U-Prove

NIST Privacy Enhancing Cryptography Workshop - December 8-9, 2011

Christian Paquin (cpaquin@microsoft.com)

Senior Program Manager
Security & Cryptography, Extreme Computing Group
Microsoft Research
Identity landscape

- More and more services are migrated online
 - Improves convenience
 - Reduces costs
- High-value transactions require high-level of identity assurance
 - Usernames/passwords are ubiquitous, but provide low-security
 - Conventional “enterprise” solutions (e.g., Kerberos, PKI) don’t scale or are not flexible enough for an internet-wide system
 - How can you show some ID online, just like in real life?
Identity federation

• Most popular proposed architecture
 – Very flexible
 – Easy to deploy

• Many existing frameworks: WS-Federation/Trust, SAML, Information Cards, OpenID, OAuth, Facebook Connect, ...

• But many challenges
 – Security
 – Privacy
 – Scalability
Federated architecture

Identity Provider

STS

trust

Relying Party

1. Request access
2. Policy
5. Token

Client

4. Token response
3. Token request
Challenge #1: Security

- Compromise IdP credential, access all RPs
 - Phishing problem
- Strong authentication to IdP is possible, but authentication to RP is weaker
 - Issued tokens are software only (token hijacking attacks, transferability)
- IdP is all powerful
 - IdP (insider, malicious code) can surreptitiously act on the user’s behalf
 - Selectively deny access
Challenge #2: Privacy

- IdP can profile user’s activities

- Even if IdP doesn’t learn the visited RP, profiling is possible by colluding parties (or insiders)
 - Timing correlation
 - Unique correlation handles (e.g., digital signatures, serial numbers, etc.)
Challenge #3: Scalability

- All tokens are retrieved on-demand
 - IdP must be available 24/7

- IdP is a central point of failure
 - Nice target for denial of service attack

- IdP is a bottleneck for every user access
User-centric approach

• Federated approach where the user is put at the **center** of the architecture, and in **control** of her information

• Minimal disclosure technologies complement such an approach to improve security, privacy, and scalability
What’s U-Prove?

• Efficient privacy enhancing technology developed in the early 90s
 – Think “PKI with privacy-by-design”
 – Provides unlinkability between issuance and presentation
 – Provides minimal disclosure of attributes, e.g.,
 • Disclose a subset of the attributes
 • Prove that name is not on blacklist
 • Prove that age is greater than 18
• To create the equivalent of real-life credentials
U-Prove

- **Name:** Alice Smith
- **Address:** 1234 Pine, Seattle, WA
- **Program:** Computer Science, M. Sc.
Minimal disclosure illustrated

School

Prove that you are a graduate and from WA

Which student is this?

U-Prove

Name: [Redacted]
Address: [Redacted] WA
Program: Graduate

E-library
Microsoft’s past efforts

• Microsoft Passport
 – “Classic” federation system, first designed to authenticate to Microsoft web properties, but extended to become web SSO system
 – Privacy concerns, which lead to the design of...

• Identity Metasystem and Information Cards
 – CardSpace was Microsoft’s implementation
 – Great user control, but still needed to address some privacy concerns
U-Prove releases

- U-Prove Community Technology Previews (CTP)
 - 1st CTP demonstrated integration with CardSpace (March 2010)
 - 2nd CTP demonstrated a cloud user agent service (February 2011)
 - Specifications released under the Open Specification Promise
 - Crypto libraries available under an open-source license
Federation + U-Prove
U-Prove agent architecture (CTP2)

- **Claims Provider (CP)**
 - Token issuance

- **User Auth**

- **Device**

- **Relying Party (RP)**
 - Token presentation

U-Prove Agent Service (Azure)

- Interprets RP policy
- Brokers interactions with CP and RP
- Protocol encodings
- Delivers optional client components

- **Silverlight app**
 - Browser

- **ActiveX to invoke locally connected device**
U-Prove demos/PoCs

- University feedback + e-library access
 - Erika Trilogy

- eParticipation

- HealthVault registration

- U-Prove Agent demos
 - Car auction
 - Unemployment benefits
 - MediaRoom

NIST Privacy Enhancing Cryptography Workshop - December 8-9, 2011
Attribute-Based Credentials 4 (for) Trust

- 4-year, EC-funded FP7 project, kicked-off in November 2010
- Goal: survey, compare, abstract, implement, and pilot various minimal disclosure technologies
 - Focuses on U-Prove and Idemix
 - Supports many features: revocation, inspection, complex proofs
 - School social network and polling pilots
- Consortium partners

- https://abc4trust.eu/
Lightweight privacy-enhancing cryptography for mobile Contactless Services

- 3-year, French-funded (ANR) project, to start early 2012
- Goal: architect and implement an efficient minimal disclosure system for NFC-enabled mobile phones and contactless services
- Consortium partners
Work in progress

• Privacy-preserving business models for identity providers
 – Subscription vs. per-transaction models
 – Attributes paid for by user, relying parties, or devices

• Technical work
 – New features (e.g., predicates, revocation, inspection, etc.)
 – New schemes (e.g., delegatable credentials)

• New deployment models
 – Mobile, cloud-based

• Outreach and education
Questions?

cpaquin@microsoft.com