Stream Ciphers for Constrained Environments

Meltem Sönmez Turan

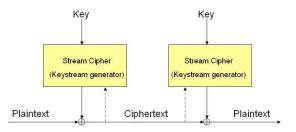
National Institute of Standards and Technology

November 7, 2011

Meltem Sönmez Turan (NIST) Stream Ciphers for Constrained Environments

Stream Ciphers

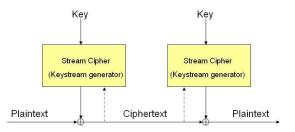
Symmetric key cryptosystems



• Stream ciphers simulate the idea of unconditionally secure One Time Pad.

Stream Ciphers

Partition the plaintext into bits or words (e.g. 16, 32 bits) and encrypt each block using a **time-varying** encryption function.


Two types of stream ciphers

- Synchronous stream ciphers
- Self-synchronizing stream ciphers

Meltem Sönmez Turan (NIST) Stream Ciphers for Constrained Environments

Stream Ciphers

Partition the plaintext into bits or words (e.g. 16, 32 bits) and encrypt each block using a **time-varying** encryption function.

Two types of stream ciphers

- Synchronous stream ciphers
- Self-synchronizing stream ciphers

Meltem Sönmez Turan (NIST) Stream Ciphers for Constrained Environments

Generic Structure of Synchronous Stream Ciphers

Key/IV Initialization

- For correct decryption, sender and receiver must be synchronized, i.e. they must have the same internal state at time *t*.
- If ciphertext bits are deleted/inserted, then synchronization is lost and rest of the ciphertext is useless.
- A **Key/IV initialization function** is used for resynchronization.

PRNG

Properties of Synchronous Stream Ciphers

No Error Propagation

• A change in the ciphertext bit affects only the corresponding bit in the deciphered plaintext.

Suitable for encrypting voice and video

< 回 ト < 三 ト < 三 ト

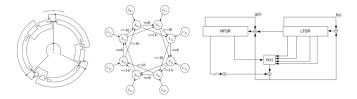
- E0 used in Bluetooth
- RC4 used in Secure Socket Layer (SSL) protocol
- A5/1 used in the Global System for Mobile (GSM) Communication

▲ 同 ▶ → 三 ▶

Constrained Environments

Requirements

- Small chip sizes
- Less(peak and average) energy consumption (limited lifetime of the devices)
- Short processing times
- High throughput is not always necessary.



47 ▶

Stream Ciphers for Constrained Environments

Design approaches

Ad hoc designs

- Bit oriented
- Common building block: Feedback shift registers

Key and State Size

- Key size determines the security level
- Large key size \equiv High cost
- Time Memory Tradeoff Attacks: speed up exhaustive search by using memory. To resists TMTO attacks, the size of the internal state should at least be twice the key size.

10 / 19

ECRYPT II ↓↑দে⊗৫৩^ ‡

Ecrypt eSTREAM Project

4-year (between October 2004 - May 2008) network of excellence funded project by European Network of Excellence for Cryptology (ECRYPT) Goals:

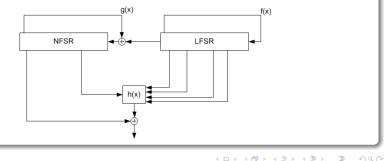
- to identify new stream ciphers that might be suitable for widespread adoption
- to stimulate work in stream ciphers.

Call for primitives within two profiles

- Profile I: for software applications with high throughput requirements.
- Profile II: for hardware applications with restricted resources such as limited storage, gate count, or power consumption.

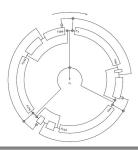
Profile II

- Key size is 80 bits.
- eStream received 25 candidates for Profile II.


Finalists are;

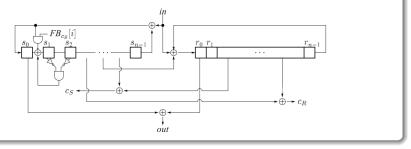
- Grain by Hell, Johansson and Meier
- F-FCSR-H by Berger, Arnault and Lauradoux (Broken, and removed from the portfolio)
- **Trivium** by Canniere and Preneel
- Mickey by Babbage and Dodd

Grain


- Based on bit oriented FSRs. Main components: 80-bit LFSR, 80-bit NFSR, Boolean function
- Internal state size of 160 bits.
- Well studied

General Structure

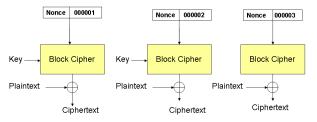
- Based on bit oriented FSRs. Main components: Three nonlinear shift registers
- Internal state size of 288 bits.
- Well studied
- General Structure


Meltem Sönmez Turan (NIST)

Stream Ciphers for Constrained Environments

- Based on bit oriented registers. Main components: Two registers of size 100
- Internal state size of 200 bits.
- Not well studied.

General Structure



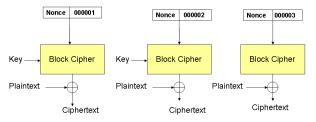
3. 3

< 4 ₽ > < 3

Advanced Encryption Standard

AES - Counter Mode

- Secure, Well understood, Standardized
- Fast and efficient
- Meets most needs.


Meltem Sönmez Turan (NIST) Stream Ciphers for Constrained Environments

3

< 回 ト < 三 ト < 三 ト

Advanced Encryption Standard

AES - Counter Mode

- Secure, Well understood, Standardized
- Fast and efficient
- Meets most needs.

Not efficient enough for constrained devices!

A B F A B F

< A >

There is no NIST approved stream cipher.

Do we need dedicated stream ciphers?

- More cryptanalytic results on stream ciphers and their impact on practical applications
- Performance comparison of lightweight stream ciphers and AES Counter Mode
- Experimental results (on power consumption, storage, complexity etc.) for environments that AES cannot be used.

THANKS!

streamcipher@nist.gov

Meltem Sönmez Turan (NIST) Stream Ciphers for Constrained Environments Novem

3

<ロ> (日) (日) (日) (日) (日)