
How to Privately Access
Remote Data

Rafail Ostrovsky (UCLA)

Joint works/presentation credits:
Eyal Kushilevitz, Steve Lu, William E. Skeith III.

PRESENTATION AT NIST
November 8, 2011

Contact: rafail@cs.ucla.edu

2

Overview

• Motivation
• Problem Statement
• Review of PIR and ORAM
• New Results
• Conclusion

3

Overview

• Motivation
• Problem Statement
• Review of PIR and ORAM
• New Results
• Conclusion

4

Motivating Example #1
(private monitoring/reading)

I want to
look up

stock prices
without revealing

what I am
looking up

5

Motivating Example #2
(cloud security)

Trusted Component
(Client)

Untrusted Components
(Cloud Services)

ENC(data)

ENC(data)

6

Motivating Example #3
(anti-tamper systems)

Trusted Component
(CPU) Untrusted Components

(RAM, Storage)

7

Overview

• Motivation
• Problem Statement
• Review of PIR and ORAM
• New Results
• Conclusion

8

Main Problem
• Encryption/Authentication protects data contents, but

does not protect which physical locations are accessed.
• Access remote data without revealing the so-called

“access pattern” of both reading and writing:
– E.g.

• Public data – stock ticker
• Private data – cloud storage

• What do we mean by access pattern?
– Want to hide everything about probed locations. It should look

the same no matter:
• If I ask for the same thing twice
• If I ask for two adjacent locations
• If I ask for random locations

– More formally: given any two sequences of access locations, the
server cannot distinguish between them

9

Overview

• Motivation
• Problem Statement
• Review of PIR and ORAM
• New Results
• Conclusion

10

One Approach:
Private Information Retrieval

• Private Information Retrieval (PIR)
– Allows client to fetch some index i without

revealing to the server what was retrieved
• Information Theoretic PIR solution with replicated

non-communicating servers [CGKS95]
• [CGKS95] proved single-DB is impossible (in the

info-theoretic setting)
• Computational PIR solution with single server

[KO97]
– For now, lets talk about single-DB PIR

11

What is PIR?

Cloud

Client index i

I want xi I want xi

I learned
nothing about

i

I learned
nothing about

i

xi xi

Database
x1 x2 x3 x4 x5 x6 x7 x8 x9

Remark:
For this to be a good

PIR solution, the
amount of data
sent should be
smaller than

entire DB size

12

Beyond PIR: distributed monitoring

• Instead of reading a single database want to
monitor evolving data-sources.

• [OS95]: Searching on Streaming data.
– (UCLA patent application, licensed to Stealth

Software Technologies, Inc.)

13

Motivating example:
“No-fly” list

• Search for classified names and aliases of suspected
terrorists

• Knowledge of aliases must be kept secret
– If not, the advantage derived from this intelligence may again

become void.

• Until now, this precludes a distributed search
– Without our technology, one must rely on an “import, then

process” method

14

Problems with Import, then Process
• Expensive in processing

– Processing must be done centrally

• Expensive in communication
– Averse to dynamic data
– Difficult to manage and synchronize data from vast and

disparate sources

• Takes more information into classified setting than
needed
– sometimes can not do this (multi-agency or coalition operations)

15

Searching on Steaming Data

1. Classified machine: given secret search criteria, create an
encrypted search and a decryption key.

2. Migrate encrypted search to multiple machines on any
network (or unclassified Server Farm).

3. Every machine runs encrypted search on (local) data,
writing output into a small encrypted buffer.

4. Send encrypted buffers back to a classified machine at a
regular intervals (minute/hour/day).

5. Classified machine: Decrypt buffers using decryption key
from step 1.

16

Advantages
• Attractive alternative to the import, then process

paradigm

• Ideal for dynamic, distributed, streaming data

• Creates savings in communication and processing

• Enables low-latency, low-complexity monitoring

17

Technology at 40,000 feet
• Homomorphic encryption:

– E(x)*E(y) = E(x+y)

• Stealth discovery (done at UCLA)
– E(hidden keyword) * DOCUMENT =

• =E(0) or
• =E(DOCUMENT) (only when there is a match!)
• Can not tell which outcome happened, just an equation

• Now can use this to “collect” only matching documents
into a small encrypted buffer

18

Our process in detail

19

Step 1: Create Encrypted
Search

101010101011100000
110101011000100100
101010101010000101
111110100100110100
110101011101011001
001000111011010110
101100010010011100
100101101011101010
010101010000101110

Encrypted version of search is indistinguishable from a random distribution.

Mohammed Atta
Hani Hanjour
Ziad Jarrah

20

Encrypted Search:
• Provably reveals no information about

search terms!

– Therefore, it can be distributed outside of a
classified environment

21

Step 2: Distribute Search

110100100
101001001
001001110
110101011

110100100
101001001
001001110
110101011

110100100
101001001
001001110
110101011

110100100
101001001
001001110
110101011

110100100
101001001
001001110
110101011

110100100
101001001
001001110
110101011

22

Step 3: Run Distributed Search
• Any willing and able parties (or a server farm) may now

participate.
– The outside participants know they are helping with a search, but

remain oblivious as to what they are searching for and if there
are any hits.

• Generic Interface (distributed only once) runs data
“through” the encrypted search.
– Results are collected in small encrypted buffers.

23

Real-Time Monitoring
• Traditional methods are unpleasant- typically

complex and communication-intensive

• Constant downloads / synchronization
– High complexity, high communication

• Waiting for batches
– Reduces complexity, but increases latency and still

involves un-necessary communication

24

Real-Time Monitoring

I’m John
Doe.

I’m Jane Lane.
Mohammed

Atta.

A small encrypted flag can be frequently transmitted indicating the
presence or absence of any search results. This provides a simple
mechanism for real-time monitoring.

Small 0/1 flag

(Encrypted)

25

Real-Time Monitoring

The encrypted flags can be
aggregated so that one
small value can indicate
the presence or absence of
results for an entire
airport, if desired.

Rather than monitoring a
constant stream of
thousands of names, one
small value can be
frequently checked on a
high side.

26

Real-Time Monitoring
• Saves communication- only download critical data,

• Furthermore, you only download what you were looking for, nothing
else

• Low-overhead, low-complexity method for monitoring vast data
sources

• Ideal for highly dynamic data

• Ideal for situations where long knowledge latency is unacceptable

27

A Note on Encrypted Flags
• Encrypted flags can contain a lot, or only a little

information, depending on the application

• They can give additional information, e.g. a more specific
location where a hit was found and the number of hits

• If desired, it can be guaranteed to only take values of
“yes” or “no”
– Example: In coalition or multi-agency operations, one can

assure that flags reveal found/not found only, and nothing else.

28

Step 4 and 5: upload & decrypt

110100100
101001001
001001110
110101011

110100100
101001001
001001110
110101011

110100100
101001001
001001110
110101011

110100100
101001001
001001110
110101011

110100100
101001001
001001110
110101011

110100100
101001001
001001110
110101011

29

Steps 4 & 5: Upload & Decrypt
• Collection of “interesting data”:

– Transfer small buffers to a classified environment
– Then, decrypt buffers to obtain results

• Decryption key is NEVER given to the low (i.e.,
unclassified) side, everything on the unclassified
side is encrypted.

30

Design and Performance
• Designed for parallel architectures.

• Based on independently developed high-performance library for
long integers and number theory.
– In single processor, 32-bit mode, already outperforms well-established

and respected libraries (e.g. NTL) on an Intel Core 2 by more than a
factor of 2.

– 64 bit mode outperforms 64 bit optimized NTL by a factor of 7 for
multiplication of 1024 bit integers.

– On a 2GHz core 2 duo in 64-bit mode can process data at 100KB/sec
(small files) and 120KB/sec for large files.

– This is about 100x faster than where we started.

• Makes use of special purpose arithmetic algorithms, ideal for the
task

31

Another Approach: Oblivious RAM

• Oblivious RAM (ORAM)
– Introduced by Goldreich and Ostrovsky
– Allows client to write and read to untrusted

storage encrypted data without revealing what
or where it is being accessed

• We focus on this solution for the
remainder of the talk

32

Overview

• Motivation
• Problem Statement
• Review of PIR and ORAM
• New Results
• Conclusion

33

Model of Oblivious RAM
• Small, trusted component

– CPU
– User

• Large, untrusted component
– RAM
– Server Farm

• Goal: Protect the contents and the access
pattern of the small CPU from the large
RAM/Cloud storage

• PIR & ORAM Models are different: ORAM hides encrypted
data of CPU/User instead of reading public data (as in PIR).

34

Review: Hierarchical Solution [O90]
• Set up the Server/RAM in a hierarchy of

tables
• Tables with sizes in geometric progression

– E.g. each table is twice the size of the
previous one

• Hash tables
– Bucketed hash tables with log sized buckets
– Cuckoo hash (need to be careful with these)

• Main property: a pair (x,v) where x is a
memory location and v is the contents will
reside encrypted on the server and shall
appear in a level i in table position hi (x)

We drill down
to the details

to see how this
happens

We drill down
to the details

to see how this
happens

35

Review: Hierarchical Solution [O90]
Reading an element

7

I want to read
memory location

Top level is special
We scan it in its entirety

Top level is special
We scan it in its entirety

For subsequent levels i
compute hash hi (7)

If already found, then
look up a “dummy”

location instead

For subsequent levels i
compute hash hi (7)

If already found, then
look up a “dummy”

location instead

327

(7,data)

1

Since we already found
memory location 7,

we look up a “dummy”
location

Since we already found
memory location 7,

we look up a “dummy”
location

We fetched
data from
location 7!

We fetched
data from
location 7!

36

Review: Hierarchical Solution [O90]
Writing an element

7

I want to write data
to memory location

(7,data)

Write to first
empty location

Next Slide:
We see how to

update the tables
as they fill up

Write to first
empty location

Next Slide:
We see how to

update the tables
as they fill up

Note:
To prevent Server from

distinguishing
reads from writes

we perform a dummy write
after every read

and a dummy read
before every write

Note:
To prevent Server from

distinguishing
reads from writes

we perform a dummy write
after every read

and a dummy read
before every write

Encrypt

37

Review: Hierarchical Solution [O90]
Updating the Hierarchy

Temp Storage

Add Dummy
Elements as
needed

Compute
Hash Locations

2 1

4 3

Oblivious Sort

These are
stored

encrypted

2 1

Store in level

Repeat for
each level
as needed

Repeat for
each level
as needed

Note: It was
observed in [OS97] that

updates can be
“smeared” over

multiple read/writes
to avoid long

pauses during
updates

Note: It was
observed in [OS97] that

updates can be
“smeared” over

multiple read/writes
to avoid long

pauses during
updates

38

Application to Secure Computation
(Ostrovsky-Shoup Compiler [OS97])

Input A Input B

Wish to compute some program
P(A,B) without revealing inputs

Note that many existing secure
computation solutions work on
circuits rather than programs.
We are able to “bootstrap” this!

Main Idea:
Jointly simulate
ORAM, using
secure circuit

computation for
atomic steps

This means
we are able to get
secure program
computation with

overhead proportional
to that of ORAM
(without unrolling

program into circuit)

39

Overview

• Motivation
• Problem Statement
• Review
• New Results
• Conclusion

40

New Results
• New Insight: in Ostrovsky-Shoup complier, Alice-Bob

can afford to have two non-communicating servers.
• Multi-Server Oblivious RAM [LO11]

– Joint work with Steve Lu
– Two (or more) non-communicating servers

• E.g. multiple cloud services
– O(log n) access overhead with constant client memory

• Matches lower bound in the single-server case
– Bypasses the expensive “oblivious sort” during updates

• Balancing Oblivious RAM [KLO11] (to appear in SODA-12)

– Joint work with Eyal Kushilevitz and Steve Lu
– Reduces the total overhead by balancing accesses with

updates.

41

Multi-Server Oblivious RAM [LO11]
Main Idea

...

• To read a value, alternate
between servers

• Let’s see how update works

42

Multi-Server Oblivious RAM [LO11]
Updating the levels

...

Move to temp via client

Compute hashes &
have the server sort

Move back to other server via client

Temp
Storage

3 10 8 2
9 7 5 6

4 1

Some important
additional details

that we don’t discuss
in this talk are needed to

prevent hash
overflows

Some important
additional details

that we don’t discuss
in this talk are needed to

prevent hash
overflows

CAN DO
O(log N)
overhead

43

Balancing Oblivious RAM [KLO11]
Main Idea

...

• Another idea to reduce overhead
• Single server model
• Increase the size of each level to

reduce the frequency of updates
– Simply increasing the growth rate

does not give us enough savings!
• Main idea: each level stores

multiple hash tables
– This reduces the frequency of

updates
– But increases the cost of reading

• How many?
– Optimization Problem
– For our construction turns out to

be log(n) tables per level
– Reduces total overhead down to

O(log2n/loglogn)

44

Overview

• Motivation
• Problem Statement
• Review
• New Results
• Conclusion

45

Conclusion
• In this talk, we defined the problem of hiding the

access pattern from the server
• We discussed two approaches

– Single-DB PIR [KO97]
• and searching in streaming model [OS05]

– Hierarchical ORAM [O90,GO96]
• We gave additional details for the ORAM

approach
– Hierarchical Solution [O90,GO96]
– Avoiding long pauses with “worst-case” overhead

[OS97]
– Application to secure computation [OS97]

• Described new results for ORAM [KLO12,LO11]

46

THANK YOU!

47

BACKUP: References
• [CGKS95] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu

Sudan. Private Information Retrieval. In FOCS 1995, 41-50.
• [KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is Not Needed:

Single Database, Computationally-Private Information Retrieval. In FOCS
1997, 364-373.

• [O90] Rafail Ostrovsky: Efficient Computation on Oblivious RAMs In STOC
1990: 514-523

• [GO96] Oded Goldreich and Rafail Ostrovsky. Software Protection and
Simulation on Oblivious RAMs. In J.ACM 43(3) 1996, 431-473.

• [KLO] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security
of hash-based oblivious RAM and a new balancing scheme. Cryptology
ePrint Archive, Report 2011/327, 2011. To appear in SODA 2012.

• [LO] Steve Lu and Rafail Ostrovsky. Distributed Oblivious RAM for Secure
Two-Party Computation. Cryptology ePrint Archive, Report 2011/384, 2011.

• [OS97] Rafail Ostrovsky and Victor Shoup. Private information storage
(extended abstract). In STOC 1997, 294-303.

	How to Privately Access �Remote Data
	Overview
	Overview
	Motivating Example #1 �(private monitoring/reading)
	Motivating Example #2�(cloud security)
	Motivating Example #3�(anti-tamper systems)
	Overview
	Main Problem
	Overview
	One Approach:�Private Information Retrieval
	What is PIR?
	Beyond PIR: distributed monitoring
	Motivating example: �“No-fly” list
	Problems with Import, then Process
	Searching on Steaming Data
	Advantages
	Technology at 40,000 feet
	Our process in detail
	Step 1: Create Encrypted Search
	Encrypted Search:
	Step 2: Distribute Search
	Step 3: Run Distributed Search
	Real-Time Monitoring
	Real-Time Monitoring
	Real-Time Monitoring
	Real-Time Monitoring
	A Note on Encrypted Flags
	Step 4 and 5: upload & decrypt
	Steps 4 & 5: Upload & Decrypt
	Design and Performance
	Another Approach: Oblivious RAM
	Overview
	Model of Oblivious RAM
	Review: Hierarchical Solution [O90]
	Review: Hierarchical Solution [O90]�Reading an element
	Review: Hierarchical Solution [O90]�Writing an element
	Review: Hierarchical Solution [O90]�Updating the Hierarchy
	Application to Secure Computation�(Ostrovsky-Shoup Compiler [OS97])
	Overview
	New Results
	Multi-Server Oblivious RAM [LO11]�Main Idea
	Multi-Server Oblivious RAM [LO11]�Updating the levels
	Balancing Oblivious RAM [KLO11]�Main Idea
	Overview
	Conclusion
	Slide Number 46
	BACKUP: References

