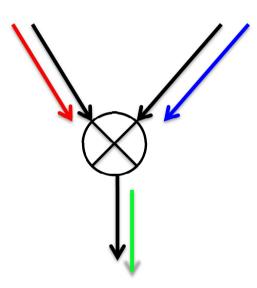
The End



Dreaming
SMPC
Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon

Setcert

The End


Certify as belonging to the set {000,010,100,111}

Dreaming
SMPC
Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon

Setcert

The End

Dreaming
SMPC
Milestones
Electronic
Commerce
Circuits
Multiplication
NIST Beacon
Setcert

The End

THANK YOU.