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Abstract. Many applications require 
trustworthy generation of public random 
numbers. It is shown how this can be 
achieved using a hash function that is timed 
to be as slow as desired (sloth), while the 
correctness of the resulting hash can be 
verified quickly. It is shown how sloth can 
be used for uncontestable random number 
generation (unicorn), and how unicorn can 
be used for a new trustworthy random ellip­
tic curves service (trx) and random-sample 
voting. 
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1 Introduction 

There are many situations where large interests de­
pend on random choices. Obvious examples are na­
tional lotteries and sporting events schedules, but it 
also plays a role in governance. Sortition was the 
cornerstore of Athenian democracy, where both the 
βουλή (the legislative council) and the ‘ηλια‘ια (the 
supreme court) consisted of a random sample of citi­
zens. Even to the present day sortition-based democ­
racy is advocated by some as a fair and simple alter­
native to elected assemblies. 

The required random choices must be made in 
such a way that no one can knowingly bias the choices 
to anyone’s advantage or disadvantage, and such that 
everyone affected, directly or indirectly, can be as­
sured that foul play is impossible. Such assurance is, 
to some extent, meant to be provided by live broad­
casts of lotteries and draws for sports events. But 
multiple scenarios are conceivable to influence the 
outcomes, like any skilled prestidigitator can fool en­
tire crowds while publicly tossing a coin or rolling a 
die. 

In this paper potential solutions to this problem 
are discussed and a new one is proposed. The new 
approach relies on two simple observations. The first 
is that even though casual observation of events and 
human behavior may, on a short time scale, offer lit­
tle surprises or variation, at the bit level any even 

very briefly observed physical scene provides large 
amounts of entropy (including for cryptographic ap­
plications, and no matter how carefully the scene may 
have been orchestrated). Secondly, in many applica­
tions there is no time pressure: quite on the contrary, 
if one wants to turn the randomness selection into 
an entertaining public event it must be considered an 
advantage – also to cater to the expectations of spon­
sors and advertisors – if the proceedings are stretched 
a bit. 

Another application of uncontestable generation 
of random numbers without time pressure is the 
seeding of the generation of standardized parame­
ter choices for elliptic curve cryptography (ECC). Al­
though there are many elliptic curve parameters that 
would be suitable for ECC, there is only a small set 
of elliptic curve parameters that are recommended or 
standardized for general use [4]. Using one of these 
curves implies trusting the way it was generated. A 
particular choice of parameters could hide special 
properties and potential weaknesses only known be 
the party publishing the curve: [3] elaborates why this 
could be problematic even if care seems to be taken to 
avoid trust issues. Furthermore, any of these curves 
may already have been cryptanalyzed – for reasons 
unbeknownst to a new user, for instance because a 
worthwhile target uses it – and quite extensively so if 
the curve has been around for a while already. Unlike 
the trust issue, possibly long term prior exposure to 
cryptanalysis does not seem to be a concern that is of­
ten expressed. Nevertheless, there may be users that 
would prefer to always use parameters that are as 
fresh as possible or to use their own personalized pa­
rameters. This is not an option yet: due to the current 
state of the art in elliptic curve point counting, gener­
ating good random elliptic curve parameters is a te­
dious process whereas parameters that can be quickly 
generated (using the complex multiplication method) 
are frowned upon – albeit for unknown reasons. 

Classical methods that provide incorruptible pub­
lic randomness and their disadvantages are discussed 
in Section 2. Using a new slow-timed hash function, 
sloth, described in Section 3 (and pronounced “slow­
th”), a new approach to public randomness selection, 
unicorn, is proposed in Section 4: unicorn results in a 
high entropy random seed that can be influenced by 

http://en.wikipedia.org/wiki/The_Truman_Show
http://dictionary.cambridge.org/pronunciation/british/sloth
http://dictionary.cambridge.org/pronunciation/british/sloth


�  

anyone participating in the initial stages of its gen­
eration without any party being able to manipulate 
the outcome to its advantage, the correct generation 
of which can be verified by everyone, once the seed 
has been made public. A cryptographic application of 
the method from Section 4 is generating parameters 
for ECC. A service resulting from this application, 
trx, is currently being implemented and will produce 
a slow but constant stream of trustworthy random 
elliptic curve parameters at various security levels. 
Trx is described in Section 5. An application of the 
method from Section 4 to democratic voting proce­
dures is sketched in Section 6. The possibilities of 
using the newly proposed methods for other applica­
tions (including cryptographic elections, other cryp­
tographic standards and a random beacon) are briefly 
mentioned in the final section, Section 7. 

Notation. The integer k ∈ {128, 192, 256} denotes 
a security level. With k clear from the context, the 
cryptographic hash function h denotes the 2k-bit ver­
sion of the secure hash algorithm SHA-2. The func­
tion h is regarded as a function from A∗ to Hk/2 , 
where A∗ is the set of strings over some alphabet A 
and where H ⊂ A is the set {0, 1, . . . , 9, a, b, . . . , f}
of hexadecimal characters. The secure hash function 
SHA-2 may be replaced by any other suitable crypto­
graphic hash function one sees fit. It is assumed that 
the hash function satisfies the usual security require­
ment that it takes effort on the order of at least 2k to 
find a (chosen) pre-image or collision. The construc­
tions presented in this paper may fail if either of the 
security assumptions does not hold. If this happens in 
practice, the cryptographic hash function used should 
be considered to be broken, which would be a surpris­
ing side-result. 

The function int : H∗ → Z≥0 maps x ∈ H∗ in the 
canonical manner to the non-negative integer with 
hexadecimal representation x. Even though int is not 
injective (due to leading zeros), hex(n) = int−1(n) ∈ 
H∗ for n ∈ Z>0 is defined as the hexadecimal rep­
resentation of n, without leading 0-characters, and 
hex(0) = 0. 

For a prime p the finite field with p elements is 
denoted by Fp. The multiplicative group of Fp is de­
noted by F× . For x ∈ Fp the notation xx refers top 
the canonical lift to the set {0, 1, . . . , p − 1} of least 
non-negative residues modulo p. 

For any function f : D → R with R ⊆ D and 
£ ∈ Z≥0 the customary notation f £ is used for £-fold 
iteration of f : 

f £(x) = f(f(· · · f(x) · · · )) for any x ∈ D.   
£ 

2 Incorruptible public randomness 

Consider the problem where a set G of people wants 
to agree on a (pseudo)random number s in {0, 1}n 

for some n ∈ Z>0. They do not trust each other and 
they do not want any individual to be able to tam­
per with s in any meaningful way, i.e., being able 
to force s away from a uniform distribution. Because 
there is no way to guarantee that any party is in­
corruptible, an independent third party is not an op­
tion, certainly not one that (with a clever slight of 
hands) flips coins or rolls dice. Complex transparent 
machines with balls flying around in seemingly to­
tal chaos, as commonly used for national lotteries, 
are easy to fool [23,5]. The situation gets even worse 
when the winning numbers are generated by a com­
puter [21]. See also [10]. In this section a number of 
tempting approaches are discussed. They all appear 
to be flawed both from a security and a usability per­
spective, at least when the number of participants 
becomes large. 

A naive approach would be to let each g ∈ G 
independently choose an sg ∈ {0, 1}n , and to setp 
s = sg, where “⊕” denotes exclusive-or. As longg 
as at least a single sg is chosen uniformly and in­
dependently from all others, the resulting s will be 
uniformly distributed, no matter how the others col­
lude or otherwise fail to follow the rules. But the in­
dependence relies on the unrealistic assumption that 
all choices are perfectly synchronized: the party l ∈ G 
that last reveals its choice can target any value v forip r 
s by selecting sl = v ⊕ =l sg . g  

A common way to get around this problem uses 
commitments, resulting in a two-round protocol. 
First each party secretly chooses its sg and pub­
lishes a commitment cg to it; cg could for instance 
be h(h(sg )||idg), with h as in Section 1, and idg a 
unique identifier for party g. Once all parties have 
received all commitments, the sg-values are revealed,p 
the commitments checked, and the value s = sg is g 
calculated as usual. This clearly obviates the possibil­
ity for anyone to target a specific value or to bias the 
result: as long as one participant is honest (and not 
hacked by the others), the resulting s will be unbi­
ased, irrespective of any colluding group of dishonest 
other parties. 

In theory, using commitments works for any finite 
number of participants, assuming one is honest and 
not hacked. In practice, and in particular if the num­
ber of participants is large, a number of them may be 
expected to drop out between the two rounds, either 
due to technical problems or maliciously, and never 
reveal a value they have committed to. This results 
in a denial of service attack: the protocol will never 



finish because not all committed values are revealed. 
The attack can be countered by setting a time limit 
and to compute s as the exclusive-or of just those 
sg -values that have been received on time. However, 
this may make it possible for a malicious party g to 
influence the protocol in a meaningful way, by de­
ciding, right before the time limit, whether or not 
to reveal its sg depending on whether it prefers s 
or s ⊕ sg , where s is the exclusive-or of all values re­
ceived but not including sg. Such an attempt may 
fail if another malicious party independently tries to 
do the same, but may get worse if m parties collude, 
allowing them to choose the best among 2m possi­
ble outcomes. A single miscreant controlling m fake 
participants makes this scenario even worse. 

In the next section a slow-timed hash function is 
described that could be used to resolve this problem 
in applications where there is no need for an immedi­
ate result. The resulting protocol has only one round, 
and anybody can participate without prior notice. 
Also, unlike what was presented in this section, it 
is easy for anyone to take part in the process with­
out need for any special software or technical skills; 
indeed, it can be as easy as tweeting. 

3 Sloth : slow-timed hash 

In this section sloth is presented, a slow-timed hash 
function that satisfies the two following design crite­
ria: given any ω > 0 

–	 it must be possible to choose the parameters 
in such a way that computing sloth takes wall-
clock time at least ω seconds, irrespective of the 
amount of computer resources available; 

–	 the wall-clock time required to verify that the re­
sulting hash is correct must be modest compared 
to ω, the computation time required. 

3.1 A trivial iterative design 

It is not hard to design a function that meets the 
above requirements. Given a security level k and cor­
responding cryptographic hash function h as in Sec­
tion 1, computing the £-fold iteration h£ of h is in­
herently sequential and does not allow parallelization 
beyond a small constant number of cores (i.e., not de­
pending on £). Thus, £ ∈ Z>0 can be determined such 
that for any s ∈ A∗ the computation of h£(s) takes 
wall-clock time at least ω, on this same number of 
cores. Although verification of the result requires the 
same amount of computing, for any suitably chosen 
n with 2 ≤ n ≤ £ the wall-clock time for the verifi­
cation can be reduced by a factor of n using n-fold 

parallelization on n times as many resources, assum­
ing the n checkpoints hli£/nJ(s) for i = 1, 2, . . . , n 
are kept during the calculation of h£(s). To be able 
to guarantee a specified wall-clock time, usage of an 
ASIC-resistant hash function (combined with a reg­
ular one) could be considered. Another approach is 
pursued below. 

3.2 Using modular square roots 

More interesting solutions require functions that are, 
unlike cryptographic hash functions, easier to verify 
than to compute. Obvious candidates are the com­
monly used cryptographic trapdoor functions. For in­
stance, computing the hash could require the factor­
ization of a large integer or computation of a discrete 
logarithm in a suitably chosen group, while a wit­
ness (containing a factor or the discrete logarithm, 
respectively) would be provided along with the re­
sulting hash to allow fast verification. But wall-clock 
times for both these hard problems decrease mostly 
linearly with the amount of parallel resources avail­
able, making proper parameter selection cumbersome 
if not outright impossible. 

Another idea is to use polynomial factorization 
over finite fields, the simplest case of which is modu­
lar square root extraction: given some prime p, calcu­
lating a modular square root takes, to the best of cur­
rent knowledge, at least log2(p) − 2 unparallelizable 
modular squarings, whereas a single modular squar­
ing suffices to verify the result. Given ω > 0, it thus 
suffices to take the smallest p for which the sequence 
of squarings modulo p require at least ω seconds. For 
a wall-clock time of about ten minutes on a single core 
(running at, say, 2.3GHz), p is going to be on the 
order of hundreds of thousands of bits long, imply­
ing that for the computation of the hash the amount 
of available parallelism (or special purpose architec­
tures) would become more of an issue. The approach 
sketched below offers more effective assurance against 
parallelization by combining a still reasonably small 
p with the earlier iterative idea: the computation is 
stuck at £ necessarily sequential modular square root 
calculations, each of which is necessarily sequential as 
well, while the verification, already at least log2(p)−2 
times faster than the computation, can be sped up 
by another factor of n by remembering n checkpoints 
(as inherent in iterative approaches). The size of p 
can then be set to match the relatively modest ver­
ification wall-clock time one settles for (under mild 
restrictions with respect to the desired security level, 
cf. below); see also the discussion on wall-clock time 
guarantee below. 



Let p ≡ 3 mod 4 be a prime number. It follows 
that precisely one of x and −x is a square for any 
x ∈ F×, and a square root can be calculated by rais­p 

p+1ing the square to the -th power. If y is a square 4 
root of a square x ∈ F×, then y and −y are the only p 
two square roots of x. Observing that the canonical 
lifts yx of y and −�y = p − yx of −y have different par­√ 
ities, define + x as the unique square root of x with√ 
even lift and − x as the unique one with odd lift. This 
leads to the following permutation on F×:p  √ 

+ x if x is a quadratic residue; 
ρ(x) = √ 

− −x otherwise 

with inverse  
2+y if yx is even; 

ρ−1(y) = 2−y if yx is odd. 

Simply iterating the permutation ρ allows a shortcut 
in the computation of ρ£ , as shown in Section 3.4. 
This can be avoided by adding a layer of unstruc­
tured confusion in the following manner. 

Let σ be an permutation on F× such that both σp 
and σ−1 are easy to compute. Given σ define τ = ρ◦σ 
and use τ £ for some appropriately chosen £ as a slow­
to-compute function with easily computable verifica­
tion function (τ £)−1 = (τ−1)£ = (σ−1 ◦ ρ−1)£ . Note 
that, given ω, the value of £ will mostly depend on 
the size of p. The resulting slow hash function is de­
scribed below. In Section 3.4 it is shown how σ may 
be chosen so that undesirable shortcuts are avoided 
that would allow computation of τ £ faster than by se­
quential £-fold iteration of τ , while maintaining easy 
verification. 

3.3 Sloth 

Let k be a security level, h a corresponding hash 
function (Section 1), p ≡ 3 mod 4 a prime such that 
p ≥ 22k, and τ as in Section 3.2. Compared to reg­
ular hash functions from A∗ to Hk/2 (cf. Section 1), 
the slow-timed hash function sloth produces two ad­
ditional outputs. In the first place a witness is pro­
vided that allows fast verification of the resulting 
hash value. Furthermore, to enable disclosure of its 
input value only at a later point in time (it may be 
undesirable if others simultaneously run sloth on the 
same input) while avoiding the possibility of selecting 
a particular input from a number of inputs (as any 
number of copies of sloth could be run in parallel), a 
commitment to the input will be output right away, 
before sloth embarks on its long, wall-clock time ω 
consuming iteration. In applications where a commit­
ment is not relevant, this first component of the out­
put can be discarded. Thus, sloth maps elements of 

A∗ to (Hk/2)2 × F×, where the first component in p 

Hk/2 is the commitment, the second component in 
Hk/2 is the resulting hash, and the F×-part is the p 
witness that allows fast verification. 

Sloth is defined below. The time-security of sloth 
(i.e., shortcuts during its calculation are impossible; 
see also the Appendix for a precise notion of security) 
relies on the slowness assumption implicitly made in 
Section 3.2 that extraction of modular square roots 
cannot be done faster than using a modular exponen­
tiation – in similarity with hardness assumptions for 
cryptographically relevant problems. It would require 
a new idea to prove that the slowness assumption is 
incorrect, in which case sloth may fall back on mod­
ular roots of more complex polynomials. 

Sl oth. Let s ∈ A∗ be the input. 
1: Let u ← h(s). 
2: Return h(u) as the first component of the
 
output and continue.
 
3: Let w0 ∈ Fp be such that wx0 = int(u)
 
(note that 0 ≤ int(u) < 22k ≤ p).
 
4: For i = 1, 2, . . . , £ in succession do the following: 

5: Let wi ← τ(wi−1). 
6: Return h(hex(wx£)) and w£ as the second and 
third components and quit. 

The output (c, g, w) ∈ (Hk/2)2 × F× of sloth with in-p 
put s thus consists of the commitment c, the hash g, 
and the witness w. It can be verified as follows. 

Sl oth-verification. Let (s, c, g, w) ∈ 
A∗ × (Hk/2)2 × F× 

p be the input. 
1: Let u ← h(s). 
2: If c is not equal to h(u) then return “false” and 
quit. 
3: If h(hex(wx)) is not equal to g then return
 
“false” and quit.
 
4: For i = £, £ − 1, . . . , 1 in succession do the
 
following:
 

5: Replace w by τ−1(w). 
6: If wx equals int(u) then return “true” and quit. 
7: Return “false” and quit. 

3.4 Choices for the permutation σ 

In the random oracle model it can be proved that 
sloth is indeed inherently sequential and no informa­
tion about the outcome can be guessed with non-
negligible advantage in less time than that required 
to sequentially compute Ω(£ log(p)) multiplications 
in Fp, for p → ∞. The proof (cf. Appendix) relies on 
the assumptions that σ is a random permutation and 
that computing a square root of a random square in 
F× requires an exponentiation in Fp (cf. the above p 
slowness assumption); this is made more precise in 



 

the Appendix. The second assumption does not seem 
to be unreasonable given the current state of the art 
of modular square root extraction. Concerning the 
former assumption, as argued in the present section 
good time-security can still be obtained without it, 
and it seems that simple choices for σ suffice. 
Omitting σ. It is first shown that, as mentioned 
above and assuming that p ≡ 3 mod 4, the compu­
tation of ρ£ indeed allows a shortcut. Thus, omit­
ting σ is not an option. For s ∈ A∗ , let w ∈ Fp 

be such that wx = int(h(s)), as in the definition of 
sloth. With σ equal to the identity function on Fp, 
the iteration computes τ £(w) = ρ£(w). It follows that 
(ρ£(w))2

£ 
= z where z is the unique square among 

w and −w. Because, as is easily seen, ±ρ£(w) are 
the only two roots of X2£ − z in Fp, it suffices to 
determine one of those two roots and to use the fast 
verification to decide if it or its negative equals ρ£(w). 

p+1 eWith e = , a square root of z ∈ Fp 
× is given by z4 

and, iterating this for i, a root of X2i − z is given by 
ez
i 
. Thus, with j = e£ mod (p − 1), a root of X2£ − z 

is found by computing zj at the cost of an exponen­
tiation in Z/(p − 1)Z and an exponentiation in Fp. 
Swapping neighbors. The problem of omitting σ 
lies in the fact that ρ£(w) is the root of a simple, ex­
plicitly given polynomial. Consider the permutation 
σ on F× with σ = σ−1 that swaps neighbors:p 

x + 1 if xx is odd;
σ(x) = 

x − 1 if xx is even. 

With w as above, it is not clear how to express 
(ρ ◦ σ)i(w) = τ i(w) as the root of a polynomial.√ 

Using binary permutations. As mentioned above 
and shown in the Appendix, time-security of sloth can 
be proven – in the cryptographic sense of the word 
– if σ is a random permutation of F× . Keyed blockp 
ciphers are commonly used to emulate allegedly good 
pseudo-random permutations of {0, 1}n for n ∈ Z>0. 
It is shown how they can be used to define permuta­
tions of F× 

p . 
Given F× , select an integer n ≥ log2(p). Iden­p 

tifying the set {0, 1}n with the set of integers 
{0, 1, . . . , 2n −1}, a permutation ς : {0, 1}n → {0, 1}n 

can be regarded as a permutation of {0, 1, . . . , 2n −1}. 
With the map π : Z → Fp that maps a ∈ Z to 
the y ∈ Fp for which yx ≡ a mod p, and the map 
ι : Fp → {0, 1, . . . , p − 1} that maps x ∈ Fp to xx, 
this induces a map σ( = π ◦ ς ◦ ι : Fp → Fp. Unfor­
tunately, σ( is not necessarily a permutation on F× ,p 
because there may be elements x ∈ F× for whichp 
ς(xx) ∈/ ι(F×) = {1, 2, . . . , p − 1}.p 

However, a permutation of F× can be obtainedp 
if, depending on the input x, the permutation ς is 
performed as often as required until xx is mapped to 
{1, 2, . . . , p − 1}: 

σ(x) = π(ςv(xx)), 
with v > 0 minimal such that ςv(xx) ∈ {1, 2, . . . , p−1}. 
For a uniformly random x ∈ F× , the probability thatp 
ς(xx) /∈ {1, 2, . . . , p − 1} is at most 

#{0, p, p + 1, p + 2, . . . , 2n − 1} 2n − p + 1 
= ,

#{1, 2, . . . , p − 1} p − 1 

which can be made negligibly small by selecting p as 
2n − E for a small positive integer E. As a result, for 
such primes a permutation of F× 

p is obtained thatFor instance, if w is a square, then ρ(w)√ 
+= w 

is even so that τ(w) = + w − 1, which is root will in practice be as efficient as the underlying blocka 
of (X + 1)2 − w and which has an odd lift. But cipher. The fact that for rare elements of F× thep 
the latter does not give any information about the computation takes more time cannot be exploited to√ 
quadratic residuosity of the root + w − 1. There- speed up the calculation of τ – indeed, it only fur-
fore, without computing that quadratic residuosity, 
it is only known that τ2(w) is a root of one of 
((X + 1)2 + 1)2 − w and ((X + 1)2 − 1)2 − w. In gen­
eral, τ i(w) is a root of precisely one of the 2i polyno­
mials (. . . ((X ± 1)2 ± 1)2 . . . ± 1)2 − w, but there does 
not seem to be an efficient way to predict which of 
the 2£ polynomials has τ £(w) as root. Of course, all 2£ 

polynomials could be tested in parallel, but even find­
ing the roots of a single one seems to require at least 
the same amount of unparallelizable time as the suc­
cessive square root extractions in sloth, as all polyno­
mials are dense and of degree 2£ over Fp. Therefore, 
using a permutation σ that simply swaps neighbors 
seems to be time-secure enough. Nevertheless, it still 
preserves some algebraic structure, which could lead 
to unforeseen adversarial strategies. 

ther slows it down. The additional overhead for the 
verifier is negligible. 

Given that the analysis is generic in ς it can be 
improved for specific instances, and it allows great 
flexibility in the design of ς, as long as p is close 
to 2n: binary operations such as exclusive-or, shifts, 
and bit(s) swapping may all be used. Because such 
choices do not allow a meaningful algebraic interpre­
tation in Fp shortcuts in the calculation of sloth, as 
discussed above, are avoided. If the binary operations 
are restricted to the least significant bits (in a simi­
larly fast but more liberal manner than just swapping 
neighbors) the prime p does not have to be chosen 
close to 2n . 
Choices for the prime p. To conclude this section, 
Table ?? lists the verification times depending on the 



choice of the size of p, for two practically relevant 
permutations: swapping neighbors and block cipher 
based. In all cases, the number of iterations £ is cho­
sen such that the computation of sloth takes ten min­
utes. When σ is a simple binary operation the number 
of iterations and the verification times are similar to 
those for swapping neighbors. 

Wall-clock time guarantee. The wall-clock time 
required for a calculation consisting of £ necessarily 
sequential steps, each consisting of at least log2(p) 
necessarily sequential modular multiplications, can 
easily be measured for a single core running at a cer­
tain speed and using any standard software package. 
This should give some information about the short­
est possible wall-clock time using the fastest conceiv­
able software on the optimal number of fastest pos­
sible cores that could be employed given the value 
log2(p) at hand. The simplest speed-up is overclock­
ing: clock-speeds close to 9GHz have been reported 
(cf. [9]). For parameter choices as reported in Ta­
ble ?? it would lead to a wall-clock time guarantee 
of about three minutes. The multi-core approaches 
and runtime figures presented in [2,13] suggest that 
for the lower range of log2(p)-values no further speed­
ups have been obtained. Similarly, a shortest possible 
wall-clock time using special purpose hardware can be 
derived, but published results (cf. [14,15,19]) seem to 
suggest that the software results listed in Table ?? are 
again hard to beat. For all time-security arguments 
below, a conservative lower bound estimate of two 
minutes will be used. But in the practical, down-to­
earth implementation of sloth the originally aimed for 
wall-clock time of ten minutes on a single standard 
core as above will have to be dealt with. 

4	 Unicorn : uncontestable random 
numbers 

In this section unicorn is described, one of many con­
ceivable scenarios how sloth may be used to gener­
ate uncontestable random numbers: everyone may 
contribute inputs to unicorn to influence its result 
while no one will be able to knowingly bias the result 
one way or another, everyone can quickly verify that 
the resulting random numbers have been generated 
according to the unicorn protocol, and all partici­
pants can check correct inclusion of their contribu­
tion. However, anyone who wants to use the outcome 
of a particular execution of unicorn without taking 
part in it, will have to trust that at least one par­
ticipant followed the rules: as is the case for current 
lotteries and live-broadcast drawings, outsiders have 
no choice but to believe the integrity of the outcome. 

Unlike lotteries, however, anyone has the opportunity 
to take part in unicorn even without being physically 
present. The only requirement is to be on time. The 
formal security notion of the incorruptibility of uni­
corn is described in the Appendix, and proved in the 
case where the permutation σ used by sloth is a ran­
dom permutation. 

Given a security level k and corresponding hash 
function h (cf. Section 1), each execution of unicorn 
proceeds on a time line from t−2 to t2 (with ti < tj 

if i < j ) as described below. 

Unicorn 
time t−2: It is publicly announced that public data 

gathering will take place during the time interval 
[t−1, t0). This announcement will be made on a 
public website, along with instructions how data 
may be contributed. For instance, contributors 
could be invited to send a tweet with a specified 
hashtag. 

time t−1: Data reception starts: all data received 
will be concatenated, in the order in which it ar­
rives, to form the public part s0 ∈ A ∗ of the input 
to sloth. 

time t0: Data reception stops, the resulting s0 is 
published on the website right away, and sloth 
is applied to the concatenation s = s0||s1 of 
the public data s0 and the independently gen­
erated part s1. The first component c = h(h(s)) 
(the commitment to the input) of the output of 
sloth is published on the website as soon as it 
becomes available (i.e., almost instantaneously), 
say at time t0 + γ for a very small positive γ. 
Although γ in principle depends on the size of 
s0, it can be expected to be a fraction of a sec­
ond because in practical circumstances h(s) can 
be computed on-the-fly while contributions to s0 

are still arriving. Even in the worst case γ will 
be on the order of seconds at most, because it 
takes only about a second to hash 100MB of data 
(which will first have to be downloaded from the 
server). 

time t1 ≥ t0 + γ + ω: The second component g (the 
hash, i.e., the uncontestable random number) and 
the third component w (the witness) of the out­
put of sloth are published on the website, along 
with the independently generated input s1. 

time t2: At this point in time, everyone interested 
should have been able to perform the sloth veri­
fication step for (s, c, g, w). 

Choosing t−1. The value that needs to be picked 
with most care is t−1. If all public contributions to 
s0 are sent and received immediately after t−1, the 
final s0 may be known shortly after t−1 as well. If 
t0 − t−1 > ω, with ω the targeted computation time 



for sloth, the party in control of selecting s1 has the 
opportunity to finish before time t0 parallel compu­
tations of sloth for many distinct possibilities for the 
value of s1. A particular s1 choice can then be com­
mitted to at time t0, with the biased corresponding 
output of sloth (already known at time t0) publicly 
revealed only at time t1. 

It follows that t0 − t−1 must be small compared 
to the fastest conceivable wall-clock time required for 
the computation of sloth. Given the considerations at 
the end of Section 3.4 and a targeted ten minute wall-
clock time for the computation of sloth, the point in 
time t−1 should not be more than two minutes be­
fore t0. Or, if that is not an option, participants may 
be encouraged to submit their contributions close to 
the deadline t0. Indeed, that is what smart partici­
pants will do anyway, as submitting at time t < t0 

implies one has to trust that sloth must take wall-
clock time more than t0 +γ −t to compute. Combined 
with the observable, very small γ (as t0+γ is the point 
in time that the commitment value is published) the 
time-window for surreptitious sloth computations can 
be made infeasibly short. 
Generating s1. The value s1 ∈ A∗ complementing 
the public input s0 is included in unicorn for the fol­
lowing reasons: 

1. to increase the entropy, if s0 (which may be lack­
ing altogether) has no or little entropy; 

2. to replace	 (or complement) the s0-contribution 
(e.g., the tweet) for people who are physically 
present, in a way that is instantaneous and guar­
anteed to be included; 

3. to add a salt-value that is not shared before time 
t1, so other parties cannot perform sloth before 
t1; 

4. to include elements that no one can control (e.g., 
the weather; cf. the unicorn application in Sec­
tion 5). 

At this point, it should be emphasized that a 
party who contributed to s0, e.g., via a tweet, does 
not need to trust that s1 was generated honestly; as 
proven in the Appendix, the incorruptness of the out­
come can be deduced by any participant from their 
own (honest) contribution to s0. The raison d’être of 
s1 are the four points above, and adding it does not 
weaken the trust a participating party can have in 
the outcome. 

The value s1 can be independently generated in 
the following manner. It is assumed that the comput­
ing device on which unicorn is executed has a digital 
camera with an unobstructed view of a public area 
where the goings-on can be monitored (and partici­
pated in) by anyone who desires to do so. At time 

t0 the camera will take a picture (or, alternatively, 
a short video clip, possibly including a sound bite), 
resulting in a jpg-file (or other applicable format) s1. 
For reasons set forth below, this set-up may be com­
plemented by a full-time webcam connected to an 
independent other computer, the live output-stream 
of which is made available on the same website as 
above. 

Given the uniqueness of the camera’s point of 
view, the type of scene captured, and the alleged 
properties of the hash function h, the value h(s) and 
the second component g of the output of sloth may be 
assumed to behave as random elements of Hk/2 (and 
thus as random integers in {0, 1, . . . , 22k −1}), by any 
party including the party C that executes unicorn, 
and for any value of t0. So far this assumption has 
not been contradicted by [16]. Extensive experiments, 
also at night-time and with or without s0-values (or 
s0-values identical to previously used ones), show that 
the h(s)-values resulting from consecutively taken 
pictures s1 are uncorrelated (cf. [16]). This lack of 
correlation between the h(s)-values may be accred­
ited to the cryptographic hash function h and the 
necessary difference between the jpg-encapsulations 
(among others caused by even the tiniest time dif­
ference) even though the actual jpg-payloads of con­
secutive pictures are obviously strongly correlated to 
the human eye. However, despite this strong percep­
tual correlation, the bit-level difference between any 
pair of distinct jpg-payloads was found to be large 
compared to any regular cryptographic security level, 
both before and after the compression used to gener­
ate the payload, and for any reasonable camera res­
olution. It is a sub ject of further investigation to de­
termine how this difference behaves as a function of 
the temporal closeness of consecutive pictures. In any 
case, given any number of past s1-values it is infeasi­
ble – to anyone – to predict a future one. 

Once the picture s1 is published, parties that have 
monitored the scene at time t0 can attest to its cor­
rectness, for instance by pointing out that the picture 
indeed shows them waving at the camera – parties 
who cannot be present may prefer to contribute a 
tweet to s0 instead. Independently it can be checked 
that there are no discrepancies with what appeared 
on the webcam’s live-stream around time t0. For ad­
ditional assurance the scene captured by the camera 
could include a screen that is constantly refreshed 
with the latest information from popular news web­
sites or live TV-broadcasts, thereby independently 
fixing s1 in time. 

With s1 fixed in time, and its commitment im­
mediately published, there is no opportunity for the 
party C that is in control of the system to select s1 



in a meaningful manner from any number of alterna­
tives, because of the slowness of sloth. Without sloth 
biased results are conceivable: it suffices for C to have 
access to enough computational resources to simulta­
neously test many alternatives in a short amount of 
(wall-clock) time. 

Earlier independent work that collects entropy in 
a similar fashion can be found in [22,8]; see also [18]. 
Formatting and restricting s0. For reference and 
cosmetic reasons begin and end markers may be used 
for the public part s0 of the input: before time t−1 

data collection could be initiated with the unix com­
mand 

date "+[start %Y%m%d:%H%M%S" > s0, 

terminating it at time t0 with 

date "+%Y%m%d:%H%M%S stop]" >> s0. 

An invitation to contribute data may trigger at­
tempts to cause trouble, so the data received will have 
to be filtered and may have to be restricted to strings 
over a subset of A. 
Number of participants. The number of messages 
from participants that an actual implementation can 
handle depends on the physical set-up, the amount of 
hardware employed, and, if applicable (cf. potential 
usage of tweets), on the resources of the social media 
provider(s) involved. The current record number of 
tweets per second suggests at most ten million mes­
sages per minute, which sounds challenging to deal 
with. But given the very limited public concern about 
the issues raised in this paper ([3] may be the most 
prominent one, and only concerns a niche market) 
there is no reason to be concerned that a single desk­
top computer would not be able to handle the load. 
On the other hand, one never knows what sudden en­
thusiasm there may be to really play the lottery, to 
make one’s mark on the FIFA pool selection process, 
or for the rise of Athenian democracy 2.0. 

5	 Trx : trustworthy random elliptic 
curves service 

This section proposes trx, a service that provides a 
stream of trustworthy random elliptic curve param­
eters suitable for cryptographic applications. It uses 
a mild adaptation of unicorn and is currently being 
implemented. Thus, compared to other methods that 
have been used to generate elliptic curve parameters, 
trx introduces a new way to deal with the trust issue: 
everyone can influence and verify the choices made 
by trx, but no one (including party C that controls 

the set-up) can knowingly affect the choices to any­
one’s advantage or disadvantage. Because the result­
ing parameters cannot be predicted or effectively ma­
nipulated, the possibility is prevented of prior crypt-
analysis or of targeting malicious choices. Along with 
each parameter choice, trx provides information that 
allows any party to ascertain that the resulting pa­
rameters were calculated in a deterministic manner 
based on the random number produced by unicorn. 
Trx does not enable the user community to fully ex­
ploit the wealth of suitable random curves in a fully 
personalized manner, the possibly preferred method 
mentioned in Section 1: that would require substan­
tially faster point counting. But trx does away with 
the fixed small set of elliptic curve parameters cur­
rently used, and it allows usage of parameters that 
are frequently refreshed and that cannot have been 
scrutinized before. 

The above summary presents trx from a high level 
point of view. The remainder of this section describes 
two parts in more detail: the physical set-up of the 
unicorn-variant used, and the deterministic compu­
tation of elliptic curve parameters as a function of a 
seed value. Many more or less equivalent methods ex­
ist for the latter computation, none of which are par­
ticularly interesting and one of which can be found 
below – for documentation purposes only, and with 
further details provided when trx comes online. The 
two main steps are followed by a brief description of 
the planned long term operation of trx and a short 
discussion on various trust issues. 
Trx set-up. The currently envisioned set-up con­
sists of a computing device D at a physically secure 
location. D has a single digital camera with an unob­
structed view of a public, outside area that is suffi­
ciently large and busy: the view comprises a parking 
lot with working street lights, a relatively busy road, 
a glittering lake, and a mountainous part of a foreign 
country, all across the street from C’s third floor of­
fice and all with snow patterns, cloud formations, and 
other occurrences that are beyond anyone’s control. 

Two options are under consideration for the com­
munication with D. The first, straightforward one 
would use a regular TLS connection to a nearby web-
connected server that instantaneously posts data re­
ceived from D (ti-values, sloth commitments, other 
sloth results along with their s-values, and of course 
everything related to the resulting elliptic curve pa­
rameters) and transmits unicorn’s s0-contributions 
(cf. Section 4) to D, everything at the shortest pos­
sible delay (on the order of a fraction of a second). 

The other option under consideration would en­
tirely shield D from any attempts at interference with 
its operations, by only allowing outgoing communi­



cations from D via a data diode. This implies that 
unicorn must rely exclusively on the value s1 as gen­
erated by D, as there is no way for contributions made 
to s0 to reach D. For a rather arcane activity such 
as elliptic curve parameter generation which, further­
more, runs continuously, little interest from the pub­
lic at large may be expected, so excluding participa­
tion from parties who cannot be physically present 
is probably not a serious issue. But it puts a heav­
ier burden on party C running the system to present 
convincing evidence that the picture taken at time t0 

is not replaced by a possibly manipulated one. Pre-
announcing the moments in time that the pictures 
will be taken (the points in time t0 for each execu­
tion of unicorn) along with a webcam running on the 
webserver capturing the same scene (from a slightly 
different angle) goes a long way to address this prob­
lem: this allows validation of the scene of the picture 
by the time the picture and the resulting set of pa­
rameters get published. It also allows any interested 
party to visit the public area captured by the camera 
at the scheduled time to add – and later check the 
presence of – a personalized touch to the parameter 
generation process (which does not require physical 
presence if s0 is used, as in the other set-up). As men­
tioned in Section 4 an additional confidence-inspiring 
measure would be to include in the scene captured 
by the camera a screen with constantly updated in­
dependent live information. The amount of trouble 
to be invested to address this concern should be com­
mensurate with the perceived practical importance of 
trx. As a general piece of advice to prospective users 
of the resulting parameters: if you don’t like the pic­
ture, don’t use the resulting parameters and wait for 
a next batch. 
Elliptic curve parameter generation. Let k be a 
security level and h the corresponding hash function, 
as in Section 1. As an example of elliptic curve param­
eter generation consider random twist secure curves. 
In this case a triple (δ, α, β ) ∈ (Hk/2)3 is called ac­
ceptable if 

–	 the number q = int(δ) is a 2k-bit prime; 
–	 the pair (a, b) ∈ (Fq )

2 , where the lifts (a,(b ∈ 
{0, 1, . . . , q − 1} of a and b are modulo q equal 
to int(α) and int(β), respectively, defines an el­
liptic curve E over Fq such that the order of the 
group of points of E over Fq and the order of the 
group of points of the quadratic twist of E over 
Fq are both prime. 

This definition is just an example of one of many dif­
ferent sets of criteria that can be imposed. Refer to [4] 
for a good overview of additional or different require­
ments (bounding the embedding degree from below, 

other types of curves such as Edwards curves, etc.). 
Information specifying an appropriate base point can 
trivially be added. 

A method is described that given an input value 
g ∈ Hk/2 (as produced by unicorn) deterministically 
determines an acceptable triple in (Hk/2)3, and that 
can trivially be changed to cater to any other defi­
nition one sees fit for a triple to be acceptable. Let 
F = {δ, α, β } be a set of iterated hash functions from 
Z≥0 to Hk/2 with δ(0) = h(g||p), α(0) = h(g||a), 
β(0) = h(g||b) (with “||” denoting concatenation), 
and f(i) = h(f(i − 1)) for all f ∈ F and i ∈ Z>0. 
Let I(−1) = −1 and I(j) = min{i : i > I(j − 
1), int(δ(i)) ≥ 22k−1 , int(δ(i)) is prime}. 

Random twist secure elliptic curve parameter 
generation 
1: For i = 0, 1, 2, . . . in succession do the
 
following:
 

2: For j = 0, 1, 2, . . . , i in succession do the 
following: 

3: For v = 0, 1, 2, . . . , i − j in succession 
do the following: 

4: If the triple (δ(I(j)), α(v), 
β(i − j − v)) is acceptable: 

5: Return the triple along with 
the values i, j, and v and quit. 

Checking acceptability of triples can be done using a 
standard software package (such as MAGMA or Sage) 
or using one’s own software. For each triple that was 
found not to be acceptable, a small amount of data 
may be provided that would facilitate a check that the 
acceptable triple as produced is indeed the first one 
(given the chosen enumeration). Experiments are un­
derway to decide on the most efficient approach. On a 
single core running at 2.3GHz parameter generation 
times vary from less than two hours for k = 128 to 
about a week for k = 256. 

If parameter generation (as above, or of simple 
modifications that cater to other requirements) fails 
due to a cycling hash then there is obviously cause 
for celebration, but h should be replaced – not just 
for the purposes of the present paper – by a hash 
function for which the security assumptions have a 
higher chance to be correct. So far all iterated hashes 
generated as above passed the tests from [16]. 
Operation of trx. The implementation of trx that is 
currently underway will run twelve independent pro­
cesses, one on each of twelve cores of a desktop com­
puter: for each security level k ∈ {128, 192, 256} four 
different types of twist secure elliptic curves may be 
generated (with q, a, and b as above): either a random 
q or q chosen in a fixed set of 2k-bit primes that allow 
fast modular arithmetic (pseudo-Mersenne primes), 



both either with random a and b or with fixed a (i.e., xa = q − 3) and random b. Depending on feedback 
that may be received, either of these possibilities can 
be replaced by others that are felt to be more useful 
or desirable; or a wider variety of parameter choices 
may be offered (though less efficiently if using the 
same hardware) by alternating between different gen­
eration processes. 

Each of the twelve processes operates in the 
same manner, independent of each other and each 
with their own unique process-identifier (or hashtag). 
Given some pre-announced future moment in time 
t−2, and assuming public data are accepted, the fol­
lowing steps are performed in immediate succession: 

1. The future point in time t−2 along with t−1 a few 
minutes later than t−2 and t0 two minutes later 
than t−1 are transmitted to the server and pub­
licly announced (for the process-specific identifier 
or hashtag). 

2. Assign an adequate initial value to	 s0 and wait 
until time t−1. 

3. During the time interval [t−1, t0) concatenate to 
s0 all process-relevant data received from the 
server and start calculation of h(s0). 

4. At point in time t0 take a picture resulting in a 
jpg-file s1, transmit h(s1), s0 as received (which 
may be a proper subset of the data sent by the 
server, and possibly with an appropriate termina­
tion appendage) and h(s0) to the server for im­
mediate publication on the website, and start the 
calculation of sloth (calibrated to take ten min­
utes). The first component of the output of sloth, 
the commitment value c, is immediately (i.e., at 
time t0+γ for a very small positive γ) transmitted 
to and published by the server. 

5. At a point in time about ten minutes after t0, the 
calculation of sloth is completed and the applica­
ble elliptic curve parameter generation process is 
started using as input the second component g of 
the output of sloth. 

6. Define	 t1 as the point in time that the elliptic 
curve parameter generation process is finished. 
At this point in time, transmit the picture s1, 
the second and third components of the output 
of sloth (the hash g and the witness w), and the 
output of the elliptic curve parameter generation 
process to the server for immediate publication. 

7. Replace t−2 by t1 plus a few minutes and return 
to Step 1. 

The scenario where no public data are accepted fol­
lows in a straightforward manner. 
Trust issues. As argued above, the only advantage 
that the party C in control of the system gets is a 

headstart cryptanalyzing the elliptic curve parame­
ters resulting from the calls to sloth. When C plays 
fair and publishes newly generated parameters with­
out delay, this cryptanalytic advantage is on the or­
der of seconds. From the output of the parameter 
generation process and additional data that may be 
provided along with it (as suggested above) it can 
easily be inferred how long the computation should 
have taken, so the possibilities for cheating are lim­
ited. C could, surreptitiously, have access to more 
computational resources and perform parameter gen­
eration much faster. On average, this buys C at most 
a week headstart for the cryptanalysis for the high­
est security level k = 256, and less than two hours 
for k = 128: either way, the advantage is insignificant 
compared to the alleged security provided. 

Although the correctness of each resulting param­
eter set can quickly, independently, and conveniently 
be checked, it can hardly be expected that all users 
will consistently do so. Once trx is established (if ever) 
as a trustworthy service, the parameters produced by 
it could become trusted by default, at which point 
party C could decide to sneak in a manipulated curve, 
take advantage of it and leave with the profits, never 
to be heard of again. Obviously, this would tarnish 
C’s reputation. It may help if C is a party that can 
reasonably be expected to be concerned about rep­
utational loss – unfortunately, this is something one 
never knows in advance. 

6 A tool for democracy 

Randomness can play a crucial role in various mod­
els of governance. The first known democracy in the 
world, in the Greek city-state of Athens, distributed 
the power to assemblies of randomly selected citi­
zens. In today’s world, the benefits of sortition-based 
democracy are defended by some as a fairer alterna­
tive to elected assemblies. Without going as far as a 
full Athenian-like democracy, more familiar modern-
day models of governance can make use of random-
sample voting: instead of consulting the full popu­
lation for elections or referenda, one can randomly 
select a small, yet statistically significant, sample of 
voters. Such a system is advocated as leading to a bet­
ter quality voting at a far lower cost [6]. In Switzer­
land, the population regularly votes for diverse elec­
tions, referenda, and popular initiatives. For reasons 
of cost, these so-called votations are organized four 
times per year, each time about multiple topics. Be­
ing solicited so often about so many questions some­
times far from their everyday life, voters can feel over­
whelmed and unable to develop an informed opinion 
for each of them. In such a system, replacing the full 



population by random samples would have multiple 
advantages: while remaining statistically representa­
tive as long as the sample has an appropriate size, 
the costs would be dramatically reduced. At the same 
time, each voter would be requested much more rarely 
and about a single question at a time, allowing for a 
more important involvement. 

Whether it be for legislative assemblies, small 
samples of voters, or juries for public policy, the ran­
dom sampling must be conducted in a trustworthy, 
incorruptible and verifiable manner. Advocating for 
setting up a Parliament of randomly sampled citizens 
in Northern Ireland, John Garry wrote (cf. [12]): 

There are three crucial ingredients for a 
high quality democracy: a very large hat, a 
pen and lots of small bits of paper. Write the 
name of each citizen in the land on a bit of pa­
per, put all the bits of paper in the hat, close 
your eyes and pluck out 500 names from the 
hat. Write to each of the 500 saying: “Con­
gratulations, you have been picked as one of 
the 500 people who will run the country for 
the next five years.” 

Of course a giant hat and millions of pieces of pa­
per are metaphorical and do not constitute a prac­
tical setup: a feasible, fair and incorruptible proce­
dure needs to be defined. Designing such a method 
is a delicate task which [10] tries to address. As in 
trx, it boils down to two main components: a pub­
lic random number generator, and a deterministic 
procedure which when fed a number outputs a sam­
ple of citizens (respectively, an elliptic curve), in a 
completely unambiguous and verifiable manner. This 
second component needs to be precisely defined and 
published ahead of the random number generation. 
It should also be unbiased: no particular set of vot­
ers should be advantaged as long as the random 
seed is uniform. Straightforward ways to achieve this 
could use cryptographic hash functions and reduc­
tions modulo the size of the pool of potential voters, 
and an unambiguous ordering of the list of poten­
tial voters. An example of a precise procedure can be 
found in [10, Paragraph 4], and for discussions on how 
to design this component in order to render vote buy­
ing or other ways to influence the voters impractical, 
see [6]. 

In the following, the random number generation 
is addressed. It is critical that the random number is 
generated in an incorruptible manner. If the party 
conducting the generation is simply asked to pro­
vide a number without any justification that it is 
“random”, it would be trivial for them to provide a 
“random-looking” number carefully cooked to result 

in a biased sample of voters. Classical methods as de­
scribed in [10, Paragraph 3] are not that trivial to 
fool, yet are still sub ject to corruption or other forms 
of manipulation. The author of [10] suggests to select 
different sources of randomness in advance (examples 
include government run lotteries, the daily balance in 
the US Treasury, or sporting events), and to combine 
the outcomes via a cryptographic hash function. Be­
sides a few technical issues that need to be addressed 
(enough entropy has to be gathered, and the format 
of all the data needs to be canonicalized) matters of 
greater concern arise: various strategies are conceiv­
able to manipulate those sources. Great care needs 
to be taken to audit each of them, and even if vari­
ous presumably independent parties are involved, not 
every skeptical citizen can be given the chance to per­
sonally make sure everything went right and no form 
of manipulation was going on. 

This trust issue can be addressed by unicorn. A 
similar setup as used for trx would allow any citi­
zen to contribute very easily to the random number 
generation, by simply publishing a tweet including a 
specified hashtag during an announced time interval. 
Then, by checking if their tweets appear in the in­
put of sloth, and running the fast sloth verification, 
they can make sure the outcome has not been ma­
nipulated. The very concerned citizen will make sure 
to tweet high entropy, unpredictable data, as close 
as possible to the time t0. This process transfers the 
power from the auditing authorities or media, to the 
hands of any person willing to get involved. 

7 Conclusion 

It was shown how high entropy public random val­
ues can be generated in a verifiable and trustwor­
thy manner. Applications were presented to param­
eter selection for elliptic curve cryptosystems and to 
democratic random sampling. 

In the same vein as trx, unicorn could be used to 
generate constants for other kinds of cryptographic 
standards. In [20], it is described how to design the 
constants of the S-boxes in some block ciphers to hide 
a trapdoor. Similarly, [1] exposes a way to weaken 
SHA-1 and find collisions by simply tweaking its 
round constants. 

Public randomness has also found applications 
in the context of cryptographic elections. For audit­
ing via random selection, or the generation of ran­
dom challenges in cryptographic election systems, the 
source of randomness has to be unpredictable and 
incorruptible. As an example, in at least two cases, 
the random generation was based on financial data 



(in [11] and [7]). Entrusting unicorn with the ran­
dom number generation would allow anyone to verify 
the outcome irrespective of one’s faith in the unmal­
leability of published financial data. 

Unicorn could also be considered as a building 
block for a secure random beacon. A random beacon 
is an online service that makes available fresh random 
numbers at regular intervals. Unlike the current NIST 
randomness beacon [17], the use of unicorn would 
provide a way to verify that the claimed random val­
ues are indeed fresh, and have not been cooked in ad­
vance by the service provider, without the need to be 
physically present to check that their complex quan­
tum source of entropy is really doing its job. A ser­
vice that provides allegedly random numbers whose 
trustworthiness cannot be verified is frowned upon, in 
particular if the service comes with precise ways how 
to use the random numbers along with an imprecise 
description of how not to use them. 

As a final note of warning, it could be tempt­
ing to use the live events capturing method to col­
lect entropy (cf. generation of s1 in Section 4) for 
usage in private key selection or nonce generation 
on, say, smartphones. In principle this is possible, 
but it would require the assumption that it is pos­
sible to compute hashes or to make recordings, pic­
tures, or videos that are guaranteed not to be shared 
with other parties. One does not have to be overly 
paranoid to suspect that such a guarantee cannot be 
given, in particular if smartphones are involved. 
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A	 Incorruptibility of unicorn in the 
random oracle model 

In this appendix, the incorruptibility of unicorn is 
discussed, and analysed in the case where the permu­
tation σ used in sloth is a random permutation of F× .p 
The proof relies on the assumption that square root 
extraction cannot be done faster than an exponenti­
ation in Fp. Let Sp ⊂ F× denote the set of non-zero p 
squares in the field Fp. 

Definition 1. Given the length Δ > 0 of a time in­
terval, a probability E, and a bound c on computa­
tional resources, the (Δ, E, c)-sqrt(Fp) assumption is 
the following: any party with resources bounded by c 
that gets a uniformly chosen α ∈ Sp at time t, suc­√ 
ceeds with probability at most E to compute α at or 
before time t + Δ. 

Remark 1. The bound c deals with the computa­
tional speed, parallelism, and the amount of available 
precomputed data. From now on, it will be omit­
ted, considering that it corresponds to any set of 
state-of-the-art computing devices worth a polyno­
mial amount of money. All parties are supposed to 
be bounded by c, and the assumption in Definition 1 
will be referred to as the (Δ, E)-sqrt(Fp) assump­
tion. Based on the best of current knowledge about 
square root extraction in finite fields, the assump­
tion seems reasonable for Δ = Ω(log(p)M(p)), where 
M(p) is the time complexity of multiplication in Fp, (and E = O(p−1/2) (the latter because square root ex­
traction can be very fast for α = β2 with β̂ bounded 
by p1/2 times a factor polynomial in log(p)). It should 
be stressed that this is just an assumption: (p − 2)­
nd-powering modulo a prime p, for instance, can be 
done much faster than in time Ω(log(p)M(p)). 

Remark 2. Under the (Δ, E)-sqrt(Fp) assumption, if 
there is some λ such that α follows a distribution 
µ : Sp → [0, λ/|Sp|] as opposed to the uniform distri­
bution on Sp, the success probability is at most λE. 

Indeed,  
Pr(success) = µ(β) Pr[success|α = β] 

β∈Sp  λ ≤ Pr[success|α = β] ≤ λE. 
|Sp|

β∈Sp 

The incorruptibility of unicorn is measured as a 
bound on the probability of winning the unicorn cor­
ruption game, a game consisting in compelling uni­
corn to produce an output (the presumably ran­
dom number) with a targeted property. This targeted 
property is encoded by a map b : Hk/2 → {0, 1}. If g 
denotes the outcome of unicorn, the goal is to have 
b(g) = 1. In unicorn, the input of sloth is the con­
catenation of the contributions of any number of in­
dividual participants. The only part of the input that 
a particular participant can trust is its own contribu­
tion, which can be chosen by the participant to be 
uniformly distributed in Hk/2 (which easily fits into 
the at most 140 characters allowed in a tweet), and 
could be extracted from the concatenation via a map 
f : A∗ → Hk/2. The concatenated data s is commit­
ted to at time t0 when fed into sloth. As long as the 
commitment is not broken (which would imply find­
ing a collision in h), the unicorn -generated random 
number at time t1 will be the hash value resulting 
from sloth applied to input s. Then the incorrupt­
ibility of unicorn reduces to the difficulty of finding 
suitable data s ∈ A∗ to commit to at time t0 when 
the last honest contribution x is published at time 
t0 − δ. Therefore the game goes as follows: at the 
start of the game a time limit δ is given along with a 
uniformly random input x ∈ Hk/2. The game is won 
if within time δ a value y ∈ A∗ is produced such that 
f(s) = x, and b(g) = 1, where g is the hash value 
resulting from sloth applied to input s. It is worth 
emphasizing that this security model not only deals 
with dishonest contributors, but also with any at­
tempt of the party centralising the process (generat­
ing the value s1, committing to the data and running 
sloth) to bias the outcome. 

Proposition 1 (Unicorn incorruptibility in the 
random oracle model). Let Δ and E be such that 
the (Δ, E)-sqrt(Fp) assumption holds. If σ : F× →p 

→ Hk/2F×	 is a random permutation, h : A∗ from p 
Section 1 is a random function, and the number of 
queries to the σ- and h-oracles is limited to q > 0 
(including precomputations), then the probability Prw 

to win the unicorn corruption game with time limit 
δ < £Δ for a target property b : Hk/2 → {0, 1} is at 
most q/22k−1 + E£q(p − 1)/(p − 1 − q) + q/(p − 1 − 
q) + |b−1({1})|/22k . 
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Remark 3. In other words, by contributing to uni­
corn within the time interval (t0 −£Δ+γ , t0], one can 
make sure the output is not corrupted (unless a colli­
sion has been found in h). The first three terms in the 
bound on the probability are all negligible when q is (polynomial in the security level k, and E = O(p−1/2). 
The last term is the probability of a uniformly chosen 
g ∈ Hk/2 to satisfy b(g) = 1. 

Remark 4. The slowness of computing sloth can eas­
ily be deduced from this result. In order to find a valid 
output for sloth on a random input, there is no faster 
strategy than computing £ square roots sequentially. 

Proof. Let Qt (respectively, Rt) be the set of queries 
to the σ-oracle (respectively, h-oracle) done before 
point in time t since the start of the unicorn cor­
ruption game (with Q0 and R0 the precomputed 
queries), with α ∈ Qt denoting that the value of 
σ(α) was queried before time t. Suppose that on input 
x ∈ Hk/2, a string s ∈ A∗ is output. Let w ∈ F× be p 
the corresponding sloth witness, and g = h(hex( ̂w)) 
be the hash. Winning the game implies that s is out­
put at or before time δ, that b(g) = 1, and that 
f(s) = x. Then, 

Prw ≤ Pr[b(g) = 1|f(s) = x]. 

By abuse of notation, all the following probabilities 
will be conditional in f(s) = x. Applying the law of 
total probability, 

Prw ≤ Pr[b(g) = 1] 

≤ Pr[hex( ̂w) ∈ Rδ ] + Pr[b(g) = 1|hex( ̂w)  ∈ Rδ]. 

If hex( ̂w)  ∈ Rδ , then g = h(hex( ̂w)) is uniformly dis­
tributed in Hk/2 so the second term is |b−1({1})|/22k . 
For the first term, the law of total probability yields 

Pr[hex( ̂w) ∈ Rδ] 

≤ Pr[w ∈ Qδ] + Pr[hex( ̂w) ∈ Rδ|w  ∈ Qδ]. 

In the second term, as w  ∈ Qδ, the witness w is 
uniformly distributed among the elements of F× notp 
previously chosen by the σ-oracle, so Pr[hex( ̂w) ∈ 
Rδ|w  ∈ Qδ] ≤ q/(p − 1 − q). With wi as in the defi­
nition of sloth, the first term is split into 

Pr[w ∈ Qδ] 

≤ Pr[w£−1 ∈ Qδ−Δ] + Pr[w ∈ Qδ|w£−1  ∈ Qδ−Δ]. 

Considering the second term, it follows from w£−1  ∈ 
Qδ−Δ that there is time at most Δ to compute w£ = 
τ(w£−1) = ρ(σ(w£−1)), where σ(w£−1) is uniformly 
chosen among the elements of F× not previously cho­p 
sen by the σ-oracle. The (Δ, E)-sqrt(Fp) assumption 
combined with Remark 2 then implies the bound 
Pr[w ∈ Qδ|w£−1  ∈ Qδ−Δ] ≤ Eq(p − 1)/(p − 1 − q). 

The term Pr[w£−1 ∈ Qδ−Δ] is handled by induc­
tion, computing Pr[w£−j ∈ Qδ−j Δ ] for each j from 
1 to £ − 1. The same reasoning as in the previous 
paragraph leads to 

Pr[w£−j ∈ Qδ−jΔ ] ≤ Pr[w£−(j+1) ∈ Qδ−(j+1)Δ] 

+ Pr[w£−j ∈ Qδ−jΔ |w£−(j+1)  ∈ Qδ−(j+1)Δ], 

and 

Pr[w£−j ∈ Qδ−jΔ |w£−(j+1)  ∈ Qδ−(j+1)Δ] 

p − 1 p − 1 ≤ Eqj ≤ Eq , 
p − 1 − qj p − 1 − q 

where qj is the number of oracle queries done before 
time δ − j Δ. Inductively, 

p − 1 
Pr[w ∈ Qδ ] ≤ Pr[w0 ∈ Qδ−£Δ] + E£q . 

p − 1 − q 

It remains to bound Pr[w0 ∈ Qδ−£Δ]. Since δ < £Δ, 
the queries of Qδ−£Δ were done during the precompu­
tation phase, before the input x was revealed. Then, 

Pr[w0 ∈ Qδ−£Δ] ≤ Pr[w0 ∈ Q0] 

≤ Pr[s ∈ R0] + Pr[w0 ∈ Q0|s  ∈ R0]. 

If s  ∈ R0 at the start of the game, h(s) is uniformly 
Hk/2distributed over because h is assumed to be 

a random function, so w0 is uniformly distributed 
among the 22k corresponding elements of the field 
(recall that 22k < p). Hence Pr[w0 ∈ Q0|s  ∈ R0] ≤ 
q/22k. It is only for the remaining quantity Pr[s ∈ R0] 
that the distribution of the input x comes into play. 
Recall that all the probabilities where conditional in 
f(s) = x (if it is false, the game is lost), and that x 
is uniformly distributed over Hk/2. Therefore, 

Pr[s ∈ R0] ≤ Pr[f(s) ∈ f(R0)] ≤ q/22k , 

which concludes the proof. 


