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Adversaries and Cryptography

 Computing in the presence of an adversary is at the heart of 
modern cryptography
 “Completeness theorems” for distributed cryptographic 

protocols:
• An adversary controlling any minority of the parties cannot prevent the 

secure computation of any efficient functionality defined over their 
inputs [Yao82, GMW87]

• Similar results hold over secure channels (and no add’l crypto) with an 
(computationally unbounded) adversary controlling less than a third of 
the parties [BGW88, CCD88]
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Resource-based Corruptions
 Adversaries corrupt parties...

…for FREE!
 Corrupted party does not necessarily follow protocol – in 

addition to trying to find the secrets of other parties, it may aim 
to disrupt the computation so it results in an incorrect answer

Prover Verifier
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Resource-based Corruptions (cont’d)

 How does an adversary turn a law-abiding party into a 
malicious saboteur?
 Bribe them, hack them, …?
 How much does it cost?

• Different parties may require different “resources” to get 
corrupted

 Can “anonymity” be used to raise those costs?

Our new questions:



Resource Anonymity
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Resource Anonymity
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Resource Anonymity and Indistinguishability
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A Combinatorial Game
GIVEN: Set B1, B2, …, Bn of buckets, with  bucket Bi having 

non-negative integer size si, and a target fraction α, 0 < α < 1.

GOAL: Fill αn of the buckets using as few balls as possible, 
where a bucket of size si is filled if it receives si balls.
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Balls and Buckets
 Buckets = Participants in the protocol

 Bucket size = Number of corruption tokens required to 
break into the participant’s machine and take it over

 Ball = corruption token

 Adversary = placement algorithm

 α = 1/2, 1/3, …
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n = 5, α = ½, αn = 3

Balls and Buckets (cont’d)
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Only Feedback from Placing a Ball:  
“Bucket Now Full” or 
“Bucket Not Yet Full”

Balls and Buckets (cont’d)
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How many balls?



States of Ignorance
Adversary knows:

 Only n [No-Information]

 n and max{s: s = si for some i} [Max-Only]

 {s: s = si for some i} [Sizes-Only]

 {(s,k): |{i:si = s}| = k > 0} [Profile-Only]

 s1,s2,…,sn in order [Full-Information]
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Evaluating Adversary’s Cost: Notation

Instance:  s = (s1,s2,…,sn)

Optα(s) = min(∑i∈C si : C ⊆ {1,2,…,n} and |C| = αn)

Aα(s): number of balls used by (deterministic) algorithm A 
when it has filled αn buckets, when the bucket sizes are 
hidden
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Some Initial Good News (Bad News for the Adv.)

Theorem: For any profile-only adversary A, and any constants 
α, 0 < α < 1, B > 1, and ε > 0, there exist instances s such 
that

Pr[Aα(s) < B∙Optα(s)] < ε
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Proof by Picture (not to scale):

●●● ●●●

αn

2Bαn

n = ((2B/ε)+1)/(1-α)

αn + 1

1

OPTα(s) = 2αn
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Proof by Picture (not to scale):

●●● ●●●

αn
n = ((2B/ε)+1)/(1-α)

2Bαn

αn + 1

1

B = 2, α = 1/2, ε = 1/3 
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Proof by Picture (not to scale):

●●● ●●●

13

n = 26

52

14

1

B = 2, α = 1/2, ε = 1/3 
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Proof by Picture (not to scale):

●●● ●●●

B = 2, α = 1/2, ε = 1/3 

For fixed B and α, ε = O(1/n)
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Even Better News (But Worse News for the Adv.)

Theorem: For any constants α, 0 < α < 1, and B > 1, there 
exist instances sn, n > 8B/(1-α), such that for any profile-only 
adversary A

Pr[Aα(sn) < B∙Optα(sn)] < ε

[ε: negligible]
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Proof by Picture (not to scale):

●●● ●●●

αn

n

1 ●●●

cn
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Rest of the Talk
 Framework for realization of above abstraction

• Computational corruptions
 Sufficient conditions for abstraction

• Information-Effort-Preserving (IEP) functions
• Hardness Indistinguishability
• Exact Hardness

 Restricted instances, efficiency gains, and more 
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Exact Hardness
 A notion to compare functions according to their inversion 

difficulty
• I.e., compute x given y = f(x)

 The exact hardness of a function, parameterized by ε, is the 
number of steps that needs to be surpassed in order to achieve 
prob. of success at least ε
 Definition: For any ε Є (0,1) and a function f : X → Y, the exact 

hardness of f w. prob. ε is the maximum H Є N s.t. for any A
and t ≤ H, it holds that 

pA,t <  ε
[Denoted Hf,ε(λ)]
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Exact Hardness (cont’d)
 Related notions:

• Boolean functions [NW94], (t,ε)-security [BR96]
• One-way functions 
• One-wayness with hardness μ [HHR06]

 How easy is it to calculate Hf,ε?
• Idealized computational models (random functions, exponentiation maps 

in the generic group model)
• Under cryptographic assumptions (e.g., factoring), reasonable ranges for 

Hf,ε can be stated
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Inversion-Effort-Preserving (IEP) Functions

 A set of functions are to be inverted
 IEP: Measure of “combined” hardness
 Definition: Let ε > 0 and τ be a monotonically increasing 

function.  A sequence of functions { fi } is τ-inversion effort 
preserving (τ-IEP) if

Hf[n],ε ≥ τ( Σi Hfi,ε )
 Related notions: Hardness amplification [Yao86], direct-

product theorems [IJKW10]
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Hardness Indistinguishability

 Hides the function’s hardness, “blinding” the adversary as to 
what function(s) to attack first
 Definition: Let ε > 0 and t Є N. Two functions f1 : X1 → Y1 and 

f2 : X2 → Y2 are (t,ε)-indistinguishable if

|Pr[Dt(f1(x1)) = 1] ― Pr[Dt(f2(x2)) = 1]| < ε
Dt: statistical test runing in t steps; xi uniformly drawn from Xi

 “Interesting” when, say, Hf1,ε < Hf2,ε for some ε
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Candidate Functions
 Random functions

• “Random oracles” [BR93]
 Exponentiation

• f : Zq → S; q: λ-bit prime number; S: (generic) multiplicative 
group

• τ(∙) = (∙ )1/2

 Multiplication
• fmult : Pλ x Pλ → N
• τ(x) = e(ln x)2/3
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Rest of the Talk
 Framework for realization of above abstraction

• Computational corruptions
 Sufficient conditions for abstraction

• Information-Effort-Preserving (IEP) functions
• Harness Indistinguishability
• Exact Hardness

 Restricted instances, efficiency gains, and more 



Hidden Diversity and Secure Multiparty Computation

Rest of the Talk
 Framework for realization of above abstraction

• Computational corruptions
 Sufficient conditions for abstraction

• Information-Effort-Preserving (IEP) functions
• Harness Indistinguishability
• Exact Hardness

 Restricted instances, efficiency gains, and more 



The Simulation Paradigm [GMW87,Can01-05]

Ideal world with a Trusted Party
carrying out task     in a secure way

Real-world cryptographic protocol 
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Sound Specification of Cryptographic TasksPage 31

A protocol is secure for some task if it “emulates” an “ideal 
process” where the parties hand their inputs to a “trusted 
party,” who locally  computes the desired outputs and hands 
them back to the parties.

(Aka the “trusted-party paradigm”)

The Simulation Paradigm [GMW87,Can01-05]



≈
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REAL IDEAL
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The Simulation Paradigm [GMW87,Can01-05]



The Simulation Paradigm [GMW87, Canetti 01-05]

IDEALREAL
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Corruption Oracles

Ideal world with a Trusted Party
carrying out task     in a secure way

Real-world cryptographic protocol 
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Corruption Oracles

Ideal world with a Trusted Party
carrying out task     in a secure way

Real-world cryptographic protocol 
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C A

S
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Corruption Oracles (cont’d)
 Standard cryptographic corruption:  Cstd(α)

• Corruption protocol: (Corrupt,Pi);  oracle checks whether             
ctr+1 < αn

 (Blinded) Token-based corruption: C(b)tk(s,k)
• Counters ctr1,…,ctrn ; (Corrupt,Pi,v); oracle checks whether             

ctri + v ≥ si
• Blinded: Oracle performs update operations on Pπ(i)

 (Blinded) Computational corruption: C(b)cc(f)
• Oracle initialized with f1,…,fn;  gives adversary (yi = fi(xi))1,…,n
• (Corrupt,Pi,x);  if yi, fi(x) then Pi gets corrupted
• Blinded: Oracle gives adversary (yπ(1),…, yπ(n))
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Relations between Corruption Oracles

 Definition: A corruption oracle C is safe if for all functionalities F
there is a protocol π that securely F with respect to C
• E.g., Cstd(½) is safe

 Definition: Oracle C2 dominates oracle C1 (denoted C1 ≤t,εC2)       
if for any protocol π there is an adversary S such that for all              
t-bounded (Z,A)

EXECπ,AC1,Z ≈ε EXECπ,SC 2,Z
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 Theorem: Let ε > 0. Given a τ-IEP sequence of functions f1,…,fn 
we have that for any t there exist s, k such that  

C(b)cc(f) ≤t,εC(b)tk(s,k)

where s = (s1,…,sn) and si = Hfi,ε , and k = τ-1(t) .

Relations between Corruption Oracles (cont’d)
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Rest of the Talk
 Framework for realization of above abstraction

• Computational corruptions
 Sufficient conditions for abstraction

• Information-Effort-Preserving (IEP) functions
• Hardness Indistinguishability
• Exact Hardness

 Restricted instances, efficiency gains, and more 
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Results
Increased security:
 Let OPT be optimal corruption budget for which the completeness of 

MPC is violated
 For any B, the completeness of MPC holds against any adversary 

with less than B∙OPT budget assuming a sufficient number of 
parties (n = Ω(log(1/ε)∙B))

 Let M bound the hardness of individual corruptions. Then the 
completeness of MPC holds against any adversary with less than   
~ √M∙OPT/(log(1/ε), assuming n ≥√M

Increased efficiency:  Fix adversary budget k < OPT½(s)
 With resource anonymity, can force corruption threshold to drop 

from 1/2 to 1/3, and run information-theoretic MPC protocol instead!  
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Summary
 Formulated natural notion of resource-based corruptions, 

which imposes a cost to the adversary to take over parties
 Introduced notion of hidden diversity (“resource anonymity”), 

based on
• Exact hardness of functions
• Information-Effort-Preserving (IEP) functions
• Hardness Indistinguishability
 Showed that the gain of hidden diversity/resource anonymity 

can be substantial (unbounded in some cases) 
 Reference: 

J. Garay, D. Johnson, A. Kiayias, and M. Yung, `”Resource-based 
Corruptions and the Combinatorics of Anonymity.’’ 2011; submitted 
for publication. 



Thanks!
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