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    DNSSEC: Security for a Core Internet System

 

•	 DNS is a staple of today’s online activities
 
•	 Is there a pedestrian online activity that doesn’t use DNS?
 
•	 We use it to map unique names to network resources
 
•	 It has long been a very robust system
 

•	 DNSSEC makes DNS the first core Internet system to
protect itself and its data with hierarchical crypto
 
•	 Protects DNS from cache poisoning and spoofing
 
•	 2010-2011, root and .net, and .com deployed DNSSEC
 
•	 A straightforward design crypto-enhanced systems design
 

• The deployment has been growing, and standards are

being built on DNSSEC: DANE (TLS, S/MIME, etc.)
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Motivations Grow the Deployment   
(Graph From SecSpider)
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Today we need a log-scale view :) 
http://secspider.verisignlabs.com/growth.html 
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    Some Challenges for DNSSEC Remain

 

•	 DNSSEC’s early life has shown some stability 
concerns
 
•	 We’ve already seen broken delegations (.gov, .arpa, .fr)
 

•	 DNSSEC faces architectural misalignments
 
•	 Looking up unique names ≠ Verification of public keys
 
•	 The design struggles with misconfigurations and partial   

deployment (though this may not be unique to DNSSEC)
 

•	 DNS is a core staple, and outages are not OK
 
•	 If someone puts the wrong DS record in their zone, is that

game over?
 
•	 Network partitioning can break online delegations
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  Some Core Questions

 

• Is black and white verification the only option for 

dynamic Internet-scale systems, like DNS?

 
•	 DNS has thrived because its design tolerates failures and

misconfigurations
 

•	 What kind of verification can one derive for Internet-
scale systems with dynamism like this?
 
•	 Such a verification system must tolerate the Internet’s chaotic 

setting
 

•	 Can any other verification model that is based on such
a shaky operational foundation be trustworthy?
 
•	 Moreover, can it be better than what we have now?
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We Propose to Verify Using the Network… Public Data
and Communities of Trust
 

•	 Add distributed redundant measurements form 
independent paths as a new security substrate
 
•	 Redundancy can overcome errors, 
 
•	 Publicity increases verifiability
 
•	 Who to trust is subjective
 

•	 We propose the theoretical model Public Data to 
augment DNSSEC’s crypto substrate
 

•	 We implemented a candidate system called Vantages 
to demonstrate its feasibility
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Outline

 

• DNSSEC background
 

• Public Data model and Vantages

 

• Measurements
 

• Conclusion
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DNSSEC Crypto Key Learning + Verification

 

•	 First attempt to enhance
core Internet system  
with crypto
 

•	 DNSSEC zones   
create public/private 
keys
 
•	 Public key is DNSKEY
 

•	 Zones sign all RRsets and resolvers use DNSKEYs to verify 
them
 
•	 Each RRset has a signature attached to it: RRSIG
 

•	 Resolvers are configured with a single root key, and trust 
flows recursively down the hierarchy
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Using a zone’s key
 
on a standard RRset 
 
(the NS)
 

Signature (RRSIG) will   
only verify with the
 
DNSKEY if no   

  

Data Signing Example

 

data was 

modified
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  Getting the Keys
 

•	 Until a resolver gets   
DNSKEY(s), data can   
be spoofed
 

•	 Keys verified by   
secure delegations   
from parents to   
children
 
•	 So resolvers know DNSKEYs are not being spoofed
 

•	 DNSSEC’s design needs the full hierarchy in order
to verify keys
 
•	 No middle ground: either a key has a verifiable delegation, or 

you know nothing about it
 
•	 What if we just queried for crypto keys directly?
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Public Data:   
= Distributed polling + structured observations
 

•	 Verify DNSKEYs  
through Communities 
of Trust (CoTs)
 
•	 Consistency and  
 

redundancy 
 
become the  
 
verification metric

 

•	 The network:   
topologically   
diverse vantages
 
•	 G = (V, E)
 
•	 V = {v0, v1, … vn}
 

•	 Observations: bind data to time and a network path
 
•	 Path σ(i,j) = (vi, … , vj)
 
•	 Data (such as a DNSKEY): d
 
•	 Observation oi = (dj, t, σ(i,j))
 

Verisign Public 
	 12 
 



  

  
 

   
   
   
 

Public Data Model
 
Path = σ
 

i 

Name 
Server Svj 

Resolver vi 

Public Data pd

KEY 

Data di 

KEY 

Observation oi 

Message 
mi 

• pdi = (di,tk)
 
• Svj = {pd0 , . . . , pdm} 
 
• m = (di, SigK(di)) 
 
• …
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 Peer-to-Peer CoTs

 

• P2P CoTs Compartmentalize
 
• CoTs are manual
 

• Trust must be bootstrapped
 
• Observed data is signed by PGP key
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Threat Model for Key Learning: Man in the Middle

 

•	 To attack, Eve   
must see keys   
that are in transit 
 
• If she must own a  

vantage ve in σ
 
•	 But, she can’t   

arbitrarily attack   
just anyone
 
•	 Attacks between a   

resolver v  and ai  
 
zone’s name servers (VZ)
 

•	 Not a reduction of scope,
 
this is dictated by the nature of DNS

 

•	 Eve must expend a real cost to own these vantages
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   What Eve Really Needs to Do

 

B 

C 

A 

D 

E 

F 

H 

G 

N 

M 

L 
I 

J 

K 

•	 To spoof, Eve must be   
in the right place at the   
right time
 
•	 She must be able to  
 

intercept responses  
 
from all (or most) name  
 
servers

 

•	 The minimum set size   
for Ve to cut Alice off   
from the zone will be the   
min-cut set Vcut = MinCut(vi, VZ)
 
•	 This is the lower bound on Eve’s acquisition cost
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  Security Analysis: Attack Cost

 

•	 Eve must own vantage points (Ve) and be able to use them:  

 
Acquisition + usage costs
 

•	 Acquisition ca(Ve): can specific nodes even be purchased?
 
•	 Core routers at AT&T may not be on sale like grandma’s PC is
 
•	 Eve may have to get her hands dirty (if she’s able to)
 

•	 Usage cu(Ve, t): nodes in Ve may cost per hour, or may get 
reclaimed if detected
 
•	 If renting nodes, then snooping is a function of rent
 
•	 If Eve acquires her own nodes, operators may notice her
 


 
 
C(Ve, t) = ca (Ve) + cu (Ve, t)
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Acquisition Cost: The Cat and Mouse Game

 

•	 Alice’s best defense is to make her CoT as large and
topologically diverse as possible
 

•	 Eve needs to know Alice’s CoT (and all paths to VZ’s 
name servers)
 
• Note: knowing any AS path is an open challenge [1]
 

•	 We evaluate three example types of adversaries
 
1. General: does not know any path info
 
2. Targeted: knows Alice’s path to VZ, but not her CoT’s
 
3. Nation State: will try to compromise the largest ISPs first
 

[1] Mao, Z. M., Qiu, L., Wang, J., and Zhang, Y. 2005. On AS-level path
inference. 2005 ACM SIGMETRICS
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  Eve’s Probability of Success

 

• General: the probability that Eve can subvert Alice’s 
min-cut set is (where n is the size of Ve):
 

•	 Targeted: as Alice augments her min-cut set, the
probability of compromise approaches the General 
case
 

•	 Nation State: the adversary is not focused on Alice’s 
CoT, but Alice’s chances are still augmented as she
increases her min-cut set
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Evaluation

 

•	 Simulated an AS-level topology using the Inet topology 
generator
 
•	 Simulate 22,000 ASes
 

•	 Chose random ASes as VZ nodes, and VCoT nodes
 
•	 Calculated min-cut set for VZ and VCoT combinations ranging 

from 2-11
 
•	 Used shortest path routing metric to represent routing

 

•	 Also deployed actual Vantages CoT
 
•	 Vantages written in C++ with SQLite backed DB, uses GPG to

verify witness communications
 
•	 http://www.vantage-points.org/
 

•	 Constantly / automatically learns zones and polls
 
• Aligns costs with benefits: verification aligns with needs
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Actual Measured Min Cut-Set Sizes

 

•	 Using a Vantages daemon peered with SecSpider, we 
get the following actual min cut-set sizes for major 
DNS zones
 
•	 SecSpider’s distributed key learning system, online since 2006
 

21 
Verisign Public 
 

• These are on par with, or better than, our simulated
results
 

Actual Zone
 Min Cut-Set Size
 
. (root)
 27
 
.gov
 18
 
.br
 18
 
.bg
 13
 
.org
 11
 
…
 …
 



  

    
   
   

   
   

   
   

  Simulated General Adversary

 

• Ran 10X10 simulations

 
• CoTs = [1-10]
 
• VZ = [2-11]
 

• General Adversary
 
• 90% ASes = 10%
 


 

• Nation State
 
• 89% ASes = 20%
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Conclusions

 

• With Public Data, we seek to add an orthogonal

substrate to our systems: feasibility tested with

Vantages
 
•	 Large TLD failures did not black out Vantages’ view of the tree
 
•	 When the root’s DURZ unblinded, Vantages automatically 

bootstrapped and learned it
 

•	 Fixing these problems in DNSSEC allows systems 
built on DNSSEC to inherit robustness!
 
•	 DNSSEC must be robust to misconfigs and outages
 
•	 People are adding services on DNS (DANE and more)
 

•	 Our Vantages deployment suggests its assurances are
on par (or even better than) our simulated results
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Thank You
 

Check out our technical report: 

 
http://techreports.verisignlabs.com/tr-lookup.cgi?trid=1110001&rev=1 
 

© 2012 VeriSign, Inc. All rights reserved. VERISIGN and other trademarks, service marks, and
designs are registered or unregistered trademarks of VeriSign, Inc. and its subsidiaries in the United
States and in foreign countries. All other trademarks are property of their respective owners.
 

http://techreports.verisignlabs.com/tr-lookup.cgi?trid=1110001&rev=1
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   General Lessons from Deployment Problems

 

•	 “Distributing the authority for a [crypto-enhanced
system] does not distribute the corresponding amount
of expertise”
 

-- Paul Mockapetris
 

•	 Simple designs do not always equate to simple
operations
 

•	 Cryptography adds a lot of operational complexity
 

•	 Failing to consider operational realities can result in
serious outages
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Public Data:  
Key Learning and Verification
 

•	 Motivated by measurements of the hierarchal model

 

•	 Goal: get proper keys for zones to resolvers
 
•	 Avoid being spoofed without the hierarchy
 
•	 Use redundancy for protection!
 

•	 Verification is now a measurable property of publically 
available data
 
• The more independent measurements, the more secure
 

•	 Community of Trust (CoT): Trust is subjective
 
• Cross-check what you see with what your friends saw
 
• This is not the Web of Trust: observations, not attestations
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   Public Data Model (again)
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   Public Data Model (again)
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General Adversary
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 Targeted Adversary
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  Nation State Adversary
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 Vantages Implementation

 

•	 Written in C++ with SQLite backed DB, uses GPG to
verify witness communications
 
•	 Installs and can start running right away
 
•	 http://www.vantage-points.org/
 

•	 Can be administered via web admin interface
 

• Automatically learns zones and polls every day

 

Verisign Public 
	 33 
 

http:http://www.vantage-points.org/�


  

    
  

   
   

    
     

     
 

 Peer-to-Peer CoTs
 

•	 Vantage daemons learn
Web DNSKEYs from DNS or web Scraper 

pages
 
•	 Cross-check within CoT
 
•	 P2P CoTs 

Compartmentalize
 
•	 CoTs are manual
 

•	 Trust must be bootstrapped
 
•	 Observed data is signed by 

GPG key
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   Vantages: A Public Data System

 

•	 Real system implementing Public Data needs some
practical re-mappings
 
• Some nodes may offer a set of observations (such as 

SecSpider), cull data from different protocols, etc.
 

•	 Everyone runs their own Vantage daemon
 
•	 Peer-to-peer, choose your own CoT
 
•	 Avoids the “who’s going to run it?” question
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