

  

Verifying Keys through Publicity and
Communities of Trust

Eric Osterweil

Dan Massey

Danny McPherson

Lixia Zhang

 
 
 
 

 

 
 
 

 

 DNSSEC: Security for a Core Internet System

•	 DNS is a staple of today’s online activities

•	 Is there a pedestrian online activity that doesn’t use DNS?

•	 We use it to map unique names to network resources

•	 It has long been a very robust system

•	 DNSSEC makes DNS the first core Internet system to
protect itself and its data with hierarchical crypto

•	 Protects DNS from cache poisoning and spoofing

•	 2010-2011, root and .net, and .com deployed DNSSEC

•	 A straightforward design crypto-enhanced systems design

• The deployment has been growing, and standards are

being built on DNSSEC: DANE (TLS, S/MIME, etc.)

Verisign Public
	 2

Motivations Grow the Deployment  
(Graph From SecSpider)

Verisign Public
 3

Today we need a log-scale view :)
http://secspider.verisignlabs.com/growth.html

Verisign Public
 4

http://secspider.verisignlabs.com/growth.html

 

 

 
 
 

 
 

 

 Some Challenges for DNSSEC Remain

•	 DNSSEC’s early life has shown some stability
concerns

•	 We’ve already seen broken delegations (.gov, .arpa, .fr)

•	 DNSSEC faces architectural misalignments

•	 Looking up unique names ≠ Verification of public keys

•	 The design struggles with misconfigurations and partial  

deployment (though this may not be unique to DNSSEC)

•	 DNS is a core staple, and outages are not OK

•	 If someone puts the wrong DS record in their zone, is that

game over?

•	 Network partitioning can break online delegations

Verisign Public
	 5

 

 

 

 

 

 

 Some Core Questions

• Is black and white verification the only option for

dynamic Internet-scale systems, like DNS?

•	 DNS has thrived because its design tolerates failures and

misconfigurations

•	 What kind of verification can one derive for Internet-
scale systems with dynamism like this?

•	 Such a verification system must tolerate the Internet’s chaotic

setting

•	 Can any other verification model that is based on such
a shaky operational foundation be trustworthy?

•	 Moreover, can it be better than what we have now?

Verisign Public
	 6

 

 
 
 

 

 

We Propose to Verify Using the Network… Public Data
and Communities of Trust

•	 Add distributed redundant measurements form
independent paths as a new security substrate

•	 Redundancy can overcome errors,

•	 Publicity increases verifiability

•	 Who to trust is subjective

•	 We propose the theoretical model Public Data to
augment DNSSEC’s crypto substrate

•	 We implemented a candidate system called Vantages
to demonstrate its feasibility

Verisign Public
	 7

 

 

 

 

Outline

• DNSSEC background

• Public Data model and Vantages

• Measurements

• Conclusion

Verisign Public
 8

 

 

 

 

 

 

 

 

DNSSEC Crypto Key Learning + Verification

•	 First attempt to enhance
core Internet system 
with crypto

•	 DNSSEC zones  
create public/private
keys

•	 Public key is DNSKEY

•	 Zones sign all RRsets and resolvers use DNSKEYs to verify
them

•	 Each RRset has a signature attached to it: RRSIG

•	 Resolvers are configured with a single root key, and trust
flows recursively down the hierarchy

Verisign Public
	 9

Using a zone’s key

on a standard RRset

(the NS)

Signature (RRSIG) will  
only verify with the

DNSKEY if no  

 

Data Signing Example

data was

modified

Verisign Public
 10

 

 

 
 

 

 

 Getting the Keys

•	 Until a resolver gets  
DNSKEY(s), data can  
be spoofed

•	 Keys verified by  
secure delegations  
from parents to  
children

•	 So resolvers know DNSKEYs are not being spoofed

•	 DNSSEC’s design needs the full hierarchy in order
to verify keys

•	 No middle ground: either a key has a verifiable delegation, or

you know nothing about it

•	 What if we just queried for crypto keys directly?

Verisign Public
	 11

 

 

 

 
 

 
 
 
 

 

Public Data:  
= Distributed polling + structured observations

•	 Verify DNSKEYs 
through Communities
of Trust (CoTs)

•	 Consistency and  

redundancy 

become the  

verification metric

•	 The network:  
topologically  
diverse vantages

•	 G = (V, E)

•	 V = {v0, v1, … vn}

•	 Observations: bind data to time and a network path

•	 Path σ(i,j) = (vi, … , vj)

•	 Data (such as a DNSKEY): d

•	 Observation oi = (dj, t, σ(i,j))

Verisign Public
	 12

 
 
 
 

Public Data Model

Path = σ

i

Name
Server Svj

Resolver vi

Public Data pd

KEY

Data di

KEY

Observation oi

Message
mi

• pdi = (di,tk)

• Svj = {pd0 , . . . , pdm}

• m = (di, SigK(di))

• …

Verisign Public
 13

 
 

 
 

 Peer-to-Peer CoTs

• P2P CoTs Compartmentalize

• CoTs are manual

• Trust must be bootstrapped

• Observed data is signed by PGP key

14
Verisign Public

v

v

v

v

v

v

v

v
v v

v

v

CoT 1

CoT 2 CoT 3

 

 

 

 

 

 

 

Threat Model for Key Learning: Man in the Middle

•	 To attack, Eve  
must see keys  
that are in transit

• If she must own a 

vantage ve in σ

•	 But, she can’t  

arbitrarily attack  
just anyone

•	 Attacks between a  

resolver v and ai  

zone’s name servers (VZ)

•	 Not a reduction of scope,

this is dictated by the nature of DNS

•	 Eve must expend a real cost to own these vantages

Verisign Public
	 15

 

 

 

 

 What Eve Really Needs to Do

B

C

A

D

E

F

H

G

N

M

L
I

J

K

•	 To spoof, Eve must be  
in the right place at the  
right time

•	 She must be able to  

intercept responses  

from all (or most) name  

servers

•	 The minimum set size  
for Ve to cut Alice off  
from the zone will be the  
min-cut set Vcut = MinCut(vi, VZ)

•	 This is the lower bound on Eve’s acquisition cost

Verisign Public
	 16

 

 
 
 

 

 
 

 Security Analysis: Attack Cost

•	 Eve must own vantage points (Ve) and be able to use them: 

Acquisition + usage costs

•	 Acquisition ca(Ve): can specific nodes even be purchased?

•	 Core routers at AT&T may not be on sale like grandma’s PC is

•	 Eve may have to get her hands dirty (if she’s able to)

•	 Usage cu(Ve, t): nodes in Ve may cost per hour, or may get
reclaimed if detected

•	 If renting nodes, then snooping is a function of rent

•	 If Eve acquires her own nodes, operators may notice her

C(Ve, t) = ca (Ve) + cu (Ve, t)

Verisign Public
	 17

 

 

 

 
 
 
 

Acquisition Cost: The Cat and Mouse Game

•	 Alice’s best defense is to make her CoT as large and
topologically diverse as possible

•	 Eve needs to know Alice’s CoT (and all paths to VZ’s
name servers)

• Note: knowing any AS path is an open challenge [1]

•	 We evaluate three example types of adversaries

1. General: does not know any path info

2. Targeted: knows Alice’s path to VZ, but not her CoT’s

3. Nation State: will try to compromise the largest ISPs first

[1] Mao, Z. M., Qiu, L., Wang, J., and Zhang, Y. 2005. On AS-level path
inference. 2005 ACM SIGMETRICS

Verisign Public
	 18

 

 

 

 Eve’s Probability of Success

• General: the probability that Eve can subvert Alice’s
min-cut set is (where n is the size of Ve):

•	 Targeted: as Alice augments her min-cut set, the
probability of compromise approaches the General
case

•	 Nation State: the adversary is not focused on Alice’s
CoT, but Alice’s chances are still augmented as she
increases her min-cut set

Verisign Public
	 19

 

 
 

 

 

 
 

 
 

 

Evaluation

•	 Simulated an AS-level topology using the Inet topology
generator

•	 Simulate 22,000 ASes

•	 Chose random ASes as VZ nodes, and VCoT nodes

•	 Calculated min-cut set for VZ and VCoT combinations ranging

from 2-11

•	 Used shortest path routing metric to represent routing

•	 Also deployed actual Vantages CoT

•	 Vantages written in C++ with SQLite backed DB, uses GPG to

verify witness communications

•	 http://www.vantage-points.org/

•	 Constantly / automatically learns zones and polls

• Aligns costs with benefits: verification aligns with needs

Verisign Public
	 20

http:http://www.vantage-points.org/�

 

 

 

Actual Measured Min Cut-Set Sizes

•	 Using a Vantages daemon peered with SecSpider, we
get the following actual min cut-set sizes for major
DNS zones

•	 SecSpider’s distributed key learning system, online since 2006

21
Verisign Public

• These are on par with, or better than, our simulated
results

Actual Zone
 Min Cut-Set Size

. (root)
 27

.gov
 18

.br
 18

.bg
 13

.org
 11

…
 …

 
 
 

 
 

 
 

 Simulated General Adversary

• Ran 10X10 simulations

• CoTs = [1-10]

• VZ = [2-11]

• General Adversary

• 90% ASes = 10%

• Nation State

• 89% ASes = 20%

Verisign Public
 22

 

 
 

 

 
 

 

Conclusions

• With Public Data, we seek to add an orthogonal

substrate to our systems: feasibility tested with

Vantages

•	 Large TLD failures did not black out Vantages’ view of the tree

•	 When the root’s DURZ unblinded, Vantages automatically

bootstrapped and learned it

•	 Fixing these problems in DNSSEC allows systems
built on DNSSEC to inherit robustness!

•	 DNSSEC must be robust to misconfigs and outages

•	 People are adding services on DNS (DANE and more)

•	 Our Vantages deployment suggests its assurances are
on par (or even better than) our simulated results

Verisign Public
	 23

Thank You

Check out our technical report:

http://techreports.verisignlabs.com/tr-lookup.cgi?trid=1110001&rev=1

© 2012 VeriSign, Inc. All rights reserved. VERISIGN and other trademarks, service marks, and
designs are registered or unregistered trademarks of VeriSign, Inc. and its subsidiaries in the United
States and in foreign countries. All other trademarks are property of their respective owners.

http://techreports.verisignlabs.com/tr-lookup.cgi?trid=1110001&rev=1

Backup

Verisign Public
 25

 

 

 

 

 General Lessons from Deployment Problems

•	 “Distributing the authority for a [crypto-enhanced
system] does not distribute the corresponding amount
of expertise”

-- Paul Mockapetris

•	 Simple designs do not always equate to simple
operations

•	 Cryptography adds a lot of operational complexity

•	 Failing to consider operational realities can result in
serious outages

Verisign Public
	 26

 

 
 
 

 

 

 
 
 

Public Data: 
Key Learning and Verification

•	 Motivated by measurements of the hierarchal model

•	 Goal: get proper keys for zones to resolvers

•	 Avoid being spoofed without the hierarchy

•	 Use redundancy for protection!

•	 Verification is now a measurable property of publically
available data

• The more independent measurements, the more secure

•	 Community of Trust (CoT): Trust is subjective

• Cross-check what you see with what your friends saw

• This is not the Web of Trust: observations, not attestations

Verisign Public
	 27

 Public Data Model (again)

Verisign Public
 28

 Public Data Model (again)

Verisign Public
 29

General Adversary

Verisign Public
 30

 Targeted Adversary

Verisign Public
 31

 Nation State Adversary

Verisign Public
 32

 

 
 

 

 

 Vantages Implementation

•	 Written in C++ with SQLite backed DB, uses GPG to
verify witness communications

•	 Installs and can start running right away

•	 http://www.vantage-points.org/

•	 Can be administered via web admin interface

• Automatically learns zones and polls every day

Verisign Public
	 33

http:http://www.vantage-points.org/�

 

 
 

 
 

 

 Peer-to-Peer CoTs

•	 Vantage daemons learn
Web DNSKEYs from DNS or web Scraper

pages

•	 Cross-check within CoT

•	 P2P CoTs

Compartmentalize

•	 CoTs are manual

•	 Trust must be bootstrapped

•	 Observed data is signed by

GPG key

Verisign Public
	 34

dnskey.org

Raw Data

Processed
Data

DNS
Scraper

dnskey.org

Consistency
Scraper

dnskey.org

<html>

....
</html>

http://dnskey.org

dnssec:dnskey.org

v

v

v

v

v

v

v

v
v v

v

v

CoT 1

CoT 2 CoT 3

 

 

 
 
 

 Vantages: A Public Data System

•	 Real system implementing Public Data needs some
practical re-mappings

• Some nodes may offer a set of observations (such as

SecSpider), cull data from different protocols, etc.

•	 Everyone runs their own Vantage daemon

•	 Peer-to-peer, choose your own CoT

•	 Avoids the “who’s going to run it?” question

Verisign Public
	 35

