
SCV end to end voting over the Internet

Mirosław Kutyłowski, Filip Zagórski

Institute of Mathematics and Computer Science

Faculty of Fundamental Problems of Technology

Wrocław University of Technology

Abstract. We present Scratch, Click & Vote remote voting scheme. The scheme
is end-to-end verifiable and allows for voting over the Internet. It guarantees se­
curity against malicious hardware and software used by a voter; a voter’s com­
puter does not get any knowledge about the voter’s choice. Moreover, it can
blindly change the voter’s ballot with a small probability only. As a side result,
we present a modification of the ThreeBallot that eliminates Strauss’-like attacks
on this scheme.
Keywords: Internet voting, e-voting, E2E, verifiable voting scheme, ThreeBallot,
Punchscan

1 Introduction

There are two main scenarios of e-voting: advanced voting procedures at polling
places and remote electronic voting.

Polling station voting Recently it has became evident that badly designed e-
voting machines can be extremely dangerous to a voting process [8,10,14]. For­
tunately, a number of end-to-end auditable voting systems (E2E) has been pre­
sented recently. Interestingly, some recent designs implement electronic voting
without any electronic voting machines [3,6,5,4]. Moreover, for these schemes
each voter gets a receipt, which may be used to check if the voter’s ballot has
been included in the tally. It is also possible to verify correctness of the results.
On the other hand, the receipt cannot be used even by the voter to prove how
she voted. So they cannot help to sell or buy votes.

Internet voting The Internet voting has not much in common with polling sta­
tion scenario. At the polling station it is relatively easy to preserve voter’s pri­
vacy; coercion and vote buying is hard to hide. Another source of problems is
that a voter must use some electronic device. There is no convincing argument
why a voter should blindly trust this device. Malware can endanger integrity of
the elections as well as privacy of the voter.

In case of remote voting one has also to deal with remote voter identifica­
tion. Fortunately, it can be solved in many ways, depending on a situation. For

national elections one can use advanced electronic signatures, especially if sup­
ported by personal, government-issued ID cards, or a novel technique described
in [2]. For other elections logins and passwords seem to serve well their purpose.

In this paper we are concerned with an E2E systems for remote voting over
electronic networks. We assume that the electronic devices used by a voter might
be infected by malicious code, and that voter’s privacy and election integrity
must be guaranteed in a verifiable way.

Three important ideas concerning E2E voting systems have been presented
during the last few years: Prêt à Voter, Punchscan, ThreeBallot (and related
schemes). All of them are dedicated to paper-based elections at polling stations.
Recently, Punchscan and Prêt à Voter have been adjusted to mail-in voting [?].
Since these methods are closely related to our scheme, we recall them briefly.

Prêt à Voter [6]. A voter, say Alice, obtains a ballot which consists of two
parts. The left part contains the official list of the candidates, altered by applying
a circular shift by x positions, where x depends on the ballot. The right part
contains boxes where Alice can put the ×-mark. In order to vote, she puts the
×-mark in the row that contains the name of her favorite candidate on the left
side. On the right side there is a kind of ballot serial number S that is used for
decoding Alice’s vote (namely, for reconstructing the shift value x). The serial
number is also included in the voting receipt obtained by Alice. After making

Candidate S
2 Jerry
3 Edgar
0 Ervin
1 Donald

Candidate S
2 Jerry
3 Edgar
0 Ervin ×
1 Donald

S

×

(a) Prêt à Voter ballot with (b) A vote for candidate (c) The receipt of the
shift x = 2 number 0 (Ervin) vote

Fig. 1. Ballot example for Prêt à Voter scheme

her choice, Alice separates both parts. The left part goes to a shredder, while the
right part is scanned and entered to the system.

Punchscan [3]. The original ballot design of Punchscan is quite different from
Prêt à Voter, however it has been shown in [20] that the crucial mechanisms of
Punchscan can be used together with Prêt à Voter ballot layout.

The key issue is that Punchscan offers a complete back-end to perform
E2E verifiable elections. Similar back-end is also used in Scantegrity [5] and
Scantegrity II [4]. The values that are used in the ballot construction are com­
mitted and can be verified. The verification process is twofold and consists of
a pre-election audit and a post-election audit. If the authority responsible for
preparing ballots passes both audits, then with an overwhelming probability the
integrity of the elections is guaranteed.

ThreeBallot [17]. This scheme, presented by R. Rivest, is particularly appeal­
ing despite of certain privacy weaknesses [7]. A voter, Alice, obtains a sheet of
paper consisting of four parts. The leftmost column contains the list of candi­
dates (no shift is used). The next three columns are used to mark her choice. If
she wants to vote for a candidate V , then she puts two marks × in the row con­
taining the name of V , while she puts exactly one × mark in all remaining rows.
After Alice makes her choice, all three columns (ballots) are separated and cast

Candidate A B C
0 Ervin
1 Donald
2 Jerry
3 Edgar

Candidate A B C
0 Ervin × ×
1 Donald ×
2 Jerry ×
3 Edgar ×

A
×

×

(a) An empty ballot (b) A vote for Ervin (c) Exemplary receipt

Fig. 2. The ThreeBallot scheme

into a ballot box. As a receipt Alice obtains a copy of one of the columns/ballots
of her choice (but the system does not know which one).

Internet voting schemes. So far, the schemes designed by the academic com­
munity do not fulfill all security demands. The most acute problem is that almost
all schemes ignore the fact that electronic voting equipment should be consid­
ered as a potential adversary ([13,15]). Meanwhile, potentially the most dan­
gerous in remote voting systems is the equipment on the voter’s side. Voters’
machines can be infected with malware that reveal the voter’s preferences or
even change the encrypted ballot cast by the voter.

1.1 Design goals

The main goal behind design of SC&V is to get an E2E scheme that would
be acceptable for casting votes over Internet. As in the previous chapter we

demand all key security requirements to be satisfied. In particular, the scheme
must be secure without assuming that the voter’s PC or any of its components
is trustworthy. This setting corresponds to the real-life situation, where even PC
equipped with strong anty-virus protection and a trust oriented operating system
cannot be fully trusted.

The scheme presented in the previous chapter satisfies the mentioned goals.
However it fails usability and transparency issues: it is so complex that explain­
ing the security mechanism even to a well educated voter is a challenge.

We present the scheme which is:

human verifiable: a receipt obtained by a voter is human-readable and easy to
examine by a moderately educated voter,

voter friendly: a voter (i.e. her computer) needs not to perform any compli­
cated (and hard to understand by an average voter) operations like: re-encryption,
getting a blind signature, executing oblivious transfer protocol etc.

malware immune: integrity of the elections and privacy of votes do not rely
on any assumption on trustworthiness of the equipment used by the voter,

efficient: computational overhead as well as communication volume are low.
(Note that the scheme from the previous chapter requires many ciphertexts
for each single candidate. Moreover, at least two ballots has to be fetched.
The overhead due to the number of candidates is negligible for the scheme
presented in this chapter.)

1.2 A short overview of SC&V

In the next sections we provide a full, detailed description of SC&V(Scratch, Click & Vote).
Here we present the idea standing behind the scheme. SC&V can be described
as a layered design in which we combine a number of techniques/tricks:

Version 1: We start from a straightforward Internet-version of the ThreeBallot:
a voter needs to fill in a voting card using an application run on her PC. The
filled ballot is then sent to a voting server (Proxy).

Version 2: In order to balance the number of × marks in the columns (in order
to make the scheme immune against Strauss’-like attacks [7,11,18,19]) we
add another column and another ×-mark (“FourBallot” design).

Version 3: Since the voter’s PC knows exactly the voter’s choice – we intro­
duce a coding card which is prepared by a Proxy (see the diagram below).
The coding card hides from the PC the meaning of the voter’s choices (ev­
ery candidate is “clicked” exactly once). Moreover, the coding card is con­
structed in a way that the possibility of modification of voter’s choice by her
PC is reduced.

Version 4: Since Proxy still knows the voter’s choice, we introduce another
server – Election Authority (EA), which is responsible for preparation of
ballots. In this way Proxy does not know the choice, while Election Author­
ity does not know who cast a certain vote.

Election Authority prepares ballots in a similar way as for the Punchscan scheme.
Together with the ThreeBallot mechanisms this ensures verifiability of the vot­
ing process.

Under the assumption that Proxy and Election Authority do not collude,
SC&V offers verifiable Internet voting with unconditional integrity and full
privacy of a voter.

1.3 Ideas overview

Ballots and coding cards The voting process is a combination of paper based
protocols. In order to vote one has to get additional information that remains
hidden from the computer used for vote casting. This information might be ob­
tained by the voter during voter’s in-person registration, mailed to her home
address or sent over an independent electronic link. The method applied can
be tailored according to the security demands of specific elections. In case of
small scale elections or elections of limited importance one can use emails with
CAPTCHA to sent information readable for a human voter, but hard to read by
the voter’s computer. Vote casting is done via electronic networks (no matter
which registration method was used).

There is an Election Authority (EA) and a Proxy. EA prepares the bal­
lots while Proxy prepares coding cards. There is an Auditor which is responsi­
ble for pre- and post-election audits.

In this section we describe the scheme from the point of view of a voter Al­
ice. For the sake of simplicity of exposition we assume that there is a single race
where the voter has to choose one out of m candidates (the pictures presented
below depict the case of m = 4).

Ballot layout. In order to cast a vote, Alice needs a ballot and a coding card.

The ballot is prepared by EA, it consists of the

following values covered by a scratch surface:

–	 list of candidates permuted with some ran­
dom permutation π. Later we shall repre­
sent π = π" ◦ π"" where π" , π"" are chosen at

random.

– ballot serial number Sl,

Candidate A B C D
2 Jerry
3 Edgar
0 Ervin
1 Donald
Sl

Fig. 3. A ballot with π(i) =
i + 2

–	 four confirmation tokens: A, B, C, D – one
per column. They are prepared in a special
way that is described below.

The coding card is prepared by Proxy and con­
sists of:

–	 four columns. In each row there is exactly
one mark Y standing for YES, and 3 marks
n standing for NO. The placement of Y in
each row is random and independent from
the other choices.

n Y n n
n Y n n
Y n n n
n n n Y
Sr

–	 Sr, which is the coding card serial number.

Fig. 4. A coding card

1.4 Voter’s point of view

Alice obtains both: the ballot and the coding
card (during in-person registration, by mail or
by email, depending on election settings). Let
us note that Alice gets exactly one ballot, but
she is allowed to have as many coding cards as
she likes. Moreover, we assume that there are many Proxies in the system1, so
Alice can easily find one she trusts and gets coding cards from this Proxy.

Alice lays the ballot and the coding card side by side and thus obtains a
complete ballot. A complete ballot (which Alice may put on her desk) may look
as follows:

Alice visits an election website operated by the Proxy. She authenticates
herself with appropriate authentication method (login and password, electronic
signature . . .). She clicks on the screen in the following way:

–	 she clicks on the position of Y in the row corresponding to the candidate that
she votes for,

–	 in each of the remaining rows, she clicks on one of the positions of n’s.

The Proxy commits to Alice’s clicks (the commitment is passed to EA), then
Alice enters coding card serial number Sr. The Proxy checks Sr and then
transforms the choice of the voter into an internal form called ballot matrix:

1 Moreover, a “decoy service” can be introduced – then Alice may obtain many different but
fake coding cards with the same serial number – in order to cheat a coercer or a vote-buyer.

a) complete ballot b) PC screen c) ballot matrix d) receipt

Candidate A B C D
2 Jerry n Y n n
3 Edgar n Y n n
0 Ervin Y n n n
1 Donald n n n Y
Sl Sr

a
a

a
a

× ×
× ×
× × ×

× ×

×

×
×

C, , c

Sr Sl

Fig. 5. SCV voting scheme from voter’s perspective:

a) A complete ballot consisting of a ballot aligned with a coding card.

b) A vote for the candidate 0 Ervin as seen on the screen.

c) A ballot matrix - an internal ballot representation derived deterministically from the complete

ballot and voters choice/clicks.

d) A receipt chosen by a voter - in this case it corresponds to the third column of ballot matrix.

Proxy puts × mark for each n which has not been used yet (this transforma­
tion depends deterministically on the positions of Y’s and n’s and the voter’s
choice). So, for a row with the candidate chosen by the voter Proxy puts three
× marks, while in each row corresponding to different candidates, there are only
two marks ×. Note that Proxy knows which row corresponds to the vote cast.
On the other hand, due to the random permutation Proxy does not know which
candidate is corresponding to this row.

After creating the ballot matrix, its columns – called ballot columns – are
processed separately (as in the case of ThreeBallot). In the next step Proxy ob­
tains a blind signature (BS) of EA under each ballot column. (A blind signature
is necessary in order to prevent changing the ballot contents by EA at this mo­
ment). The voter enters ballot serial number (i.e. Sl), then Proxy unblinds the
signature, and sends ballot columns with Sl to EA. Simultaneously, the voter
requests one ballot column as a receipt. The receipt contains:

–	 a confirmation token T ∈ {A, B, C, D} corresponding to the ballot column
chosen,

–	 y - the ballot column itself,
–	 a value t such that T = signEA(t, Sl); t is called a pre-token of T .

The ballot columns are now separated and published just like for Punchscan
scheme, and then decrypted in a similar way. The number of votes for each
candidate is counted like for ThreeBallot.

2 Security model

We need the following assumptions for integrity: :

1. we use cryptographically secure bit commitments, i. e. EA cannot find dif­
ferent values having the same commitment value,

2. the authority (EA) that creates the ballots is trusted to keep secret the serial
numbers and permutation used on each ballot (we use the same ballot gener­
ation technique as used by the Punchscan system to achieve this property),

3. the list of registered voters is public, i. e. each voter can check if he par­
ticipated in elections or not. This assumption is necessary to guarantee that
EA cannot cast additional votes.

This scheme defends against remote, wholesale attacks on voters. The scheme
is not resistant against physical, in-person attacks (physical coercion). Recall
that the scheme from the previous chapter is resistant against such attacks.

There are assumptions for privacy:

1. the computer used by the voter will not record and transmit the voting ses­
sion to EA,

2. the voter casts her vote unattended,
3. bit commitment scheme used cannot be broken.

3 Details of Scratch, Click & Vote scheme

3.1 The ballots and audit tables

The ballots are created by EA. In order to guarantee election integrity, EA gen­
erates audit tables P and R (see below for details). Each row of table P corre­
sponds to a single ballot matrix (which is a set of columns with the same ballot
serial number and the permutation of the candidates). Entries of R correspond
to single ballot columns. R is based on the same idea as Punchboard used in
Punchscan.

3.2 Table P .
The table P has 2 columns, called P1 and P2. It has 2n rows, where n is greater
or equal to the maximum number of voters.

P1 P2
. . .

. . .
Sl(i) BC(iA), BC(iB), BC(iC), BC(iD)
. . .

. . .

Example: Audit table P

The column P1 records the ballot serial numbers. The column P2 contains
commitments to 4 pointers to the rows of table R. Say, if a serial number S is in
P1, then in the same row, column P2 contains commitments:

BC(iA(S)), BC(iB(S)), BC(iC (S)), BC(iD(S))

to numbers iA(S), iB(S), iC (S), iD(S), where iX (S) is the row number such
that row iX (S) of table R contains an entry for the column X of the ballot with
the serial number S.

3.3 Table R.

The table R consists of three parts: the starting part, the middle part and the
final part. Each part consists of a set of consecutive columns. R has 8n rows;
this corresponds to 2n ballots and thus to 4 · 2n ballot columns. There are two
types of permutations used for constructing table R:

– ρ1, ρ2: permutations of rows of the R (i.e. permutations over {1, . . . 8n}),
– permutations πi

" , π "" for i = 1, . . . , 8n over {1, . . . ,m}, where m is the i
number of candidates (i.e. 2 permutations per each of 8n ballot columns).
These permutations have to be applied to ballot columns.

Each row i in the starting part of R is devoted to a single ballot column of
some ballot (and for each ballot column from some ballot there is exactly one
such a row of R). Let W (i) denote the ballot column corresponding to the ith
row of R. Then for each i, data concerning W (i) are placed in:

– row i of the starting part,
– row ρ1(i) of the middle part,
– row ρ2(ρ1(i)) of the final part.

Moreover:

– the starting part of row i will contain the ballot column W (i) as filled by
◦ π ""the voter (the order of the candidates is determined by πi = π " , i.e. the i i

entry for a candidate j is given in row πi(j),
– the middle part at row ρ1(i) will contain W (i) permuted by (π ")−1 ,i

– the final part at row ρ2(ρ1(i)) will contain W (i) permuted by (π "")−1 ◦i
(πi
")−1. Hence the marks of W (i) will be permuted according to the standard

◦π ""ordering of candidates: (π "")−1 ◦(π ")−1 ◦πi = (π "")−1 ◦(π ")−1 ◦π " = id.i i i i i i

Below we describe the ith row of R. Let i = ρ1(j) and i = ρ2(ρ1(k)).

starting part (for W (i)) middle part (for W (j)) final part (for W (k))

i bπi H(t(i))dt(i) y(i)Pρ1(i) cπ;j y(j) « (π;j)
−1 cπ;;j

Pρ2(i) v

Organization of a row of the table R.

The starting part contains the following entries in row i (see the diagram above):

– i — the row index (i ∈ [1, 8n]),

–	 πri — a bit commitment to the permutation of candidates πi used in the ballot
containing W (i),

–	 H(t(i))— a hash of a confirmation pre-token t(i), which satisfies the con­
dition

T (i) = signEA(t(i), Sl(i)) ,

where T (i) is the confirmation token used in conjunction with W (i), and
Sl(i) is the serial number of the ballot containing W (i), t–	 t(i) = BC(T (i), Si) — a bit commitment to the ballot serial number Sl(i)
of the ballot containing W (i), and to the confirmation token T (i),

–	 y(i) = [y0(i), y1(i), . . . , ym−1(i)] — a vector holding mark × on those
positions l such that W (i) contains the × mark in row l. Initially, during
creation of table R, the vector y(i) is empty. It becomes filled after casting
a vote.
-–	 ρ1(i) — a commitment to the value ρ1(i).

The middle part of R in row i contains the following entries: r–	 πj
" — a commitment to the permutation of candidates πj

" , where πj = πj
" ◦

π "" j ,
–	 y(j) « (πj

")−1 — the vector y(j) permuted by (πj
")−1 ,

π7""
 – — a commitment to the permutation πj
"" ,j

-–	 ρ2(i) — a commitment to the permutation ρ2(i).

The final part of R in row i contains the vector v equal to y(k) permuted by
(π ")−1 and then by (π "")−1 (i.e., listed according to the standard ordering of the k	 k
candidates).

3.4 Preparation of ballots and audit tables

The ballots and the audit tables P and R are created by EA in the following way:

1.	 EA determines the election parameters: the number of candidates m, the
official list of candidates (with their official ordering), and an upper bound
n on the total number of voters.

2.	 EA chooses at random 2n serial numbers; for each serial number S:
–	 EA chooses at random a random permutation π,
–	 EA chooses at random confirmation pre-tokens tA(S), tB(S), tC (S),

tD(S) and computes confirmation tokens TA(S), TB(S), TC (S), TD(S)
according to the following equation:

TX (S) := signEA(S, tX (S)) for X = A, B,C, D .

3.	 EA creates audit table P : For this purpose, EA chooses at random a per­
mutation σ of 1, . . . , 8n. Then σ(4j − 3), . . . , σ(4j) are assigned to the jth
serial number Sl(j). These numbers serve as pointers to the rows of the audit
table R - and are called iA(Sl(j)), iB (Sl(j)), iC (Sl(j)), iD(Sl(j)). Then for
each serial number Sl(j), commitments to the values iA(Sl(j)), iB(Sl(j)),
iC (Sl(j)), iD(Sl(j))) are created and inserted in the row containing Sl(j).

4.	 EA prepares the audit table R: For this purpose EA chooses at random
permutations ρ1 and ρ2 of 1, . . . , 8n. For the jth serial number Sl(j), its per­
mutation π (on ballot columns) is assigned to the rows iA(Sl(j)), iB(Sl(j)),
iC (Sl(j)), iD(Sl(j)) of the starting part of R. (i.e., πiA(Sl(j)), πiB (Sl(j)),
πiC (Sl(j)), and πiD(Sl(j))) take the value π). Separately for each row i of R,

◦ π ""EA chooses at random permutations π " and πi
"" such that πi = π " i .i	 i

5. Then the entries of R are filled according to the description from the previ­
ous subsection.

Finally, the ballots are printed so that their contents (the permutation of the
list of candidates names, confirmation tokens and serial numbers) is hidden un­
der a scratch layer.

3.5 The pre-election audit

As for Punchscan, the following steps are executed in order to check that the
audit tables have been created honestly:

1. The Auditors pick at random a set AS of n ballots. The remaining ballots
create a so called election set ES (and are not checked).

2. The contents of all ballots from AS is revealed, so in particular their serial
numbers. Based on the serial numbers it is possible to indicate the rows of
P corresponding to the ballots from AS.

3.	 EA opens all bit commitments from table P corresponding to the ballots
from AS as well as all bit commitments from table R corresponding to the
ballot columns of the ballots from AS.

4. The Auditors check whether the ballots and the entries in the audit tables
were created correctly.

5. All ballots from the audit set AS are discarded; the ballots with serial num­
bers in ES are used for election.

In practice, the Auditors may confine themselves to controlling only a lim­
ited number of ballots from AS, and check more ballots on demand.

3.6 Coding Cards generation

The coding cards are prepared in an electronic form and are published (as com­
mitments) on a webpage by the Proxy. Their correctness is checked in a standard
way:

1.	 Proxy creates an audit table X in which it commits to coding card serial
numbers Sr and positions of Y-marks on each coding card.

2. The Auditors select at random some number of coding cards to form an
audit set (these coding cards are not used for elections).

3.	 Proxy opens all bit commitments from the cards of the audit set.
4. The Auditors check if the revealed coding cards have been created correctly.

3.7 Elections

The following steps are during vote casting:

Step 1: the voter obtains a ballot (e.g. by visiting certain authorities, from a
special courier delivering the ballots at residence area, by certified mail ser­
vices etc.). At the same time, identity of the voter is verified and the ballot is
given to her own hands. Distribution of ballots is organized so that nobody
knows who gets which ballot. Since the ballot information is covered with a
scratch surface, this is easy.

Step 2: the voter fetches (still unused) coding cards from one or more Proxies
(for convenience the coding cards can be printed).

Step 3: the voter peels-off the scratch-layer from the ballot.
Step 4: the voter logs in an election webpage run by a Proxy and authenticates

herself.
Step 5: Proxy verifies voter’s credentials.
Step 6: the voter chooses one of the coding cards and lays it next to the ballot.
Step 7: the voter clicks on the PC screen on radio buttons corresponding to

her choice – that is, according to the permutation used for the ballot and
alignment of n and Y’s marks on the coding card as described in Section 1.4.

Step 8: Proxy commits to voter’s clicks, sends the commitment to EA and to
the voter (so the voter can print it)2.

Step 9: the voter enters Sr from the coding card used.
Step 10: Proxy transforms the voter’s choice into ballot columns.
Step 11: Proxy obtains a blind signature from EA under each of the ballot

columns (these signatures are then stored by Proxy for a post-election audit).
Step 12: the voter enters Sl.

2 This commitment can be later used during investigation in the case if a fraud was detected.

Step 13: Proxy passes Sl and the ballot columns to EA.

Step 14: EA replies with a receipt of the ballot columns obtained and enters

the obtained ballot columns into appropriate rows of the starting part of
table R (but EA publishes them when the election are closed), EA publishes
commitments to the ballot columns obtained from Proxy.

Step 15: the voter chooses a receipt (one of the four ballot columns). The re­
ceipt is obtained from Proxy.

3.8 Tallying

1. When the voting time is over, EA publishes voter’s choices inserted into
vectors y(i) in the starting part of the table R. Then it computes the entries
for the middle part of R:

)−1 ,y(j) « (πj
"

and for the final part:

)−1) « (π "")−1 v := (y(k) « (π " .k k

2. From the entries v in the final part EA calculates the tally: If the number of
ballot columns is 4N (meaning that N votes have been cast) and there are
together M marks × in row j of all ballot columns in the final part of R,
then the number of votes cast for the jth candidate is M − 2N .

All values computed above are published.

3.9 Post-election audit

Post-election audit is needed to verify if Election Authority performed vote cast­
ing and tallying steps according to the protocol.

Definition 1. We say that a vote inserted into R table by Election Authority is
formally correct if it is a correct vote for one of the candidates.

Formally correct vote in l out of k race contains exactly l rows with three ×­
marks and k − l rows with two ×-marks. If a vote is formally correct it does not
mean that it corresponds to a voter’s choice – Election Authority might change
her vote into a vote for a different candidate – during post-election audit such
an attempt will be detected with high probability.

Definition 2. We say that rows of the table R are related if they correspond to
the same row of the P table.

Post-election audit consists of three phases.

A	 Election Authority proves to Proxy that all ballot columns inserted into table
R are correct, i.e.: blind signatures under ballot columns are correct3. Then
Proxy checks if ballot columns are correctly inserted into R table:

1	 Election Authority shows which ballot columns are related.
2 Proxy verifies:

a correctness of the commitments – links between P and R,
b that related ballot columns constitute formally correct vote.

B Global/public verification – integrity of table R and the election results is
performed in public by the auditors (global/public verification). For this pur­
pose the standard Randomized Partial Checking [12] procedure is executed
for R (for the sake of simplicity of description we assume that n voters
participated in the elections):

1 The auditors choose 2n rows4 of R at random and request EA to open
-commitments ρ1(i) from these rows. Then for each row ρ1(i) in the

middle part, for which ρ1(i) has been revealed, the commitment πr" isi
opened and it is checked that the ballot column from the starting part
permuted by (π ")−1 yields the ballot column in the middle part. i

2 For each row j in the middle part, not pointed to by any revealed com­
mitment ρ1(i), EA has to open the commitments to ρ2(j) and π7"". Then
the ballot columns in the middle part of row j permuted with π""−1 and
the ballot column in the final part of row ρ2(j) should be equal.

C Local/personal verification – each voter can check if her ballot column cor­
responding to the receipt appears in the table R. This is possible, due to
knowledge of the verification pre-token t, one can locate the right row con­
taining H(t). If it is missing or the contents of the ballot column disagrees
with the receipt, then a fraud is detected.

3.10 Masked columns

Scratch, Click & Vote inherits many properties of Punchscan and ThreeBallot
schemes. A receipt obtained by a voter is a column with k rows. In ThreeBal­
lot scheme there are 2k types of receipts. One may easily see that many ballot
columns from the final ballot box are not compatible with a receipt – if a receipt
and a column have more than one row with two × marks, then they do not come
from the same voter. This phenomenon leads to Strauss’-like attacks [1,19,18,7]
on receipts in ThreeBallot scheme. One of the main goals Scratch, Click & Vote
was to eliminate this weakness.

3 Blind signatures that were obtained in the Step 11 of the scheme

4 R table has 8n rows, 4n rows were revealed during pre-election audit. 2n rows

As we have described in Section 1.2, already two countermeasures were
implemented to avoid this problem:

–	 the probability distribution of possible ballot-columns was modified (now it
is closer to the uniform one, dependance are weakened), by increasing the
number of columns and the number of ×-marks,

–	 the list of candidates is permuted.

If permutations are used for reordering lists of candidates, then there are
just k + 1 types of receipts (any two receipts with the same number of × marks
are in a certain sense equivalent). This is sufficient to eliminate all Strauss’-like
attacks when the attacker has access to a single receipt of a voter and all public
data (with all other receipts).

The situation is much worse when the attacker obtains additional data from
the Proxy. Note that Proxy knows not only receipts obtained by each voter but
also each ballot column cast – this, in some cases may lead to efficient attack on
privacy. The solution to this problem is to use so called masked ballot columns.
The idea is that table R stores in its rows instead of ballot columns – k cor­
responding masked ballot columns. Simply, the jth masked ballot column of a
given ballot column contains no × mark except for the row j, provided that the
original ballot column contains a × mark in the row j. See an example of a
ballot column and its masked versions:

a ballot column: , masked ballot columns: , , ,

×

×
×

×

×
×

Fig. 6. Masked columns – instead of publishing k-row ballot columns, k masked
ballot columns are published. The number of masked ballot columns of each
kind is determined uniquely by the election result.

Let X be a ballot column and t be its pre-token. Then the jth masked ballot
column for X in the starting part of R is marked by the value H(t, j) (instead of
H(t), as it was for the first design). This enables the voter to check the entries
of the bulletin board as before - however the voter has to look for k different
hashes and k rows instead of one.

Checking integrity of R table is performed just as before, as well as vote
counting: the number of × marks does not change, the number of votes is now
the number of rows of table R divided by 4k.

How do the masked ballot columns help to preserve anonymity? The key
observation is that the number of masked ballot columns of each kind is deter­
mined uniquely by the election result. Therefore R table provides no additional
information. So the Strauss’ attack and any other attack based on the particular
choice of ballot columns fail.

The same technique may be applied to ThreeBallot scheme.

3.11 Extensions

For the national elections it is strongly recommended to use scratch-off surface
and provide secure and reliable channel for delivery of the cards. However, in
some situations, one can use simpler and cheaper techniques. Moreover, for the
elections in societies or companies one can assume that vote-buying would not
be a problem. In this case, SC&V can be purely electronic: ballots and coding
cards can be sent by email. Then, a voter prints them on one machine and casts
a vote from a different one.

4 Usability issues - SCV with shifts

For certain voters, the scheme might be uneasy to use for at least two reasons.
First, a voter needs to click next to every candidate. Second, a voter needs to
find her candidate on a permuted list of candidates. So use of shifted lists of
candidates (as for Prêt à Voter) can improve usability. Unfortunately, shifts have
a negative impact on privacy.

A receipt obtained by a voter is an k-row column. If permutations are used
for reordering lists of candidates, then there are k +1 types of receipts (any two
receipts with the same number of × marks are in a certain sense equivalent).

The situation is different, if shifts are used. Then, the number of different
types of receipts is equal to the number of k-bead necklaces with 2 colors which
equals to (see [9]): 1 k

S(k) = ϕ(d)2 d ,
k

d|k

where ϕ(k) is the Euler quotient function, i.e. for k-prime S(k) = 2k/k. In this
case, in order to achieve privacy of votes, the number of voters has to be much
higher than S(k).

If one wants to use shifts instead of permutation of candidates, one has to
use masked-columns version of Scratch, Click & Vote instead of standard one.

k 2 3 4 5 6 7 8 9 10 11 12 13 14
S(k) 3 4 6 8 14 20 36 60 108 188 352 632 1 182

Fig. 7. SCV with shifts k – number of candidates; S(k) – number of ρS different ballot columns
when shifts are applied (equal to number of k-bead necklaces with 2 colors;

5 Security analysis

5.1 Integrity

Malware resistance Here we assume that the Alice’s PC is dishonest, while
EA and Proxy behave correctly. This corresponds to the case that Alice’s PC is
infected by malware.

Theorem 1 (Malware immunity). The probability PPC (k1, . . . , kl) that PC
modifies voter’s choice in l races with k1, . . . , kl candidates respectively without
being caught on cheating bounded by

z1 1
l 1

3l−14 kii=1

Proof. In order to manipulate voter’s choice in the i-th race (change from Al­
ice’s choice to any other candidate, even a random one) the PC has to switch
Alice’s choice from Y into n in the row corresponding to the candidate chosen
by Alice and at the same time, change n into Y in one of the remaining rows.
In order to do that, the PC has to guess which row corresponds to the chosen

1candidate; however success probability is only p1(ki) = ki
. Then, the PC has to

choose one of the remaining rows and guess which one of the not chosen three
1columns corresponds to the mark Y – this succeeds with probability p2 = .3

Probabilities p1(ki) and p2 are independent. We see that the probability of
switching Alice’s choice into another, correct choice in the ith race is PS (ki) =

1 p1p2 = 3ki
. Probabilities of successful change of voter’s choice in different

races are independent, so the probability of a correct vote change in l raceselequals to: PS (k1, . . . , kl) = PS(ki).i=1
However, even then, Alice can still detect a fraud, with probability p3, by discov­
ering that her receipt does not fit her choice. At least one of the ballot columns is
modified during such a change, so p3 ≥ 1 (and sometimes it is just one column), 4
thus:

z1 1
l 1

PPC (k1, . . . , kl) = (1 − p3)PS (k1, . . . , kl) ≤ .
3l−14 kii=1

Election Authority Misbehaviour in ballots’ preparation and counting is limited
by the pre- and post-election audits just like in the case of Punchscan (all unused
ballots are opened).

Replacing ballot columns when inserting them to table R is risky, since the
voter gets a receipt, which is one of her four ballot columns signed by EA. If
the receipt disagrees with the contents of table R then one can catch EA. Recall
that the ballot columns are signed blindly by EA before EA knows ballot’s serial
number (and thus the permutation). Moreover EA does not know which of the
ballot columns is chosen for the receipt. Note that since the hash value of the
pre-token is posted in R, the voter can prove which entry in the starting part of
R corresponds to the ballot column from her receipt.

For the rest of this section we assume that the PC of Alice and the Proxy are
honest.

Election Authority may try to influence on election results in three ways that
lead to the situation when votes are decoded with different permutation π that
was printed on the ballots:

1. to switch content of ballot columns in the starting part of table R so that
at least some of related ballot columns are not formally correct votes – this
situation can be detected in the phase A of the post-election audit;

2. to switch content of ballot columns in the starting part of table R so that
all related ballot columns are formally correct votes (wrong ballot column
insertion during vote casting) – this situation can be detected by personal
verification (phase C) of the post-election audit);

3. not to transform ballot columns according to ρ1 or ρ2 (or π " or π "") (wrong
vote counting during tallying) – this situation can be detected in the phase B
of the post-election audit.

The following two theorems give us insight about the integrity of the elections.
Both theorems assume that underlying commitment scheme is not breakable for
Election Authority before post-election audit is done.

Lemma 1. If EA modifies ×-marks of the related ballot columns so that they
are formally correct vote then this situation can be detected only by personal
verification.

If EA modifies related ballot columns in R so that they are not formally cor­
rect vote then this situation can be detected in the phase C of the post-election
audit.

Proof. Election Authority can change election outcome up to 2k + 1 by mod­
ifying ×-marks in ballot columns of (only) one ballot. But then of course, EA

1

must to adjust 2k +1 ×-marks in other ballot columns because number of votes
must agree with the number of votes cast.

The post-election audit require to reveal data corresponding to half of the
rows of the P table – links between P and ballot columns of the same ballot. If
Election Authority modifies k of the related ballot columns so that they are not
formally correct then it is detected post-election audit with probability 1 −

2k .
If Election Authority modifies related ballot columns so that they are for­

mally correct then post-election audit does not detect this5. In this case, Election
Authority is caught on cheating if and only if a voter finds out that her receipt
does not corresponds to data published in R.

Theorem 2. Assume that Election Authority have manipulated m ballot columns
in the starting part of R. If v voters perform personal verification then PS – the
probability that Election Authority will not be caught on cheating is bounded by v−1z m − i

1 −
4N

i=0

where N is the number of votes cast.

Proof. For N votes cast, there are at most 4N ballot columns that contain at
least one x-mark.

According to the Lemma 1, Election Authority by modifying single ballot
(=four ballot columns) can influence only on one vote (without increasing ex­
ponentially probability of being caught on cheating).

Probability that any of m manipulated ballot columns is not verified by at
least one of the v voters is equal to:

zv−1 4N − m − i m
Pv,m,N = ≤ (1 −)v

4N 4N
i=0

So the probability that Election Authority will not be caught on cheating is:

zv−1 4N − m − i m
PS = 1 − Pv,m,N = 1 − ≥ 1 − (1 −)v

4N 4N
i=0

4N .For N large enough, we obtain PS ≥ 1 − e − vm

For instance, if Election Authority wants to subvert elections by modifying
1% of the 100 000 votes cast, it succeeds with probability 0.006 737 2 000

5 because related ballots are formally correct

Theorem 3. The probability PM,F (m) that Election Authority modifies m bal­
lot columns in the middle or final part of the R table without being caught on

1cheating during post-election audit is bounded by PM,F (m) ≤ 2m .

Proof. Assume that Election Authority does not follow the protocol and manip­
ulates m1 ballot columns in the middle part. That is, EA does not transform m1

ballot columns from the starting part of R-table to the middle part according to
1ρ1 and {π " }n . Then, it succeeds with probability PM (m1) = (this situ­i i=1 2m1

ation will be revealed while half of the links between starting and middle parts
are shown during post-election audit).

If Election Authority does not follow the protocol and manipulates m − m1

ballot columns in the final part – it does not transform from the middle part of
R-table to the final part according to ρ2 and {π "" }n . Then with probability i i=1

1PF (m − m1) =
2m−m1

such a situation will be revealed during post election
audit.

Let us notice that any modification of transformations between starting and
middle parts and between middle and final parts that concern ballot columns
corresponding to the same row of R are revealed with probability 1 since one of
the two transformations for each such a rows are revealed. So one can assume
that modifications of transformations between different parts are disjoint and
thus independent. So PM,F (m) ≤ PM (m1) · PF (m − m1)

Proxy Now we assume that Proxy is dishonest, while EA and the PC of Alice
behave correctly.

Proxy commits to the voter’s clicks before it knows Sr, so Proxy cannot
change voter’s choice.

If Proxy changes Sl in order to change the permutation of a ballot, then Alice
obtains a confirmation token that is different from the one stated on her ballot.
Thus it will be detected immediately by Alice.

5.2 Privacy

Malware resistance Even if Alice’s PC sends all information it is aware of
to an attacker, he would be unable to determine the choice of Alice. Indeed,
the attacker neither knows the configuration of Y’s on the coding card nor the
permutation used on the ballot.

EA The situation is like for Punchscan: If EA knows which ballot was used
by Alice, then it knows the vote cast by Alice. So it is crucial to apply appro­
priate procedures of ballot distribution. Keeping the sensitive information under

scratch surface is a good solution - the ballots can be mixed before distribution,
becoming thus indistinguishable. Also, it is crucial that voters never sends ballot
information directly to EA - all communication must go through Proxy.

Proxy The assignments of Y’s and n’s are known to Proxy, so Proxy knows
the row corresponding to the voter’s choice. However, Proxy does not know the
permutation used in the ballot, so it cannot link the vote with any particular
candidate. Proxy may attempt to perform Strauss’-like attack but if masked-
ballots (Section 3.10) are used then it is infeasible.

External observer’s point of view Here, we assume that the observer Charlie
is not physically present during casting a vote and does not control the PC used
by Alice. We assume that Alice casts the vote and then passes to Charlie (e.g.
by mail or fax):

– the ballot,
– the coding card,
– the receipt,
– information on which fields have been clicked.

Of course, Charlie has access to the bulletin board.
The key point is that Alice could use a coding card different from the one

she shows to the observer – the receipt does not contain Sr. So, the situation
of Charlie is much different from the situation of a Proxy: Charlie obtains only
one ballot column (receipt) and cannot be sure if the coding card obtained was
really used.

5.3 Vote selling

In case of SC&V a voter is authenticated electronically by the Proxy. The au­
thentication protocol should guarantee that the voter would not risk transmit­
ting her electronic identity to the buyer. (In this way SC&V becomes superior
over postal procedures, for which transferring a ballot to a buyer cannot be pre­
vented.) This holds for instance, if the voter is using an electronic ID card or ID
codes that are used also for other purposes (like submitting a tax declaration).

Even if Alice casts the vote herself, she can record the whole voting session
and present it to the buyer together with the ballot and the coding card used. The
ballots have a non-electronic, paper form, so they can be presented to the remote
buyer as electronic copies. However, the scan of the ballot can be manipulated
and the coding card presented needs not to be the one actually used.

Things become more complicated for the buyer, if the authentication proto­
col is based on a zero-knowledge protocol – then the buyer cannot even be sure
that the voter is casting a vote unless he is controlling directly the voter’s PC.

The only thing that the buyer can be convinced about is the receipt and the
matching entries in the bulletin board. However, at this moment we fall back to
the case of the external observer considered above.

5.4 Decoy service

A decoy service can be optionally launched in order to make vote-buying and
coercion harder. A voter can visit a webpage of a decoy service and download
fake coding card with any given serial number and arbitrarily chosen arrange­
ment of Y’s and n’s. Then, the voter may present such a coding card to a coercer
or a vote buyer together with a receipt and ballot to prove that she voted in a
certain way.

The idea of a decoy service was mentioned by many designers of e-voting
schemes, sometimes replacing decent security mechanism. Nevertheless, it can
be view as an important second line defence against vote buying and coercion
and should be recommended for e-voting implementations.

6 Final remarks

SC&V allows for secure and verifiable vote casting over the Internet with un­
conditional integrity. Privacy is preserved with the assumption that Proxy and
Election Authority do not collude.

A voter cannot prove how she voted unless vote-casting is physically super­
vised by an adversary (it is not the case in remote versions of Punchscan [16],
where voter may remotely sell her vote).

Online vote-selling is almost impossible. In order to buy a vote, a buyer
needs to obtain:

–	 the record of a voting session from the voter’s computer (the serial numbers
of ballot and coding card, and the voter’s choices),

–	 ballot and coding card used.

Even if the voter’s PC is infected by viruses, her choice remains secret. More­
over, any attempt of modification of voter’s choice is detected with high proba­
bility.

References

1. A. W. Appel. How to defeat rivest’s threeballot voting system. draft, October 2006.

2. Mihir Bellare, David Chaum, Michael R. Clarkson, Stuart Haber, Markus Jakobsson, Stefan
Popoveniuc, and Filip Zagórski. Internet voting as secure as polling-place voting. preprint,
2008.

3. David Chaum. Punchscan, 2005. http://www.punchscan.org.
4. David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan Popoveniuc, Ronald L.

Rivest, Peter Y. A. Ryan, Emily Shen, and Alan Sherman. Scantegrity ii: End-to­
end voter-verifiable optical scan election systems using invisible ink confirmation codes.
USENIX/ACCURATE EVT 2008, 2008.

5. David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan Popoveniuc, Alan Sher­
man, and Poorvi Vora. Scantegrity: End-to-end voter-verifiable optical- scan voting. IEEE
Security and Privacy, 6(3):40–46, 2008.

6. David Chaum, Peter Y. A. Ryan, and Steve Schneider.	 A practical voter-verifiable election
scheme. In ESORICS, volume 3679 of Lecture Notes in Computer Science, pages 118–139.
Springer Verlag, 2005.

7. Jacek Cichoń, Mirosław Kutyłowski, and Bogdan Wȩglorz. Short ballot assumption and
threeballot voting protocol. In SOFSEM 2008: Theory and Practice of Computer Science,
volume 4910 of Lecture Notes in Computer Science, pages 585–598. Springer Verlag, 2008.

8. David Wagner et al. Top-to-bottom review. top-to-bottom report conducted by Secretary of
State Debra Bowen of many of the voting systems certified for use in California, 2007.

9. Philippe Flajolet and Robert Sedgewick.	 Analytic Combinatorics, chapter Combinatorial
structures and ordinary generating functions, pages 49–64. Cambridge University Press,
first edition, 2008.

10. Marcin Gogolewski, Marek Klonowski, Mirosław Kutyłowski, Przemyslaw Kubiak, Anna
Lauks, and Filip Zagórski. Kleptographic attacks on e-voting schemes. In Emerging Trends
in Information and Communication Security, volume 3995 of Lecture Notes in Computer
Science, pages 494–508. Springer Verlag, 2006.

11. Kevin Henry, Douglas R. Stinson, and Jiayuan Sui. The effectiveness of receipt-based attacks
on threeballot. Cryptology ePrint Archive, Report 2007/287, 2007. http://eprint.
iacr.org/.

12. Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust for electronic
voting by randomized partial checking. In USENIX Security Symposium, pages 339–353,
2002.

13. Ari Juels, D. Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In
WPES, Lecture Notes in Computer Science, pages 61–70. Springer Verlag, 2005.

14. Chris Karlof, Naveen Sastry, and David Wagner. Cryptographic voting protocols: A systems
perspective. In USENIX Security Symposium, pages 33–50, 2005.

15. Tal Moran and Moni Naor.	 Receipt-free universally-verifiable voting with everlasting pri­
vacy. In Advances in Cryptography CRYPTO, volume 4117 of Lecture Notes in Computer
Science, pages 373–392. Springer Verlag, 2006.

16. Stefan Popoveniuc and David Lundin. A simple technique for safely using punchscan and
pret a voter in mail-in elections. In VOTE-ID 2007, volume 4896 of Lecture Notes in Com­
puter Science, pages 150–155. Springer Verlag, 2007.

17. Ronald L. Rivest and Warren D. Smith.	 Three voting protocols: Threeballot, vav, and
twin. In EVT’07: Proceedings of the USENIX/Accurate Electronic Voting Technology on
USENIX/Accurate Electronic Voting Technology Workshop, pages 16–16, Berkeley, CA,
USA, 2007. USENIX Association.

18. Charlie Strauss.	 A critical review of the triple ballot voting system. part 2: Crack­
ing the triple ballot encryption, 2006. http://www.cs.princeton.edu/~appel/
voting/Strauss-ThreeBallotCritique2v1.5.pdf.

http://www.punchscan.org
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.cs.princeton.edu/~appel/voting/Strauss-ThreeBallotCritique2v1.5.pdf
http://www.cs.princeton.edu/~appel/voting/Strauss-ThreeBallotCritique2v1.5.pdf

19. Charlie Strauss.	 The trouble with triples: Acritical review of the triple ballot (3bal­
lot) scheme, part 1., 2006. http://www.cs.princeton.edu/~appel/voting/
Strauss-TroubleWithTriples.pdf.

20. Jeroen van de Graaf.	 Merging pret-a-voter and punchscan. Cryptology ePrint Archive,
Report 2007/269, 2007. http://eprint.iacr.org/.

http://www.cs.princeton.edu/~appel/voting/Strauss-TroubleWithTriples.pdf
http://www.cs.princeton.edu/~appel/voting/Strauss-TroubleWithTriples.pdf
http://eprint.iacr.org/

	SCV end to end voting over the Internet
	Miroslaw Kutylowski, Filip Zagórski

