Hidden Diversity and Secure Multiparty Computation

Juan A. Garay AT&T Labs — Research

Adversaries and Cryptography

- Computing in the presence of an adversary is at the heart of modern cryptography
- "Completeness theorems" for distributed cryptographic protocols:
 - An adversary controlling any minority of the parties cannot prevent the secure computation of any efficient functionality defined over their inputs [Yao82, GMW87]
 - Similar results hold over secure channels (and no add'l crypto) with an (computationally unbounded) adversary controlling less than a third of the parties [BGW88, CCD88]

Resource-based Corruptions

Adversaries corrupt parties...

...for FREE!

 Corrupted party does not necessarily follow protocol – in addition to trying to find the secrets of other parties, it may aim to disrupt the computation so it results in an incorrect answer

Resource-based Corruptions (cont'd)

Our new questions:

- How does an adversary turn a law-abiding party into a malicious saboteur?
- Bribe them, hack them, ...?
- How much does it cost?
 - Different parties may require different "resources" to get corrupted
- Can "anonymity" be used to raise those costs?

Resource Anonymity

Resource Anonymity

Resource Anonymity and Indistinguishability

A Combinatorial Game

- GIVEN: Set B_1 , B_2 , ..., B_n of buckets, with bucket B_i having non-negative integer size s_i , and a target fraction α , $0 < \alpha < 1$.
- ■GOAL: Fill [an] of the buckets using as few balls as possible, where a bucket of size s_i is filled if it receives s_i balls.

Balls and Buckets

- Buckets = Participants in the protocol
- Bucket size = Number of corruption tokens required to break into the participant's machine and take it over
- Ball = corruption token
- Adversary = placement algorithm
- $\alpha = 1/2, 1/3, ...$

Balls and Buckets (cont'd)

$$n = 5$$
, $\alpha = \frac{1}{2}$, $\lceil \alpha n \rceil = 3$

Only Feedback from Placing a Ball: "Bucket Now Full" or

How many balls?

"Bucket Not Yet Full"

States of Ignorance

Adversary knows:

- Only n [No-Information]
- n and max{s: s = s_i for some i} [Max-Only]
- $\{s: s = s_i \text{ for some i}\} [Sizes-Only]$
- $| (s,k): |(i:s_i = s)| = k > 0$ [Profile-Only]
- $s_1, s_2, ..., s_n$ in order [Full-Information]

States of Ignorance

Adversary knows:

- Only n [No-Information]
- n and max{s: s = s_i for some i} [Max-Only]
- $\{s: s = s_i \text{ for some i}\} [Sizes-Only]$
- $| (s,k): |\{i:s_i = s\}| = k > 0\} [Profile-Only]$
- $s_1, s_2, ..., s_n$ in order [Full-Information]

Evaluating Adversary's Cost: Notation

- Instance: $s = (s_1, s_2, ..., s_n)$
- \blacksquare Opt_{α}(s) = min($\sum_{i \in C} s_i : C \subseteq \{1,2,...,n\}$ and $|C| = \lceil \alpha n \rceil$)
- A_α(s): number of balls used by (deterministic) algorithm A when it has filled an buckets, when the bucket sizes are hidden

Some Initial Good News (Bad News for the Adv.)

Theorem: For any profile-only adversary A, and any constants α , $0 < \alpha < 1$, B > 1, and $\varepsilon > 0$, there exist instances s such that

$$Pr[A_{\alpha}(s) < B \cdot Opt_{\alpha}(s)] < \epsilon$$

For fixed B and α , $\epsilon = O(1/n)$

Even Better News (But Worse News for the Adv.)

Theorem: For any constants α , $0 < \alpha < 1$, and B > 1, there exist instances s_n , $n > 8B/(1-\alpha)$, such that for any profile-only adversary A

$$Pr[A_{\alpha}(s_n) < B \cdot Opt_{\alpha}(s_n)] < \epsilon$$

[**ɛ**: negligible]

Rest of the Talk

- Framework for realization of above abstraction
 - Computational corruptions
- Sufficient conditions for abstraction
 - Information-Effort-Preserving (IEP) functions
 - Hardness Indistinguishability
 - Exact Hardness
- Restricted instances, efficiency gains, and more

Exact Hardness

- A notion to compare functions according to their inversion difficulty
 - I.e., compute x given y = f(x)
- The exact hardness of a function, parameterized by \(\mathcal{\epsilon}\), is the number of steps that needs to be surpassed in order to achieve prob. of success at least \(\mathcal{\epsilon}\)
- Definition: For any ε ∈ (0,1) and a function f : X → Y, the *exact hardness* of f w. prob. ε is the maximum H ∈ N s.t. for any A and t ≤ H, it holds that

$$p_{A,t} < \epsilon$$

[Denoted $H_{f,\epsilon}(\lambda)$]

Exact Hardness (cont'd)

- Related notions:
 - Boolean functions [NW94], (t,E)-security [BR96]
 - One-way functions
 - One-wayness with hardness µ [HHR06]
- How easy is it to calculate H_{f,ε}?
 - Idealized computational models (random functions, exponentiation maps in the generic group model)
 - Under cryptographic assumptions (e.g., factoring), reasonable ranges for H_{f.ɛ} can be stated

Inversion-Effort-Preserving (IEP) Functions

- A set of functions are to be inverted
- **IEP**: Measure of "combined" hardness
- Definition: Let ε > 0 and τ be a monotonically increasing function. A sequence of functions { f_i } is τ-inversion effort preserving (τ-IEP) if

$$H_{f^{[n]},\epsilon} \geq T(\Sigma_{i} H_{f_{i},\epsilon})$$

Related notions: Hardness amplification [Yao86], direct-product theorems [IJKW10]

Hardness Indistinguishability

- Hides the function's hardness, "blinding" the adversary as to what function(s) to attack first
- **Definition**: Let $\varepsilon > 0$ and $t \in \mathbb{N}$. Two functions $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ are (t, ε) -indistinguishable if

$$|Pr[D_t(f_1(x_1)) = 1] - Pr[D_t(f_2(x_2)) = 1]| < \varepsilon$$

D_t: statistical test runing in t steps; x_i uniformly drawn from X_i

• "Interesting" when, say, $H_{f_1,\epsilon} < H_{f_2,\epsilon}$ for some ϵ

Candidate Functions

- Random functions
 - "Random oracles" [BR93]
- Exponentiation
 - $f: \mathbb{Z}_q \to S$; q: λ -bit prime number; S: (generic) multiplicative group
 - $T(\cdot) = (\cdot)^{1/2}$
- Multiplication
 - $f_{\text{mult}}: P_{\lambda} \times P_{\lambda} \rightarrow N$
 - $T(x) = e^{(\ln x)^{2/3}}$

Rest of the Talk

- Framework for realization of above abstraction
 - Computational corruptions
- Sufficient conditions for abstraction
 - Information-Effort-Preserving (IEP) functions
 - Harness Indistinguishability
 - Exact Hardness
- Restricted instances, efficiency gains, and more

Rest of the Talk

- Framework for realization of above abstraction
 - Computational corruptions
- Sufficient conditions for abstraction
 - Information-Effort-Preserving (IEP) functions
 - Harness Indistinguishability
 - Exact Hardness
- Restricted instances, efficiency gains, and more

The Simulation Paradigm [GMW87,Can01-05]

Real-world cryptographic protocol π

Ideal world with a Trusted Party carrying out task \mathcal{G} in a secure way

The Simulation Paradigm [GMW87,Can01-05]

A protocol is secure for some task if it "emulates" an "ideal process" where the parties hand their inputs to a "trusted party," who locally computes the desired outputs and hands them back to the parties.

(Aka the "trusted-party paradigm")

The Simulation Paradigm [GMW87,Can01-05]

IDEAL

The Simulation Paradigm [GMW87, Canetti 01-05]

REAL

Definition:

We say protocol π UC realizes task \mathcal{G} , if $\forall \mathcal{A} \exists \mathcal{S} \forall \mathcal{Z}$ such that $\mathsf{REAL}_{\mathcal{H}} \mathcal{A} \not \mathcal{Z} \approx \mathsf{IDEAL}_{\mathcal{G}} \mathcal{S}_{\mathcal{Z}} \mathcal{Z}$

IDEAL

Corruption Oracles

Real-world cryptographic protocol π

Ideal world with a Trusted Party carrying out task \mathcal{G} in a secure way

Corruption Oracles

Real-world cryptographic protocol π

Ideal world with a Trusted Party carrying out task \mathcal{G} in a secure way

Corruption Oracles (cont'd)

- Standard cryptographic corruption: $C^{\text{std}}(\alpha)$
 - Corruption protocol: (Corrupt, P_i); oracle checks whether ctr+1 < [αn]
- (Blinded) Token-based corruption: $C^{(b)tk}(s,k)$
 - Counters ctr₁,...,ctr_n; (Corrupt,P_i,v); oracle checks whether ctr_i + v ≥ s_i
 - Blinded: Oracle performs update operations on $P_{\pi(i)}$
- (Blinded) Computational corruption: C^{(b)cc}(f)
 - Oracle initialized with f₁,...,f_n; gives adversary (y_i = f_i(x_i))_{1,...,n}
 - (Corrupt, P_i , x); if y_i , $f_i(x)$ then P_i gets corrupted
 - Blinded: Oracle gives adversary (y_{π(1)},..., y_{π(n)})

Relations between Corruption Oracles

- **Definition**: A corruption oracle C is *safe* if for all functionalities T there is a protocol π that securely T with respect to C
 - E.g., $C^{\text{std}}(\frac{1}{2})$ is safe
- **Definition**: Oracle C_2 dominates oracle C_1 (denoted $C_1 \leq_{t,\epsilon} C_2$) if for any protocol π there is an adversary S such that for all t-bounded (Z_1 ,A)

$$\mathsf{EXEC}_{\pi,\mathcal{A}^{C_1},\mathcal{Z}} \approx_{\varepsilon} \mathsf{EXEC}_{\pi,\mathcal{S}^{C_2},\mathcal{Z}}$$

Relations between Corruption Oracles (cont'd)

■ Theorem: Let $\varepsilon > 0$. Given a τ -IEP sequence of functions f_1, \ldots, f_n we have that for any t there exist s, k such that

$$C^{(b)cc}(\mathbf{f}) \leq_{t,\epsilon} C^{(b)tk}(\mathbf{s},\mathbf{k})$$

where $\mathbf{s} = (s_1, ..., s_n)$ and $s_i = H_{f_i, \varepsilon}$, and $k = \lceil \mathbf{T}^{-1}(t) \rceil$.

Rest of the Talk

- Framework for realization of above abstraction
 - Computational corruptions
- Sufficient conditions for abstraction
 - Information-Effort-Preserving (IEP) functions
 - Hardness Indistinguishability
 - Exact Hardness
- Restricted instances, efficiency gains, and more

Rest of the Talk

- Framework for realization of above abstraction
 - Computational corruptions
- Sufficient conditions for abstraction
 - Information-Effort-Preserving (IEP) functions
 - Hardness Indistinguishability
 - Exact Hardness
- Restricted instances, efficiency gains, and more

Results

Increased **security**:

- Let OPT be optimal corruption budget for which the completeness of MPC is violated
- For any B, the completeness of MPC holds against any adversary with less than B·OPT budget assuming a sufficient number of parties $(n = \Omega(\log(1/\epsilon)\cdot B))$
- Let M bound the hardness of individual corruptions. Then the completeness of MPC holds against any adversary with less than $\sim \sqrt{\text{M-OPT/(log(1/ε)}}$, assuming n $\geq \sqrt{\text{M}}$

Increased efficiency: Fix adversary budget $k < OPT_{\frac{1}{2}}(s)$

With resource anonymity, can force corruption threshold to drop from 1/2 to 1/3, and run information-theoretic MPC protocol instead!

Summary

- Formulated natural notion of resource-based corruptions, which imposes a cost to the adversary to take over parties
- Introduced notion of hidden diversity ("resource anonymity"), based on
 - Exact hardness of functions
 - Information-Effort-Preserving (IEP) functions
 - Hardness Indistinguishability
- Showed that the gain of hidden diversity/resource anonymity can be substantial (unbounded in some cases)

Reference:

J. Garay, D. Johnson, A. Kiayias, and M. Yung, "Resource-based Corruptions and the Combinatorics of Anonymity." 2011; submitted for publication.

Thanks!