
i
A random zoo: sloth, un∨corn, and trx

Arjen K. Lenstra and Benjamin Wesolowski

EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland

Abstract. Many applications require
trustworthy generation of public random
numbers. It is shown how this can be
achieved using a hash function that is timed
to be as slow as desired (sloth), while the
correctness of the resulting hash can be
verified quickly. It is shown how sloth can
be used for uncontestable random number
generation (unicorn), and how unicorn can
be used for a new trustworthy random ellip­
tic curves service (trx) and random-sample
voting.
Keywords: slow-timed hash, uncon­
testable random numbers, you and i, trust­
worthy random elliptic curves service,
random-sample voting, animal farm
Version: 1.0, June 5, 2015

1 Introduction

There are many situations where large interests de­
pend on random choices. Obvious examples are na­
tional lotteries and sporting events schedules, but it
also plays a role in governance. Sortition was the
cornerstore of Athenian democracy, where both the
βουλή (the legislative council) and the ‘ηλια‘ια (the
supreme court) consisted of a random sample of citi­
zens. Even to the present day sortition-based democ­
racy is advocated by some as a fair and simple alter­
native to elected assemblies.

The required random choices must be made in
such a way that no one can knowingly bias the choices
to anyone’s advantage or disadvantage, and such that
everyone affected, directly or indirectly, can be as­
sured that foul play is impossible. Such assurance is,
to some extent, meant to be provided by live broad­
casts of lotteries and draws for sports events. But
multiple scenarios are conceivable to influence the
outcomes, like any skilled prestidigitator can fool en­
tire crowds while publicly tossing a coin or rolling a
die.

In this paper potential solutions to this problem
are discussed and a new one is proposed. The new
approach relies on two simple observations. The first
is that even though casual observation of events and
human behavior may, on a short time scale, offer lit­
tle surprises or variation, at the bit level any even

very briefly observed physical scene provides large
amounts of entropy (including for cryptographic ap­
plications, and no matter how carefully the scene may
have been orchestrated). Secondly, in many applica­
tions there is no time pressure: quite on the contrary,
if one wants to turn the randomness selection into
an entertaining public event it must be considered an
advantage – also to cater to the expectations of spon­
sors and advertisors – if the proceedings are stretched
a bit.

Another application of uncontestable generation
of random numbers without time pressure is the
seeding of the generation of standardized parame­
ter choices for elliptic curve cryptography (ECC). Al­
though there are many elliptic curve parameters that
would be suitable for ECC, there is only a small set
of elliptic curve parameters that are recommended or
standardized for general use [4]. Using one of these
curves implies trusting the way it was generated. A
particular choice of parameters could hide special
properties and potential weaknesses only known be
the party publishing the curve: [3] elaborates why this
could be problematic even if care seems to be taken to
avoid trust issues. Furthermore, any of these curves
may already have been cryptanalyzed – for reasons
unbeknownst to a new user, for instance because a
worthwhile target uses it – and quite extensively so if
the curve has been around for a while already. Unlike
the trust issue, possibly long term prior exposure to
cryptanalysis does not seem to be a concern that is of­
ten expressed. Nevertheless, there may be users that
would prefer to always use parameters that are as
fresh as possible or to use their own personalized pa­
rameters. This is not an option yet: due to the current
state of the art in elliptic curve point counting, gener­
ating good random elliptic curve parameters is a te­
dious process whereas parameters that can be quickly
generated (using the complex multiplication method)
are frowned upon – albeit for unknown reasons.

Classical methods that provide incorruptible pub­
lic randomness and their disadvantages are discussed
in Section 2. Using a new slow-timed hash function,
sloth, described in Section 3 (and pronounced “slow­
th”), a new approach to public randomness selection,
unicorn, is proposed in Section 4: unicorn results in a
high entropy random seed that can be influenced by

http://en.wikipedia.org/wiki/The_Truman_Show
http://dictionary.cambridge.org/pronunciation/british/sloth
http://dictionary.cambridge.org/pronunciation/british/sloth

�

anyone participating in the initial stages of its gen­
eration without any party being able to manipulate
the outcome to its advantage, the correct generation
of which can be verified by everyone, once the seed
has been made public. A cryptographic application of
the method from Section 4 is generating parameters
for ECC. A service resulting from this application,
trx, is currently being implemented and will produce
a slow but constant stream of trustworthy random
elliptic curve parameters at various security levels.
Trx is described in Section 5. An application of the
method from Section 4 to democratic voting proce­
dures is sketched in Section 6. The possibilities of
using the newly proposed methods for other applica­
tions (including cryptographic elections, other cryp­
tographic standards and a random beacon) are briefly
mentioned in the final section, Section 7.

Notation. The integer k ∈ {128, 192, 256} denotes
a security level. With k clear from the context, the
cryptographic hash function h denotes the 2k-bit ver­
sion of the secure hash algorithm SHA-2. The func­
tion h is regarded as a function from A∗ to Hk/2 ,
where A∗ is the set of strings over some alphabet A
and where H ⊂ A is the set {0, 1, . . . , 9, a, b, . . . , f}
of hexadecimal characters. The secure hash function
SHA-2 may be replaced by any other suitable crypto­
graphic hash function one sees fit. It is assumed that
the hash function satisfies the usual security require­
ment that it takes effort on the order of at least 2k to
find a (chosen) pre-image or collision. The construc­
tions presented in this paper may fail if either of the
security assumptions does not hold. If this happens in
practice, the cryptographic hash function used should
be considered to be broken, which would be a surpris­
ing side-result.

The function int : H∗ → Z≥0 maps x ∈ H∗ in the
canonical manner to the non-negative integer with
hexadecimal representation x. Even though int is not
injective (due to leading zeros), hex(n) = int−1(n) ∈
H∗ for n ∈ Z>0 is defined as the hexadecimal rep­
resentation of n, without leading 0-characters, and
hex(0) = 0.

For a prime p the finite field with p elements is
denoted by Fp. The multiplicative group of Fp is de­
noted by F× . For x ∈ Fp the notation xx refers top
the canonical lift to the set {0, 1, . . . , p − 1} of least
non-negative residues modulo p.

For any function f : D → R with R ⊆ D and
£ ∈ Z≥0 the customary notation f £ is used for £-fold
iteration of f :

f £(x) = f(f(· · · f(x) · · ·)) for any x ∈ D.
£

2 Incorruptible public randomness

Consider the problem where a set G of people wants
to agree on a (pseudo)random number s in {0, 1}n

for some n ∈ Z>0. They do not trust each other and
they do not want any individual to be able to tam­
per with s in any meaningful way, i.e., being able
to force s away from a uniform distribution. Because
there is no way to guarantee that any party is in­
corruptible, an independent third party is not an op­
tion, certainly not one that (with a clever slight of
hands) flips coins or rolls dice. Complex transparent
machines with balls flying around in seemingly to­
tal chaos, as commonly used for national lotteries,
are easy to fool [23,5]. The situation gets even worse
when the winning numbers are generated by a com­
puter [21]. See also [10]. In this section a number of
tempting approaches are discussed. They all appear
to be flawed both from a security and a usability per­
spective, at least when the number of participants
becomes large.

A naive approach would be to let each g ∈ G
independently choose an sg ∈ {0, 1}n , and to setp
s = sg, where “⊕” denotes exclusive-or. As longg
as at least a single sg is chosen uniformly and in­
dependently from all others, the resulting s will be
uniformly distributed, no matter how the others col­
lude or otherwise fail to follow the rules. But the in­
dependence relies on the unrealistic assumption that
all choices are perfectly synchronized: the party l ∈ G
that last reveals its choice can target any value v forip r
s by selecting sl = v ⊕ =l sg . g

A common way to get around this problem uses
commitments, resulting in a two-round protocol.
First each party secretly chooses its sg and pub­
lishes a commitment cg to it; cg could for instance
be h(h(sg)||idg), with h as in Section 1, and idg a
unique identifier for party g. Once all parties have
received all commitments, the sg-values are revealed,p
the commitments checked, and the value s = sg is g
calculated as usual. This clearly obviates the possibil­
ity for anyone to target a specific value or to bias the
result: as long as one participant is honest (and not
hacked by the others), the resulting s will be unbi­
ased, irrespective of any colluding group of dishonest
other parties.

In theory, using commitments works for any finite
number of participants, assuming one is honest and
not hacked. In practice, and in particular if the num­
ber of participants is large, a number of them may be
expected to drop out between the two rounds, either
due to technical problems or maliciously, and never
reveal a value they have committed to. This results
in a denial of service attack: the protocol will never

finish because not all committed values are revealed.
The attack can be countered by setting a time limit
and to compute s as the exclusive-or of just those
sg -values that have been received on time. However,
this may make it possible for a malicious party g to
influence the protocol in a meaningful way, by de­
ciding, right before the time limit, whether or not
to reveal its sg depending on whether it prefers s
or s ⊕ sg , where s is the exclusive-or of all values re­
ceived but not including sg. Such an attempt may
fail if another malicious party independently tries to
do the same, but may get worse if m parties collude,
allowing them to choose the best among 2m possi­
ble outcomes. A single miscreant controlling m fake
participants makes this scenario even worse.

In the next section a slow-timed hash function is
described that could be used to resolve this problem
in applications where there is no need for an immedi­
ate result. The resulting protocol has only one round,
and anybody can participate without prior notice.
Also, unlike what was presented in this section, it
is easy for anyone to take part in the process with­
out need for any special software or technical skills;
indeed, it can be as easy as tweeting.

3 Sloth : slow-timed hash

In this section sloth is presented, a slow-timed hash
function that satisfies the two following design crite­
ria: given any ω > 0

–	 it must be possible to choose the parameters
in such a way that computing sloth takes wall-
clock time at least ω seconds, irrespective of the
amount of computer resources available;

–	 the wall-clock time required to verify that the re­
sulting hash is correct must be modest compared
to ω, the computation time required.

3.1 A trivial iterative design

It is not hard to design a function that meets the
above requirements. Given a security level k and cor­
responding cryptographic hash function h as in Sec­
tion 1, computing the £-fold iteration h£ of h is in­
herently sequential and does not allow parallelization
beyond a small constant number of cores (i.e., not de­
pending on £). Thus, £ ∈ Z>0 can be determined such
that for any s ∈ A∗ the computation of h£(s) takes
wall-clock time at least ω, on this same number of
cores. Although verification of the result requires the
same amount of computing, for any suitably chosen
n with 2 ≤ n ≤ £ the wall-clock time for the verifi­
cation can be reduced by a factor of n using n-fold

parallelization on n times as many resources, assum­
ing the n checkpoints hli£/nJ(s) for i = 1, 2, . . . , n
are kept during the calculation of h£(s). To be able
to guarantee a specified wall-clock time, usage of an
ASIC-resistant hash function (combined with a reg­
ular one) could be considered. Another approach is
pursued below.

3.2 Using modular square roots

More interesting solutions require functions that are,
unlike cryptographic hash functions, easier to verify
than to compute. Obvious candidates are the com­
monly used cryptographic trapdoor functions. For in­
stance, computing the hash could require the factor­
ization of a large integer or computation of a discrete
logarithm in a suitably chosen group, while a wit­
ness (containing a factor or the discrete logarithm,
respectively) would be provided along with the re­
sulting hash to allow fast verification. But wall-clock
times for both these hard problems decrease mostly
linearly with the amount of parallel resources avail­
able, making proper parameter selection cumbersome
if not outright impossible.

Another idea is to use polynomial factorization
over finite fields, the simplest case of which is modu­
lar square root extraction: given some prime p, calcu­
lating a modular square root takes, to the best of cur­
rent knowledge, at least log2(p) − 2 unparallelizable
modular squarings, whereas a single modular squar­
ing suffices to verify the result. Given ω > 0, it thus
suffices to take the smallest p for which the sequence
of squarings modulo p require at least ω seconds. For
a wall-clock time of about ten minutes on a single core
(running at, say, 2.3GHz), p is going to be on the
order of hundreds of thousands of bits long, imply­
ing that for the computation of the hash the amount
of available parallelism (or special purpose architec­
tures) would become more of an issue. The approach
sketched below offers more effective assurance against
parallelization by combining a still reasonably small
p with the earlier iterative idea: the computation is
stuck at £ necessarily sequential modular square root
calculations, each of which is necessarily sequential as
well, while the verification, already at least log2(p)−2
times faster than the computation, can be sped up
by another factor of n by remembering n checkpoints
(as inherent in iterative approaches). The size of p
can then be set to match the relatively modest ver­
ification wall-clock time one settles for (under mild
restrictions with respect to the desired security level,
cf. below); see also the discussion on wall-clock time
guarantee below.

Let p ≡ 3 mod 4 be a prime number. It follows
that precisely one of x and −x is a square for any
x ∈ F×, and a square root can be calculated by rais­p

p+1ing the square to the -th power. If y is a square 4
root of a square x ∈ F×, then y and −y are the only p
two square roots of x. Observing that the canonical
lifts yx of y and −�y = p − yx of −y have different par­√
ities, define + x as the unique square root of x with√
even lift and − x as the unique one with odd lift. This
leads to the following permutation on F×:p √

+ x if x is a quadratic residue;
ρ(x) = √

− −x otherwise

with inverse
2+y if yx is even;

ρ−1(y) = 2−y if yx is odd.

Simply iterating the permutation ρ allows a shortcut
in the computation of ρ£ , as shown in Section 3.4.
This can be avoided by adding a layer of unstruc­
tured confusion in the following manner.

Let σ be an permutation on F× such that both σp
and σ−1 are easy to compute. Given σ define τ = ρ◦σ
and use τ £ for some appropriately chosen £ as a slow­
to-compute function with easily computable verifica­
tion function (τ £)−1 = (τ−1)£ = (σ−1 ◦ ρ−1)£ . Note
that, given ω, the value of £ will mostly depend on
the size of p. The resulting slow hash function is de­
scribed below. In Section 3.4 it is shown how σ may
be chosen so that undesirable shortcuts are avoided
that would allow computation of τ £ faster than by se­
quential £-fold iteration of τ , while maintaining easy
verification.

3.3 Sloth

Let k be a security level, h a corresponding hash
function (Section 1), p ≡ 3 mod 4 a prime such that
p ≥ 22k, and τ as in Section 3.2. Compared to reg­
ular hash functions from A∗ to Hk/2 (cf. Section 1),
the slow-timed hash function sloth produces two ad­
ditional outputs. In the first place a witness is pro­
vided that allows fast verification of the resulting
hash value. Furthermore, to enable disclosure of its
input value only at a later point in time (it may be
undesirable if others simultaneously run sloth on the
same input) while avoiding the possibility of selecting
a particular input from a number of inputs (as any
number of copies of sloth could be run in parallel), a
commitment to the input will be output right away,
before sloth embarks on its long, wall-clock time ω
consuming iteration. In applications where a commit­
ment is not relevant, this first component of the out­
put can be discarded. Thus, sloth maps elements of

A∗ to (Hk/2)2 × F×, where the first component in p

Hk/2 is the commitment, the second component in
Hk/2 is the resulting hash, and the F×-part is the p
witness that allows fast verification.

Sloth is defined below. The time-security of sloth
(i.e., shortcuts during its calculation are impossible;
see also the Appendix for a precise notion of security)
relies on the slowness assumption implicitly made in
Section 3.2 that extraction of modular square roots
cannot be done faster than using a modular exponen­
tiation – in similarity with hardness assumptions for
cryptographically relevant problems. It would require
a new idea to prove that the slowness assumption is
incorrect, in which case sloth may fall back on mod­
ular roots of more complex polynomials.

Sl oth. Let s ∈ A∗ be the input.
1: Let u ← h(s).
2: Return h(u) as the first component of the

output and continue.

3: Let w0 ∈ Fp be such that wx0 = int(u)

(note that 0 ≤ int(u) < 22k ≤ p).

4: For i = 1, 2, . . . , £ in succession do the following:

5: Let wi ← τ(wi−1).
6: Return h(hex(wx£)) and w£ as the second and
third components and quit.

The output (c, g, w) ∈ (Hk/2)2 × F× of sloth with in-p
put s thus consists of the commitment c, the hash g,
and the witness w. It can be verified as follows.

Sl oth-verification. Let (s, c, g, w) ∈
A∗ × (Hk/2)2 × F×

p be the input.
1: Let u ← h(s).
2: If c is not equal to h(u) then return “false” and
quit.
3: If h(hex(wx)) is not equal to g then return

“false” and quit.

4: For i = £, £ − 1, . . . , 1 in succession do the

following:

5: Replace w by τ−1(w).
6: If wx equals int(u) then return “true” and quit.
7: Return “false” and quit.

3.4 Choices for the permutation σ

In the random oracle model it can be proved that
sloth is indeed inherently sequential and no informa­
tion about the outcome can be guessed with non-
negligible advantage in less time than that required
to sequentially compute Ω(£ log(p)) multiplications
in Fp, for p → ∞. The proof (cf. Appendix) relies on
the assumptions that σ is a random permutation and
that computing a square root of a random square in
F× requires an exponentiation in Fp (cf. the above p
slowness assumption); this is made more precise in

the Appendix. The second assumption does not seem
to be unreasonable given the current state of the art
of modular square root extraction. Concerning the
former assumption, as argued in the present section
good time-security can still be obtained without it,
and it seems that simple choices for σ suffice.
Omitting σ. It is first shown that, as mentioned
above and assuming that p ≡ 3 mod 4, the compu­
tation of ρ£ indeed allows a shortcut. Thus, omit­
ting σ is not an option. For s ∈ A∗ , let w ∈ Fp

be such that wx = int(h(s)), as in the definition of
sloth. With σ equal to the identity function on Fp,
the iteration computes τ £(w) = ρ£(w). It follows that
(ρ£(w))2

£
= z where z is the unique square among

w and −w. Because, as is easily seen, ±ρ£(w) are
the only two roots of X2£ − z in Fp, it suffices to
determine one of those two roots and to use the fast
verification to decide if it or its negative equals ρ£(w).

p+1 eWith e = , a square root of z ∈ Fp
× is given by z4

and, iterating this for i, a root of X2i − z is given by
ez
i
. Thus, with j = e£ mod (p − 1), a root of X2£ − z

is found by computing zj at the cost of an exponen­
tiation in Z/(p − 1)Z and an exponentiation in Fp.
Swapping neighbors. The problem of omitting σ
lies in the fact that ρ£(w) is the root of a simple, ex­
plicitly given polynomial. Consider the permutation
σ on F× with σ = σ−1 that swaps neighbors:p

x + 1 if xx is odd;
σ(x) =

x − 1 if xx is even.

With w as above, it is not clear how to express
(ρ ◦ σ)i(w) = τ i(w) as the root of a polynomial.√

Using binary permutations. As mentioned above
and shown in the Appendix, time-security of sloth can
be proven – in the cryptographic sense of the word
– if σ is a random permutation of F× . Keyed blockp
ciphers are commonly used to emulate allegedly good
pseudo-random permutations of {0, 1}n for n ∈ Z>0.
It is shown how they can be used to define permuta­
tions of F×

p .
Given F× , select an integer n ≥ log2(p). Iden­p

tifying the set {0, 1}n with the set of integers
{0, 1, . . . , 2n −1}, a permutation ς : {0, 1}n → {0, 1}n

can be regarded as a permutation of {0, 1, . . . , 2n −1}.
With the map π : Z → Fp that maps a ∈ Z to
the y ∈ Fp for which yx ≡ a mod p, and the map
ι : Fp → {0, 1, . . . , p − 1} that maps x ∈ Fp to xx,
this induces a map σ(= π ◦ ς ◦ ι : Fp → Fp. Unfor­
tunately, σ(is not necessarily a permutation on F× ,p
because there may be elements x ∈ F× for whichp
ς(xx) ∈/ ι(F×) = {1, 2, . . . , p − 1}.p

However, a permutation of F× can be obtainedp
if, depending on the input x, the permutation ς is
performed as often as required until xx is mapped to
{1, 2, . . . , p − 1}:

σ(x) = π(ςv(xx)),
with v > 0 minimal such that ςv(xx) ∈ {1, 2, . . . , p−1}.
For a uniformly random x ∈ F× , the probability thatp
ς(xx) /∈ {1, 2, . . . , p − 1} is at most

#{0, p, p + 1, p + 2, . . . , 2n − 1} 2n − p + 1
= ,

#{1, 2, . . . , p − 1} p − 1

which can be made negligibly small by selecting p as
2n − E for a small positive integer E. As a result, for
such primes a permutation of F×

p is obtained thatFor instance, if w is a square, then ρ(w)√
+= w

is even so that τ(w) = + w − 1, which is root will in practice be as efficient as the underlying blocka
of (X + 1)2 − w and which has an odd lift. But cipher. The fact that for rare elements of F× thep
the latter does not give any information about the computation takes more time cannot be exploited to√
quadratic residuosity of the root + w − 1. There- speed up the calculation of τ – indeed, it only fur-
fore, without computing that quadratic residuosity,
it is only known that τ2(w) is a root of one of
((X + 1)2 + 1)2 − w and ((X + 1)2 − 1)2 − w. In gen­
eral, τ i(w) is a root of precisely one of the 2i polyno­
mials (. . . ((X ± 1)2 ± 1)2 . . . ± 1)2 − w, but there does
not seem to be an efficient way to predict which of
the 2£ polynomials has τ £(w) as root. Of course, all 2£

polynomials could be tested in parallel, but even find­
ing the roots of a single one seems to require at least
the same amount of unparallelizable time as the suc­
cessive square root extractions in sloth, as all polyno­
mials are dense and of degree 2£ over Fp. Therefore,
using a permutation σ that simply swaps neighbors
seems to be time-secure enough. Nevertheless, it still
preserves some algebraic structure, which could lead
to unforeseen adversarial strategies.

ther slows it down. The additional overhead for the
verifier is negligible.

Given that the analysis is generic in ς it can be
improved for specific instances, and it allows great
flexibility in the design of ς, as long as p is close
to 2n: binary operations such as exclusive-or, shifts,
and bit(s) swapping may all be used. Because such
choices do not allow a meaningful algebraic interpre­
tation in Fp shortcuts in the calculation of sloth, as
discussed above, are avoided. If the binary operations
are restricted to the least significant bits (in a simi­
larly fast but more liberal manner than just swapping
neighbors) the prime p does not have to be chosen
close to 2n .
Choices for the prime p. To conclude this section,
Table ?? lists the verification times depending on the

choice of the size of p, for two practically relevant
permutations: swapping neighbors and block cipher
based. In all cases, the number of iterations £ is cho­
sen such that the computation of sloth takes ten min­
utes. When σ is a simple binary operation the number
of iterations and the verification times are similar to
those for swapping neighbors.

Wall-clock time guarantee. The wall-clock time
required for a calculation consisting of £ necessarily
sequential steps, each consisting of at least log2(p)
necessarily sequential modular multiplications, can
easily be measured for a single core running at a cer­
tain speed and using any standard software package.
This should give some information about the short­
est possible wall-clock time using the fastest conceiv­
able software on the optimal number of fastest pos­
sible cores that could be employed given the value
log2(p) at hand. The simplest speed-up is overclock­
ing: clock-speeds close to 9GHz have been reported
(cf. [9]). For parameter choices as reported in Ta­
ble ?? it would lead to a wall-clock time guarantee
of about three minutes. The multi-core approaches
and runtime figures presented in [2,13] suggest that
for the lower range of log2(p)-values no further speed­
ups have been obtained. Similarly, a shortest possible
wall-clock time using special purpose hardware can be
derived, but published results (cf. [14,15,19]) seem to
suggest that the software results listed in Table ?? are
again hard to beat. For all time-security arguments
below, a conservative lower bound estimate of two
minutes will be used. But in the practical, down-to­
earth implementation of sloth the originally aimed for
wall-clock time of ten minutes on a single standard
core as above will have to be dealt with.

4	 Unicorn : uncontestable random
numbers

In this section unicorn is described, one of many con­
ceivable scenarios how sloth may be used to gener­
ate uncontestable random numbers: everyone may
contribute inputs to unicorn to influence its result
while no one will be able to knowingly bias the result
one way or another, everyone can quickly verify that
the resulting random numbers have been generated
according to the unicorn protocol, and all partici­
pants can check correct inclusion of their contribu­
tion. However, anyone who wants to use the outcome
of a particular execution of unicorn without taking
part in it, will have to trust that at least one par­
ticipant followed the rules: as is the case for current
lotteries and live-broadcast drawings, outsiders have
no choice but to believe the integrity of the outcome.

Unlike lotteries, however, anyone has the opportunity
to take part in unicorn even without being physically
present. The only requirement is to be on time. The
formal security notion of the incorruptibility of uni­
corn is described in the Appendix, and proved in the
case where the permutation σ used by sloth is a ran­
dom permutation.

Given a security level k and corresponding hash
function h (cf. Section 1), each execution of unicorn
proceeds on a time line from t−2 to t2 (with ti < tj

if i < j) as described below.

Unicorn
time t−2: It is publicly announced that public data

gathering will take place during the time interval
[t−1, t0). This announcement will be made on a
public website, along with instructions how data
may be contributed. For instance, contributors
could be invited to send a tweet with a specified
hashtag.

time t−1: Data reception starts: all data received
will be concatenated, in the order in which it ar­
rives, to form the public part s0 ∈ A ∗ of the input
to sloth.

time t0: Data reception stops, the resulting s0 is
published on the website right away, and sloth
is applied to the concatenation s = s0||s1 of
the public data s0 and the independently gen­
erated part s1. The first component c = h(h(s))
(the commitment to the input) of the output of
sloth is published on the website as soon as it
becomes available (i.e., almost instantaneously),
say at time t0 + γ for a very small positive γ.
Although γ in principle depends on the size of
s0, it can be expected to be a fraction of a sec­
ond because in practical circumstances h(s) can
be computed on-the-fly while contributions to s0

are still arriving. Even in the worst case γ will
be on the order of seconds at most, because it
takes only about a second to hash 100MB of data
(which will first have to be downloaded from the
server).

time t1 ≥ t0 + γ + ω: The second component g (the
hash, i.e., the uncontestable random number) and
the third component w (the witness) of the out­
put of sloth are published on the website, along
with the independently generated input s1.

time t2: At this point in time, everyone interested
should have been able to perform the sloth veri­
fication step for (s, c, g, w).

Choosing t−1. The value that needs to be picked
with most care is t−1. If all public contributions to
s0 are sent and received immediately after t−1, the
final s0 may be known shortly after t−1 as well. If
t0 − t−1 > ω, with ω the targeted computation time

for sloth, the party in control of selecting s1 has the
opportunity to finish before time t0 parallel compu­
tations of sloth for many distinct possibilities for the
value of s1. A particular s1 choice can then be com­
mitted to at time t0, with the biased corresponding
output of sloth (already known at time t0) publicly
revealed only at time t1.

It follows that t0 − t−1 must be small compared
to the fastest conceivable wall-clock time required for
the computation of sloth. Given the considerations at
the end of Section 3.4 and a targeted ten minute wall-
clock time for the computation of sloth, the point in
time t−1 should not be more than two minutes be­
fore t0. Or, if that is not an option, participants may
be encouraged to submit their contributions close to
the deadline t0. Indeed, that is what smart partici­
pants will do anyway, as submitting at time t < t0

implies one has to trust that sloth must take wall-
clock time more than t0 +γ −t to compute. Combined
with the observable, very small γ (as t0+γ is the point
in time that the commitment value is published) the
time-window for surreptitious sloth computations can
be made infeasibly short.
Generating s1. The value s1 ∈ A∗ complementing
the public input s0 is included in unicorn for the fol­
lowing reasons:

1. to increase the entropy, if s0 (which may be lack­
ing altogether) has no or little entropy;

2. to replace	 (or complement) the s0-contribution
(e.g., the tweet) for people who are physically
present, in a way that is instantaneous and guar­
anteed to be included;

3. to add a salt-value that is not shared before time
t1, so other parties cannot perform sloth before
t1;

4. to include elements that no one can control (e.g.,
the weather; cf. the unicorn application in Sec­
tion 5).

At this point, it should be emphasized that a
party who contributed to s0, e.g., via a tweet, does
not need to trust that s1 was generated honestly; as
proven in the Appendix, the incorruptness of the out­
come can be deduced by any participant from their
own (honest) contribution to s0. The raison d’être of
s1 are the four points above, and adding it does not
weaken the trust a participating party can have in
the outcome.

The value s1 can be independently generated in
the following manner. It is assumed that the comput­
ing device on which unicorn is executed has a digital
camera with an unobstructed view of a public area
where the goings-on can be monitored (and partici­
pated in) by anyone who desires to do so. At time

t0 the camera will take a picture (or, alternatively,
a short video clip, possibly including a sound bite),
resulting in a jpg-file (or other applicable format) s1.
For reasons set forth below, this set-up may be com­
plemented by a full-time webcam connected to an
independent other computer, the live output-stream
of which is made available on the same website as
above.

Given the uniqueness of the camera’s point of
view, the type of scene captured, and the alleged
properties of the hash function h, the value h(s) and
the second component g of the output of sloth may be
assumed to behave as random elements of Hk/2 (and
thus as random integers in {0, 1, . . . , 22k −1}), by any
party including the party C that executes unicorn,
and for any value of t0. So far this assumption has
not been contradicted by [16]. Extensive experiments,
also at night-time and with or without s0-values (or
s0-values identical to previously used ones), show that
the h(s)-values resulting from consecutively taken
pictures s1 are uncorrelated (cf. [16]). This lack of
correlation between the h(s)-values may be accred­
ited to the cryptographic hash function h and the
necessary difference between the jpg-encapsulations
(among others caused by even the tiniest time dif­
ference) even though the actual jpg-payloads of con­
secutive pictures are obviously strongly correlated to
the human eye. However, despite this strong percep­
tual correlation, the bit-level difference between any
pair of distinct jpg-payloads was found to be large
compared to any regular cryptographic security level,
both before and after the compression used to gener­
ate the payload, and for any reasonable camera res­
olution. It is a sub ject of further investigation to de­
termine how this difference behaves as a function of
the temporal closeness of consecutive pictures. In any
case, given any number of past s1-values it is infeasi­
ble – to anyone – to predict a future one.

Once the picture s1 is published, parties that have
monitored the scene at time t0 can attest to its cor­
rectness, for instance by pointing out that the picture
indeed shows them waving at the camera – parties
who cannot be present may prefer to contribute a
tweet to s0 instead. Independently it can be checked
that there are no discrepancies with what appeared
on the webcam’s live-stream around time t0. For ad­
ditional assurance the scene captured by the camera
could include a screen that is constantly refreshed
with the latest information from popular news web­
sites or live TV-broadcasts, thereby independently
fixing s1 in time.

With s1 fixed in time, and its commitment im­
mediately published, there is no opportunity for the
party C that is in control of the system to select s1

in a meaningful manner from any number of alterna­
tives, because of the slowness of sloth. Without sloth
biased results are conceivable: it suffices for C to have
access to enough computational resources to simulta­
neously test many alternatives in a short amount of
(wall-clock) time.

Earlier independent work that collects entropy in
a similar fashion can be found in [22,8]; see also [18].
Formatting and restricting s0. For reference and
cosmetic reasons begin and end markers may be used
for the public part s0 of the input: before time t−1

data collection could be initiated with the unix com­
mand

date "+[start %Y%m%d:%H%M%S" > s0,

terminating it at time t0 with

date "+%Y%m%d:%H%M%S stop]" >> s0.

An invitation to contribute data may trigger at­
tempts to cause trouble, so the data received will have
to be filtered and may have to be restricted to strings
over a subset of A.
Number of participants. The number of messages
from participants that an actual implementation can
handle depends on the physical set-up, the amount of
hardware employed, and, if applicable (cf. potential
usage of tweets), on the resources of the social media
provider(s) involved. The current record number of
tweets per second suggests at most ten million mes­
sages per minute, which sounds challenging to deal
with. But given the very limited public concern about
the issues raised in this paper ([3] may be the most
prominent one, and only concerns a niche market)
there is no reason to be concerned that a single desk­
top computer would not be able to handle the load.
On the other hand, one never knows what sudden en­
thusiasm there may be to really play the lottery, to
make one’s mark on the FIFA pool selection process,
or for the rise of Athenian democracy 2.0.

5	 Trx : trustworthy random elliptic
curves service

This section proposes trx, a service that provides a
stream of trustworthy random elliptic curve param­
eters suitable for cryptographic applications. It uses
a mild adaptation of unicorn and is currently being
implemented. Thus, compared to other methods that
have been used to generate elliptic curve parameters,
trx introduces a new way to deal with the trust issue:
everyone can influence and verify the choices made
by trx, but no one (including party C that controls

the set-up) can knowingly affect the choices to any­
one’s advantage or disadvantage. Because the result­
ing parameters cannot be predicted or effectively ma­
nipulated, the possibility is prevented of prior crypt-
analysis or of targeting malicious choices. Along with
each parameter choice, trx provides information that
allows any party to ascertain that the resulting pa­
rameters were calculated in a deterministic manner
based on the random number produced by unicorn.
Trx does not enable the user community to fully ex­
ploit the wealth of suitable random curves in a fully
personalized manner, the possibly preferred method
mentioned in Section 1: that would require substan­
tially faster point counting. But trx does away with
the fixed small set of elliptic curve parameters cur­
rently used, and it allows usage of parameters that
are frequently refreshed and that cannot have been
scrutinized before.

The above summary presents trx from a high level
point of view. The remainder of this section describes
two parts in more detail: the physical set-up of the
unicorn-variant used, and the deterministic compu­
tation of elliptic curve parameters as a function of a
seed value. Many more or less equivalent methods ex­
ist for the latter computation, none of which are par­
ticularly interesting and one of which can be found
below – for documentation purposes only, and with
further details provided when trx comes online. The
two main steps are followed by a brief description of
the planned long term operation of trx and a short
discussion on various trust issues.
Trx set-up. The currently envisioned set-up con­
sists of a computing device D at a physically secure
location. D has a single digital camera with an unob­
structed view of a public, outside area that is suffi­
ciently large and busy: the view comprises a parking
lot with working street lights, a relatively busy road,
a glittering lake, and a mountainous part of a foreign
country, all across the street from C’s third floor of­
fice and all with snow patterns, cloud formations, and
other occurrences that are beyond anyone’s control.

Two options are under consideration for the com­
munication with D. The first, straightforward one
would use a regular TLS connection to a nearby web-
connected server that instantaneously posts data re­
ceived from D (ti-values, sloth commitments, other
sloth results along with their s-values, and of course
everything related to the resulting elliptic curve pa­
rameters) and transmits unicorn’s s0-contributions
(cf. Section 4) to D, everything at the shortest pos­
sible delay (on the order of a fraction of a second).

The other option under consideration would en­
tirely shield D from any attempts at interference with
its operations, by only allowing outgoing communi­

cations from D via a data diode. This implies that
unicorn must rely exclusively on the value s1 as gen­
erated by D, as there is no way for contributions made
to s0 to reach D. For a rather arcane activity such
as elliptic curve parameter generation which, further­
more, runs continuously, little interest from the pub­
lic at large may be expected, so excluding participa­
tion from parties who cannot be physically present
is probably not a serious issue. But it puts a heav­
ier burden on party C running the system to present
convincing evidence that the picture taken at time t0

is not replaced by a possibly manipulated one. Pre-
announcing the moments in time that the pictures
will be taken (the points in time t0 for each execu­
tion of unicorn) along with a webcam running on the
webserver capturing the same scene (from a slightly
different angle) goes a long way to address this prob­
lem: this allows validation of the scene of the picture
by the time the picture and the resulting set of pa­
rameters get published. It also allows any interested
party to visit the public area captured by the camera
at the scheduled time to add – and later check the
presence of – a personalized touch to the parameter
generation process (which does not require physical
presence if s0 is used, as in the other set-up). As men­
tioned in Section 4 an additional confidence-inspiring
measure would be to include in the scene captured
by the camera a screen with constantly updated in­
dependent live information. The amount of trouble
to be invested to address this concern should be com­
mensurate with the perceived practical importance of
trx. As a general piece of advice to prospective users
of the resulting parameters: if you don’t like the pic­
ture, don’t use the resulting parameters and wait for
a next batch.
Elliptic curve parameter generation. Let k be a
security level and h the corresponding hash function,
as in Section 1. As an example of elliptic curve param­
eter generation consider random twist secure curves.
In this case a triple (δ, α, β) ∈ (Hk/2)3 is called ac­
ceptable if

–	 the number q = int(δ) is a 2k-bit prime;
–	 the pair (a, b) ∈ (Fq)

2 , where the lifts (a,(b ∈
{0, 1, . . . , q − 1} of a and b are modulo q equal
to int(α) and int(β), respectively, defines an el­
liptic curve E over Fq such that the order of the
group of points of E over Fq and the order of the
group of points of the quadratic twist of E over
Fq are both prime.

This definition is just an example of one of many dif­
ferent sets of criteria that can be imposed. Refer to [4]
for a good overview of additional or different require­
ments (bounding the embedding degree from below,

other types of curves such as Edwards curves, etc.).
Information specifying an appropriate base point can
trivially be added.

A method is described that given an input value
g ∈ Hk/2 (as produced by unicorn) deterministically
determines an acceptable triple in (Hk/2)3, and that
can trivially be changed to cater to any other defi­
nition one sees fit for a triple to be acceptable. Let
F = {δ, α, β } be a set of iterated hash functions from
Z≥0 to Hk/2 with δ(0) = h(g||p), α(0) = h(g||a),
β(0) = h(g||b) (with “||” denoting concatenation),
and f(i) = h(f(i − 1)) for all f ∈ F and i ∈ Z>0.
Let I(−1) = −1 and I(j) = min{i : i > I(j −
1), int(δ(i)) ≥ 22k−1 , int(δ(i)) is prime}.

Random twist secure elliptic curve parameter
generation
1: For i = 0, 1, 2, . . . in succession do the

following:

2: For j = 0, 1, 2, . . . , i in succession do the
following:

3: For v = 0, 1, 2, . . . , i − j in succession
do the following:

4: If the triple (δ(I(j)), α(v),
β(i − j − v)) is acceptable:

5: Return the triple along with
the values i, j, and v and quit.

Checking acceptability of triples can be done using a
standard software package (such as MAGMA or Sage)
or using one’s own software. For each triple that was
found not to be acceptable, a small amount of data
may be provided that would facilitate a check that the
acceptable triple as produced is indeed the first one
(given the chosen enumeration). Experiments are un­
derway to decide on the most efficient approach. On a
single core running at 2.3GHz parameter generation
times vary from less than two hours for k = 128 to
about a week for k = 256.

If parameter generation (as above, or of simple
modifications that cater to other requirements) fails
due to a cycling hash then there is obviously cause
for celebration, but h should be replaced – not just
for the purposes of the present paper – by a hash
function for which the security assumptions have a
higher chance to be correct. So far all iterated hashes
generated as above passed the tests from [16].
Operation of trx. The implementation of trx that is
currently underway will run twelve independent pro­
cesses, one on each of twelve cores of a desktop com­
puter: for each security level k ∈ {128, 192, 256} four
different types of twist secure elliptic curves may be
generated (with q, a, and b as above): either a random
q or q chosen in a fixed set of 2k-bit primes that allow
fast modular arithmetic (pseudo-Mersenne primes),

both either with random a and b or with fixed a (i.e., xa = q − 3) and random b. Depending on feedback
that may be received, either of these possibilities can
be replaced by others that are felt to be more useful
or desirable; or a wider variety of parameter choices
may be offered (though less efficiently if using the
same hardware) by alternating between different gen­
eration processes.

Each of the twelve processes operates in the
same manner, independent of each other and each
with their own unique process-identifier (or hashtag).
Given some pre-announced future moment in time
t−2, and assuming public data are accepted, the fol­
lowing steps are performed in immediate succession:

1. The future point in time t−2 along with t−1 a few
minutes later than t−2 and t0 two minutes later
than t−1 are transmitted to the server and pub­
licly announced (for the process-specific identifier
or hashtag).

2. Assign an adequate initial value to	 s0 and wait
until time t−1.

3. During the time interval [t−1, t0) concatenate to
s0 all process-relevant data received from the
server and start calculation of h(s0).

4. At point in time t0 take a picture resulting in a
jpg-file s1, transmit h(s1), s0 as received (which
may be a proper subset of the data sent by the
server, and possibly with an appropriate termina­
tion appendage) and h(s0) to the server for im­
mediate publication on the website, and start the
calculation of sloth (calibrated to take ten min­
utes). The first component of the output of sloth,
the commitment value c, is immediately (i.e., at
time t0+γ for a very small positive γ) transmitted
to and published by the server.

5. At a point in time about ten minutes after t0, the
calculation of sloth is completed and the applica­
ble elliptic curve parameter generation process is
started using as input the second component g of
the output of sloth.

6. Define	 t1 as the point in time that the elliptic
curve parameter generation process is finished.
At this point in time, transmit the picture s1,
the second and third components of the output
of sloth (the hash g and the witness w), and the
output of the elliptic curve parameter generation
process to the server for immediate publication.

7. Replace t−2 by t1 plus a few minutes and return
to Step 1.

The scenario where no public data are accepted fol­
lows in a straightforward manner.
Trust issues. As argued above, the only advantage
that the party C in control of the system gets is a

headstart cryptanalyzing the elliptic curve parame­
ters resulting from the calls to sloth. When C plays
fair and publishes newly generated parameters with­
out delay, this cryptanalytic advantage is on the or­
der of seconds. From the output of the parameter
generation process and additional data that may be
provided along with it (as suggested above) it can
easily be inferred how long the computation should
have taken, so the possibilities for cheating are lim­
ited. C could, surreptitiously, have access to more
computational resources and perform parameter gen­
eration much faster. On average, this buys C at most
a week headstart for the cryptanalysis for the high­
est security level k = 256, and less than two hours
for k = 128: either way, the advantage is insignificant
compared to the alleged security provided.

Although the correctness of each resulting param­
eter set can quickly, independently, and conveniently
be checked, it can hardly be expected that all users
will consistently do so. Once trx is established (if ever)
as a trustworthy service, the parameters produced by
it could become trusted by default, at which point
party C could decide to sneak in a manipulated curve,
take advantage of it and leave with the profits, never
to be heard of again. Obviously, this would tarnish
C’s reputation. It may help if C is a party that can
reasonably be expected to be concerned about rep­
utational loss – unfortunately, this is something one
never knows in advance.

6 A tool for democracy

Randomness can play a crucial role in various mod­
els of governance. The first known democracy in the
world, in the Greek city-state of Athens, distributed
the power to assemblies of randomly selected citi­
zens. In today’s world, the benefits of sortition-based
democracy are defended by some as a fairer alterna­
tive to elected assemblies. Without going as far as a
full Athenian-like democracy, more familiar modern-
day models of governance can make use of random-
sample voting: instead of consulting the full popu­
lation for elections or referenda, one can randomly
select a small, yet statistically significant, sample of
voters. Such a system is advocated as leading to a bet­
ter quality voting at a far lower cost [6]. In Switzer­
land, the population regularly votes for diverse elec­
tions, referenda, and popular initiatives. For reasons
of cost, these so-called votations are organized four
times per year, each time about multiple topics. Be­
ing solicited so often about so many questions some­
times far from their everyday life, voters can feel over­
whelmed and unable to develop an informed opinion
for each of them. In such a system, replacing the full

population by random samples would have multiple
advantages: while remaining statistically representa­
tive as long as the sample has an appropriate size,
the costs would be dramatically reduced. At the same
time, each voter would be requested much more rarely
and about a single question at a time, allowing for a
more important involvement.

Whether it be for legislative assemblies, small
samples of voters, or juries for public policy, the ran­
dom sampling must be conducted in a trustworthy,
incorruptible and verifiable manner. Advocating for
setting up a Parliament of randomly sampled citizens
in Northern Ireland, John Garry wrote (cf. [12]):

There are three crucial ingredients for a
high quality democracy: a very large hat, a
pen and lots of small bits of paper. Write the
name of each citizen in the land on a bit of pa­
per, put all the bits of paper in the hat, close
your eyes and pluck out 500 names from the
hat. Write to each of the 500 saying: “Con­
gratulations, you have been picked as one of
the 500 people who will run the country for
the next five years.”

Of course a giant hat and millions of pieces of pa­
per are metaphorical and do not constitute a prac­
tical setup: a feasible, fair and incorruptible proce­
dure needs to be defined. Designing such a method
is a delicate task which [10] tries to address. As in
trx, it boils down to two main components: a pub­
lic random number generator, and a deterministic
procedure which when fed a number outputs a sam­
ple of citizens (respectively, an elliptic curve), in a
completely unambiguous and verifiable manner. This
second component needs to be precisely defined and
published ahead of the random number generation.
It should also be unbiased: no particular set of vot­
ers should be advantaged as long as the random
seed is uniform. Straightforward ways to achieve this
could use cryptographic hash functions and reduc­
tions modulo the size of the pool of potential voters,
and an unambiguous ordering of the list of poten­
tial voters. An example of a precise procedure can be
found in [10, Paragraph 4], and for discussions on how
to design this component in order to render vote buy­
ing or other ways to influence the voters impractical,
see [6].

In the following, the random number generation
is addressed. It is critical that the random number is
generated in an incorruptible manner. If the party
conducting the generation is simply asked to pro­
vide a number without any justification that it is
“random”, it would be trivial for them to provide a
“random-looking” number carefully cooked to result

in a biased sample of voters. Classical methods as de­
scribed in [10, Paragraph 3] are not that trivial to
fool, yet are still sub ject to corruption or other forms
of manipulation. The author of [10] suggests to select
different sources of randomness in advance (examples
include government run lotteries, the daily balance in
the US Treasury, or sporting events), and to combine
the outcomes via a cryptographic hash function. Be­
sides a few technical issues that need to be addressed
(enough entropy has to be gathered, and the format
of all the data needs to be canonicalized) matters of
greater concern arise: various strategies are conceiv­
able to manipulate those sources. Great care needs
to be taken to audit each of them, and even if vari­
ous presumably independent parties are involved, not
every skeptical citizen can be given the chance to per­
sonally make sure everything went right and no form
of manipulation was going on.

This trust issue can be addressed by unicorn. A
similar setup as used for trx would allow any citi­
zen to contribute very easily to the random number
generation, by simply publishing a tweet including a
specified hashtag during an announced time interval.
Then, by checking if their tweets appear in the in­
put of sloth, and running the fast sloth verification,
they can make sure the outcome has not been ma­
nipulated. The very concerned citizen will make sure
to tweet high entropy, unpredictable data, as close
as possible to the time t0. This process transfers the
power from the auditing authorities or media, to the
hands of any person willing to get involved.

7 Conclusion

It was shown how high entropy public random val­
ues can be generated in a verifiable and trustwor­
thy manner. Applications were presented to param­
eter selection for elliptic curve cryptosystems and to
democratic random sampling.

In the same vein as trx, unicorn could be used to
generate constants for other kinds of cryptographic
standards. In [20], it is described how to design the
constants of the S-boxes in some block ciphers to hide
a trapdoor. Similarly, [1] exposes a way to weaken
SHA-1 and find collisions by simply tweaking its
round constants.

Public randomness has also found applications
in the context of cryptographic elections. For audit­
ing via random selection, or the generation of ran­
dom challenges in cryptographic election systems, the
source of randomness has to be unpredictable and
incorruptible. As an example, in at least two cases,
the random generation was based on financial data

(in [11] and [7]). Entrusting unicorn with the ran­
dom number generation would allow anyone to verify
the outcome irrespective of one’s faith in the unmal­
leability of published financial data.

Unicorn could also be considered as a building
block for a secure random beacon. A random beacon
is an online service that makes available fresh random
numbers at regular intervals. Unlike the current NIST
randomness beacon [17], the use of unicorn would
provide a way to verify that the claimed random val­
ues are indeed fresh, and have not been cooked in ad­
vance by the service provider, without the need to be
physically present to check that their complex quan­
tum source of entropy is really doing its job. A ser­
vice that provides allegedly random numbers whose
trustworthiness cannot be verified is frowned upon, in
particular if the service comes with precise ways how
to use the random numbers along with an imprecise
description of how not to use them.

As a final note of warning, it could be tempt­
ing to use the live events capturing method to col­
lect entropy (cf. generation of s1 in Section 4) for
usage in private key selection or nonce generation
on, say, smartphones. In principle this is possible,
but it would require the assumption that it is pos­
sible to compute hashes or to make recordings, pic­
tures, or videos that are guaranteed not to be shared
with other parties. One does not have to be overly
paranoid to suspect that such a guarantee cannot be
given, in particular if smartphones are involved.
Acknowledgement. The authors thank Rob
Granger for pointing out [3] and for many useful
discussions and comments on draft versions of this
paper, and Ian Goldberg for his insightful feedback.

References

1.	 A. Albertini, J.-P. Aumasson, M. Eichlseder,
F. Mendel, and M. Schläffer. Malicious hashing: Eve’s
variant of SHA-1. In A. Joux and A. Youssef, editors,
Selected Areas in Cryptography – SAC 2014, volume
8781 of Lecture Notes in Computer Science, pages 1–
19. Springer International Publishing, 2014.

2.	 S. Baktir and E. Savas. Highly-parallel Montgomery
multiplication for multi-core general-purpose micro­
processors. In E. Gelenbe and R. Lent, editors, Com­
puter and Information Sciences III, pages 467–476.
Springer London, 2013.

3.	 D. J. Bernstein, T. Chou, C. Chuengsatiansup,
A. Hülsing, T. Lange, R. Niederhagen, and C. van
Vredendaal. How to manipulate curve standards: a
white paper for the black hat. Cryptology ePrint
Archive, Report 2014/571, 2014. http://eprint.
iacr.org/2014/571.

4.	 D. J. Bernstein and T. Lange. Safecurves: choos­
ing safe curves for elliptic-curve cryptography. http:
//safecurves.cr.yp.to, accessed 2 September 2014.

5.	 Businesspundit. Biggest lottery scandals.
http://www.businesspundit.com/5-of-the­

biggest-lottery-scandals, 2012.
6.	 D. Chaum. Random-sample elections: Far lower cost,

better quality and more democratic, 2012.
7.	 D. Chaum, R. Carback, J. Clark, A. Essex, S. Popove­

niuc, R. L. Rivest, P. Y. A. Ryan, E. Shen, and A. T.
Sherman. Scantegrity ii: End-to-end verifiability for
optical scan election systems using invisible ink con­
firmation codes. In USENIX/ACCURATE Electronic
Voting Technology Workshop (EVT), 2008.

8.	 I.-T. Chen. Random numbers generated from audio
and video sources. Mathematical problems in engi­
neering, 2013:7, 2013.

9.	 CPU-Z OC world records. http://valid.canardpc.
com/records.php, 2015.

10.	 D. Eastlake 3rd. Publicly verifiable nominations com­
mittee (NomCom) random selection, 6 2004. RFC
3797.

11.	 A. Essex, J. Clark, R. T. Carback, and S. Popove­
niuc. Punchscan in practice: an e2e election case
study. In IAVoSS Workshop on Trustworthy Elec­
tions (WOTE), 2007.

12.	 J. Garry. Randomocracy in Northern Ire­
land. http://sluggerotoole.com/2015/03/21/
randomocracy-in-northern-ireland/, 2015.

13.	 P. Giorgi, L. Imbert, and T. Izard. Parallel modu­
lar multiplication on multi-core processors. In Com­
puter Arithmetic (ARITH), 2013 21st IEEE Sympo­
sium on, pages 135–142, April 2013.

14.	 M. Huang, K. Gaj, and T. El-Ghazawi. New hard­
ware architectures for montgomery modular multipli­
cation algorithm. Computers, IEEE Transactions on,
60(7):923–936, July 2011.

15.	 M. E. Kaihara and N. Takagi. A hardware algo­
rithm for modular multiplication/division. Comput­
ers, IEEE Transactions on, 54(1):12–21, 2005.

16.	 G. Marsaglia. The Marsaglia random number cdrom
including the diehard battery of tests of randomness,
1995. http://www.stat.fsu.edu/pub/diehard/.

17.	 NIST randomness beacon. https://beacon.nist.
gov, 2011.

18.	 L. C. Noll, R. G. Mende, and S. Sisodiya. Method
for seeding a pseudo-random number generator with
a cryptographic hash of a digitization of a chaotic
system, March 1998. U.S. patent number 5,732,138
A.

19.	 S. Ors, L. Batina, B. Preneel, and J. Vandewalle.
Hardware implementation of a montgomery modular
multiplier in a systolic array. In Parallel and Dis­
tributed Processing Symposium, 2003. Proceedings.
International, April 2003.

20.	 V. Rijmen and B. Preneel. A family of trapdoor ci­
phers. In E. Biham, editor, Fast Software Encryption,
volume 1267 of Lecture Notes in Computer Science,
pages 139–148. Springer Berlin Heidelberg, 1997.

http://eprint.iacr.org/2014/571
http://eprint.iacr.org/2014/571
http://safecurves.cr.yp.to
http://safecurves.cr.yp.to
http://www.businesspundit.com/5-of-the-biggest-lottery-scandals
http://www.businesspundit.com/5-of-the-biggest-lottery-scandals
http://valid.canardpc.com/records.php
http://valid.canardpc.com/records.php
http://sluggerotoole.com/2015/03/21/randomocracy-in-northern-ireland/
http://sluggerotoole.com/2015/03/21/randomocracy-in-northern-ireland/
http://www.stat.fsu.edu/pub/diehard/
https://beacon.nist.gov
https://beacon.nist.gov

21.	 D. Simmons. US lottery security boss charged
with fixing draw. http://www.bbc.com/news/
technology-32301117, 2015.

22.	 J.-M. Tsai, I.-T. Chen, and T. Jengnan. Random
numbers generated from white noise of webcam. In
International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, pages 214–
217. IEEE, 2009.

23.	 Wikipedia. Pennsylvania lottery scan­
dal. http://en.wikipedia.org/wiki/1980_
Pennsylvania_Lottery_scandal, 1980.

A	 Incorruptibility of unicorn in the
random oracle model

In this appendix, the incorruptibility of unicorn is
discussed, and analysed in the case where the permu­
tation σ used in sloth is a random permutation of F× .p
The proof relies on the assumption that square root
extraction cannot be done faster than an exponenti­
ation in Fp. Let Sp ⊂ F× denote the set of non-zero p
squares in the field Fp.

Definition 1. Given the length Δ > 0 of a time in­
terval, a probability E, and a bound c on computa­
tional resources, the (Δ, E, c)-sqrt(Fp) assumption is
the following: any party with resources bounded by c
that gets a uniformly chosen α ∈ Sp at time t, suc­√
ceeds with probability at most E to compute α at or
before time t + Δ.

Remark 1. The bound c deals with the computa­
tional speed, parallelism, and the amount of available
precomputed data. From now on, it will be omit­
ted, considering that it corresponds to any set of
state-of-the-art computing devices worth a polyno­
mial amount of money. All parties are supposed to
be bounded by c, and the assumption in Definition 1
will be referred to as the (Δ, E)-sqrt(Fp) assump­
tion. Based on the best of current knowledge about
square root extraction in finite fields, the assump­
tion seems reasonable for Δ = Ω(log(p)M(p)), where
M(p) is the time complexity of multiplication in Fp, (and E = O(p−1/2) (the latter because square root ex­
traction can be very fast for α = β2 with β̂ bounded
by p1/2 times a factor polynomial in log(p)). It should
be stressed that this is just an assumption: (p − 2)­
nd-powering modulo a prime p, for instance, can be
done much faster than in time Ω(log(p)M(p)).

Remark 2. Under the (Δ, E)-sqrt(Fp) assumption, if
there is some λ such that α follows a distribution
µ : Sp → [0, λ/|Sp|] as opposed to the uniform distri­
bution on Sp, the success probability is at most λE.

Indeed,
Pr(success) = µ(β) Pr[success|α = β]

β∈Sp λ ≤ Pr[success|α = β] ≤ λE.
|Sp|

β∈Sp

The incorruptibility of unicorn is measured as a
bound on the probability of winning the unicorn cor­
ruption game, a game consisting in compelling uni­
corn to produce an output (the presumably ran­
dom number) with a targeted property. This targeted
property is encoded by a map b : Hk/2 → {0, 1}. If g
denotes the outcome of unicorn, the goal is to have
b(g) = 1. In unicorn, the input of sloth is the con­
catenation of the contributions of any number of in­
dividual participants. The only part of the input that
a particular participant can trust is its own contribu­
tion, which can be chosen by the participant to be
uniformly distributed in Hk/2 (which easily fits into
the at most 140 characters allowed in a tweet), and
could be extracted from the concatenation via a map
f : A∗ → Hk/2. The concatenated data s is commit­
ted to at time t0 when fed into sloth. As long as the
commitment is not broken (which would imply find­
ing a collision in h), the unicorn -generated random
number at time t1 will be the hash value resulting
from sloth applied to input s. Then the incorrupt­
ibility of unicorn reduces to the difficulty of finding
suitable data s ∈ A∗ to commit to at time t0 when
the last honest contribution x is published at time
t0 − δ. Therefore the game goes as follows: at the
start of the game a time limit δ is given along with a
uniformly random input x ∈ Hk/2. The game is won
if within time δ a value y ∈ A∗ is produced such that
f(s) = x, and b(g) = 1, where g is the hash value
resulting from sloth applied to input s. It is worth
emphasizing that this security model not only deals
with dishonest contributors, but also with any at­
tempt of the party centralising the process (generat­
ing the value s1, committing to the data and running
sloth) to bias the outcome.

Proposition 1 (Unicorn incorruptibility in the
random oracle model). Let Δ and E be such that
the (Δ, E)-sqrt(Fp) assumption holds. If σ : F× →p

→ Hk/2F×	 is a random permutation, h : A∗ from p
Section 1 is a random function, and the number of
queries to the σ- and h-oracles is limited to q > 0
(including precomputations), then the probability Prw

to win the unicorn corruption game with time limit
δ < £Δ for a target property b : Hk/2 → {0, 1} is at
most q/22k−1 + E£q(p − 1)/(p − 1 − q) + q/(p − 1 −
q) + |b−1({1})|/22k .

http://www.bbc.com/news/technology-32301117
http://www.bbc.com/news/technology-32301117
http://en.wikipedia.org/wiki/1980_Pennsylvania_Lottery_scandal
http://en.wikipedia.org/wiki/1980_Pennsylvania_Lottery_scandal

Remark 3. In other words, by contributing to uni­
corn within the time interval (t0 −£Δ+γ , t0], one can
make sure the output is not corrupted (unless a colli­
sion has been found in h). The first three terms in the
bound on the probability are all negligible when q is (polynomial in the security level k, and E = O(p−1/2).
The last term is the probability of a uniformly chosen
g ∈ Hk/2 to satisfy b(g) = 1.

Remark 4. The slowness of computing sloth can eas­
ily be deduced from this result. In order to find a valid
output for sloth on a random input, there is no faster
strategy than computing £ square roots sequentially.

Proof. Let Qt (respectively, Rt) be the set of queries
to the σ-oracle (respectively, h-oracle) done before
point in time t since the start of the unicorn cor­
ruption game (with Q0 and R0 the precomputed
queries), with α ∈ Qt denoting that the value of
σ(α) was queried before time t. Suppose that on input
x ∈ Hk/2, a string s ∈ A∗ is output. Let w ∈ F× be p
the corresponding sloth witness, and g = h(hex(̂w))
be the hash. Winning the game implies that s is out­
put at or before time δ, that b(g) = 1, and that
f(s) = x. Then,

Prw ≤ Pr[b(g) = 1|f(s) = x].

By abuse of notation, all the following probabilities
will be conditional in f(s) = x. Applying the law of
total probability,

Prw ≤ Pr[b(g) = 1]

≤ Pr[hex(̂w) ∈ Rδ] + Pr[b(g) = 1|hex(̂w) ∈ Rδ].

If hex(̂w) ∈ Rδ , then g = h(hex(̂w)) is uniformly dis­
tributed in Hk/2 so the second term is |b−1({1})|/22k .
For the first term, the law of total probability yields

Pr[hex(̂w) ∈ Rδ]

≤ Pr[w ∈ Qδ] + Pr[hex(̂w) ∈ Rδ|w ∈ Qδ].

In the second term, as w ∈ Qδ, the witness w is
uniformly distributed among the elements of F× notp
previously chosen by the σ-oracle, so Pr[hex(̂w) ∈
Rδ|w ∈ Qδ] ≤ q/(p − 1 − q). With wi as in the defi­
nition of sloth, the first term is split into

Pr[w ∈ Qδ]

≤ Pr[w£−1 ∈ Qδ−Δ] + Pr[w ∈ Qδ|w£−1 ∈ Qδ−Δ].

Considering the second term, it follows from w£−1 ∈
Qδ−Δ that there is time at most Δ to compute w£ =
τ(w£−1) = ρ(σ(w£−1)), where σ(w£−1) is uniformly
chosen among the elements of F× not previously cho­p
sen by the σ-oracle. The (Δ, E)-sqrt(Fp) assumption
combined with Remark 2 then implies the bound
Pr[w ∈ Qδ|w£−1 ∈ Qδ−Δ] ≤ Eq(p − 1)/(p − 1 − q).

The term Pr[w£−1 ∈ Qδ−Δ] is handled by induc­
tion, computing Pr[w£−j ∈ Qδ−j Δ] for each j from
1 to £ − 1. The same reasoning as in the previous
paragraph leads to

Pr[w£−j ∈ Qδ−jΔ] ≤ Pr[w£−(j+1) ∈ Qδ−(j+1)Δ]

+ Pr[w£−j ∈ Qδ−jΔ |w£−(j+1) ∈ Qδ−(j+1)Δ],

and

Pr[w£−j ∈ Qδ−jΔ |w£−(j+1) ∈ Qδ−(j+1)Δ]

p − 1 p − 1 ≤ Eqj ≤ Eq ,
p − 1 − qj p − 1 − q

where qj is the number of oracle queries done before
time δ − j Δ. Inductively,

p − 1
Pr[w ∈ Qδ] ≤ Pr[w0 ∈ Qδ−£Δ] + E£q .

p − 1 − q

It remains to bound Pr[w0 ∈ Qδ−£Δ]. Since δ < £Δ,
the queries of Qδ−£Δ were done during the precompu­
tation phase, before the input x was revealed. Then,

Pr[w0 ∈ Qδ−£Δ] ≤ Pr[w0 ∈ Q0]

≤ Pr[s ∈ R0] + Pr[w0 ∈ Q0|s ∈ R0].

If s ∈ R0 at the start of the game, h(s) is uniformly
Hk/2distributed over because h is assumed to be

a random function, so w0 is uniformly distributed
among the 22k corresponding elements of the field
(recall that 22k < p). Hence Pr[w0 ∈ Q0|s ∈ R0] ≤
q/22k. It is only for the remaining quantity Pr[s ∈ R0]
that the distribution of the input x comes into play.
Recall that all the probabilities where conditional in
f(s) = x (if it is false, the game is lost), and that x
is uniformly distributed over Hk/2. Therefore,

Pr[s ∈ R0] ≤ Pr[f(s) ∈ f(R0)] ≤ q/22k ,

which concludes the proof.

