
A brief discussion on selecting new elliptic curves

Craig Costello, Patrick Longa, and Michael Naehrig

Microsoft Research

Abstract. This position paper summarizes our perspectives on the selection of next-generation
elliptic curves for standardization. It also contains generation algorithms intended as a foundation
for choosing elliptic curves for cryptography in a simple, consistent and rigid way.

1 Introduction

The discussion on selecting the next generation of elliptic curves for cryptography has taken
center stage after doubts about the trustworthiness of the standardized NIST curves emerged.
The IETF TLS working group has issued a request to the IETF Crypto Forum Research Group
(CFRG) asking for a recommendation of new elliptic curves for the TLS protocol. Discussions
in the CFRG have almost exclusively addressed software implementations on a very restricted
subset of platforms and have considered only timing attacks. This focus has excluded several
relevant scenarios, e.g. implementations on embedded devices, hardware platforms and con­
siderations about other side-channel attacks. Our position is that an independent selection
process should consider a wide range of scenarios and platforms, be driven by requirements
and be based on a transparent, consistent and deterministic curve generation procedure.

In this position paper, we first give an overview of criteria for the selection of elliptic
curves, and then discuss a generation algorithm that can be used to produce secure curves.
The algorithm takes the base field prime as input, and thus allows different choices of prime
shape candidates depending on specific efficiency and security criteria. We discuss some of
the prime shape candidates at the end of the paper, and conclude by presenting an example
selection of curves over pseudo-Mersenne primes.

2 Curve models

“NIST should generate a new set of elliptic curves for use with ECDSA in FIPS 186...
The set of high-quality curves should be described precisely in the standard, and should

incorporate the latest knowledge about el liptic curves.”

Edward Felten [17, p. 36]

Let Fp, p > 3 denote a large prime field. An elliptic curve E /Fp can be described by different
models, i.e. written down using different defining equations, depending on the structure of the
Abelian group of Fp-rational points E(Fp). To date there are essentially three such models
of interest in the discussion of standardized curves: the short Weierstrass model, the twisted
Edwards model [3], and the Montgomery model [16], written (respectively) as

EW 2 3: y = x + ax + b,a,b

EEd 2 2
a,d : ax + y 2 = 1 + dx2 y , and

3EM : B y2 = x + Ax2 + x, (1)A,B

2 Craig Costello, Patrick Longa, and Michael Naehrig

where the superscripts denote the model and the subscripts denote the Fp-rational curve
constants.

The short Weierstrass model EW is general in the sense that it can be used to describe a,b
all elliptic curves defined over large prime fields. This includes all such curves in previous
standards as well as those currently under discussion for future standards. On the other hand,
the twisted Edwards and Montgomery models EEd and EM can only be used for a subset a,d A,B
of elliptic curves; namely, they can only describe an elliptic curve E if 4 | #E(Fp), which
means that these models cannot be used for prime order curves (i.e., all of the curves defined
over prime fields in previous standards). The subset of elliptic curves which have a twisted
Edwards model is exactly the same as the subset of curves which have a Montgomery model
(because every twisted Edwards curve is birationally equivalent over Fp to a Montgomery
curve, and vice versa [3, Thm. 3.2]).

Although the above models are presented with two parameters, in practice, one of the
constants is usually fixed to a specific value and curves are essentially defined by a single
curve constant: fixing a = −3 in EW is used for an increased efficiency of curve operations; a,b

for the same reasons, the parameter a in EEd can be set to a = 1 or a = −1 depending on a,d
the underlying prime field; and, for fixed A, there are (up to isomorphism) only two choices
of B ∈ Fp, those which correspond to the two quadratic twists of EM (see Section 4). Thus, A,B

, EEdwe use EW and EM
−3,b, E

Ed respectively (the sign in as shorthand for EW and EM
b d A ±1,d 1,A

EEd will be made clear in context). ±1,d
There are many different criteria that can be used to differentiate these curve models, and

there are numerous pros and cons to each of them. The twisted Edwards curve model has been
considered for implementations because it can offer a simple, single group law formula that
works for all possible inputs (i.e., is complete). The Montgomery model has been considered
because it can be used to implement an x-coordinate-only ladder for scalar multiplication.
In Table 1 we compare the three models in terms of what we believe are the three main
“yes/no” categories; below the table we elaborate on what each of these categories mean
in practice. We do not include any performance/speed comparisons in Table 1, since this
is very implementation-dependent. It is worth noting however, that roughly speaking, our
implementations of variable-base scalar multiplications on 64-bit Intel platforms revealed
that the performance of the twisted Edwards and Montgomery models was similar across the
three (128-, 192-, and 256-bit) security levels, and that the fastest of these two models was
consistently close to a factor 1.20x faster than the Weierstrass model [7, Table 3]1 .

Table 1. Practical “yes/no” advantages of different elliptic curve models.

curve model prime order simple supports
possible completeness ADD function

Weierstrass , X ,
twisted Edwards X , ,

Montgomery x-only X , X

Over the same finite field. This difference is entirely dependent on the speed of the explicit formulas, so the
rough consistency of the performance ratio across security levels is not surprising.

1

3 A brief discussion on selecting new elliptic curves

–	 Advantages of prime order. Prime order (a = −3 short Weierstrass) curves are
backwards compatible with implementations that support the most popular standardized
curves. Since there is no co-factor, points that are validated to be on the curve trivially
have prime order, so avoiding small subgroup attacks is inherent in point validation.

–	 Advantages of completeness. A single, complete addition law ensures an easier, more
compact and exception-free implementation; it makes it easier to write branch-free, constant-
time code2 . In the setting of pseudo-additions using the Montgomery x-coordinate, one
can always use the same differential addition formulas which is why we consider this as
complete.

–	 Advantages of ADD function. Access to a general addition operation ensures crypto­
graphic versatility, e.g. it makes ECDSA signature verification possible. When one can
exploit precomputations, an addition function can lead to significant speedups, especially
in the ephemeral Diffie-Hellman key setting.

Summary. In light of Table 1, we do not see any significant reason to use the Montgomery
model over the twisted Edwards model when working with a cofactor curve. Hence, if cofactor
curves are put forward, our opinion is that they should be specified in twisted Edwards form
and that twisted Edwards coordinates should be used for simplicity and consistency. To
decide on whether the new curves should be prime (short Weierstrass) or composite order
(twisted Edwards), the trade-offs in the first two columns of Table 1 and the backwards
compatibility offered by prime order short Weierstrass curves should be considered alongside
the approximate factor 1.20x performance advantage offered by (twisted) Edwards curves.

3 Security levels

“Security first: When NIST issues a standard or guideline whose primary purpose is
security, the security of that standard or guideline (e.g. the security of the algorithm,
protocol, process, or design that is standardized) should be treated as the top priority.
... This principle also requires that design of security standards and guidelines be

conservative with minimal assumptions or issues left to faith or chance.”

Steve Lipner [17, p. 47]

There are two aspects to consider in regards to security levels:

(i) how many security levels (curves) should be put forward?, and
(ii) what is the size of the prime subgroup required to meet a particular security level?

Concerning (i), some argue that having a single curve at the 128-bit security level is enough.
The reasoning here is that if a new (say, subexponential or even polynomial time) attack is
discovered that breaks the 128-bit security level, then it is also likely to break higher security
levels too. But this disregards the possibility of an improved (but still exponential) attack with
better than “square root” complexity. In this case, the security of the lower-security curve(s)
may be downgraded to be within cryptanalytic reach, but the higher-security curve(s) could

2	 In [7] we present an efficient implementation technique that addresses the problem of Weierstrass incom­
pleteness, but the presence of one complete addition law remains the most simple solution.

4 Craig Costello, Patrick Longa, and Michael Naehrig

still offer very good security and performance relative to other primitives. Our opinion is
that it is worth standardizing curves at multiple security levels and to best prepare ourselves
against potential advances in cryptanalysis. Historical hindsight tells us that there is a rich
history of underestimating attack improvements and future pro jections on parameter sizes.
Moreover, different entities, such as companies and governments have different requirements
and thus different views on the security levels they want to use for different applications.

Assuming that new curves at different security levels are required, then in order to min­
imize the additional effort, we argue that the curves should be chosen consistently across
security levels. This is one of the main requirements behind the selection criteria of the curves
in [7] and in the development of the accompanying ECC library [14]: we chose elliptic curves
with the same model over prime fields of the same form with 256, 384 and 512 bits – see Sec­
tion 8. This allowed the reuse of much of the code and algorithms across the security levels and
minimized the implementation effort for both the curve and field arithmetic. We do not intend
to overstate this overlap since different applications might require the implementation of more
aggressive optimizations that would force the use of separate, specialized arithmetic routines.
However, we believe that this is an important factor to consider in the next generation of
elliptic curves because it would favor deployment in a wide range of settings.

Some have argued in favor of lowering the security goalposts of the next generation of
curves to better match the real-world security of the symmetric primitives they are to be
paired with, in order to gain efficiency. At present though, there is no consensus on the
equivalent strengths between asymmetric (e.g. ECC) and symmetric (e.g. AES) primitives3 ,
and until a concrete comparison can be made and is agreed on by experts, to us it seems
ill-informed to start downgrading the strength of ECC primitives to match conjectural weak­
nesses in the symmetric world. Others are using ad-hoc “security versus performance” metrics
to justify curves at security levels different to the traditional ones. But again, to date there is
no well-established metric to measure CPU performance against security. Moreover, based on
our experiments with curves at a range of (both traditional and “in-between”) security levels,
we are yet to observe any significant performance-based reason to go moving the security
goalposts in the next generation of curves.

Summary. Our opinion is that it is advantageous to standardize curves across multiple secu­
rity levels and that these curves should be chosen consistently so as to reduce the implemen­
tation and maintenance effort. Furthermore, at present we do not see any reason significant
enough to warrant deviation from the well-established security levels.

4 Twist-security

The notion of “twist-security” was introduced in [2] as a means of avoiding curve pertinence
checks in the special case when one is working only with the x-coordinate corresponding to

A

Athe Montgomery model EM

x ∈ Fp correspond to a point on EM
. Roughly speaking, this is because around half of the values of

and the remaining x-values correspond to a point on

AAthe quadratic twist of EM. Checking that a particular value of x corresponds to EM

3than its twist amounts to checking that (x + Ax2 + x) is a square in Fp, which costs an
exponentiation in Fp. Since this is more expensive than the essentially free point pertinence
checks that one performs when both (e.g. Weierstrass or twisted Edwards) coordinates are

3 For example, see the different recommendations at http://www.keylength.com/.

rather

http:http://www.keylength.com

5 A brief discussion on selecting new elliptic curves

available, one way to avoid it is to make sure that both EM and its quadratic twist are secure, A
i.e. have strong group orders.

The importance of twist-security should not be overstated: the only practical setting where
twist-security offers any known advantage is when one is using the Montgomery ladder to
perform x-coordinate-only arithmetic. If one uses Weierstrass coordinates or twisted Edwards
coordinates then one should always perform the trivial checks to make sure transmitted points
are on the right curve. Thus, the absence of this property in some of the NIST curves [22,
App. D] and the Brainpool curves [8] should not be used to dismiss any of them.

There is no clear consensus in the community if new curves should have this property.
On the one hand, one could argue that a curve and its quadratic twist are related (after all,
they become isomorphic over F 2), and that one may as well make sure the related ob ject is p

secure too. On the other hand, some have argued that curves with a strong twist “constitute
a distinguished subset of all possible curves” and that “this specialty could lead to future
attacks” [12]. We point out, however, that one could apply similar reasoning (without con­
sideration of twists) to say that curves with strong group orders are also a subset of all curves.

Summary. Twist-security is a notion that should be taken into account when working with
the x-coordinate-only Montgomery model. When working in other models, such as the short
Weierstrass model, the value of this property should not be overstated. There is no clear
consensus in the community if new curves should have this property. We think that, as far as
generating new curves, having twist-security is a safer bet than not having it, and therefore
we include it in our curve generation algorithms.

5 Rigidity and curve constants

“NIST should ensure that there are no secret or undocumented components or constants in
its cryptographic standards whose origin and effectiveness cannot be explained. ”

Steve Lipner [17, p. 49]

Finding elliptic curves in a transparent and deterministic manner is a way for cryptographers
to convince the widespread community that there are no hidden weaknesses in the curve. The
desire for this so-called rigidity property dates back to Scott’s blog post4 that questioned the
process that was used to generate the NIST curves in 1999. Namely, the set of NIST’s short
Weierstrass curves EW of prime order were chosen by passing random seeds through a one-b
way process f to generate the curve constant b ∈ Fp, where p was fixed for efficiency reasons.
This obviously required searching through many random seeds si until Eb

W(Fp) with b = f(si)
had prime order. Scott immediately noticed, however, that if the entity generating the curve
knew of a subset of curves with hidden weaknesses (among all possible curves EW/Fp), then b
they could have simply tried as many seeds as they needed to until they found a curve that
possessed this weakness and had prime order. Scott’s response was to generate curves using a
rigid process: one that minimizes the “wiggle-room” a cryptographer (with some conjectured
backdoor knowledge) has to try and manipulate a weak curve as a result. This means that,
at the very least, users can verify that a curve was the output of a process that is logically
explained and deterministic.

4 See https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ.

https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ

6 Craig Costello, Patrick Longa, and Michael Naehrig

Since the doubts concerning the origins of the NIST seeds surfaced in the community,
most proposals for new curves have done exactly this. For example, in his original post, Scott
suggested using the digits of π to kickstart an iteration procedure, while Brainpool used the
digits of both π and e to kickstart a search for a secure combination of underlying primes
p and curve constants b, respectively. Both of these processes are widely agreed to achieve
rigidity (despite the claims to the contrary in [4]).

However, when considering non-Weierstrass models, the situation can change slightly:
while the fastest explicit formulas for point operations in Weierstrass form are independent
of the curve constant b, the fastest explicit formulas in the twisted Edwards and Montgomery
models do make use of multiplications by their respective constants. Naturally then, and in
light of the obvious efficiency advantages that are possible, the simplest process to achieve
rigidity is to find the smal lest curve constant such that the curve is secure. While it may
appear that there could be a specialized attack that takes advantage of a small constant,
experts agree that the size of the constant is irrelevant to the difficulty of attacking the curve.

Summary. Over a fixed prime field Fp, and in light of Section 4, one can select curves over
any of the models in a rigid manner by finding the smallest curve constant such that the curve
and its twist have an optimal group order. We make this explicit for the cases of interest in
the following section.

6 Deterministic algorithms for generating curves

“NIST should consider the publication of a standard algorithm and corresponding software
to generate additional elliptic curves and should consider to use this tool to also publish

some new curves.”
Bart Preneel [17, p. 65]

Based on the arguments from the previous section, we now describe simple and deterministic
algorithms for generating secure elliptic curves. The algorithms operate without any hidden
parameters, reliance on randomness or any other processes offering opportunities for ma­
nipulation of the resulting curves. We present algorithms for the Weierstrass and (twisted)
Edwards models to generate prime order curves and curves with small co-factors, respec­
tively. In the case of co-factor curves, the selection between curve models is determined by
choosing the curve form that supports the fastest (currently known) complete formulas: when
p ≡ 3 mod 4, the fastest complete formulas are in Edwards coordinates on EEd, but when 1,d

p ≡ 1 mod 4, the fastest complete formulas are in twisted Edwards coordinates on EEd
−1,d.

The algorithms generate the curves with the smallest curve constant that satisfy the selection
criteria. We do not give an algorithm for the Montgomery model since the curve with the
smallest absolute value of the constant A corresponds to the (twisted) Edwards curve with
the smallest absolute value of the constant d. The correspondence is given via isogenies5 of
degree 4 defined over the base field, which means that the corresponding Montgomery and
twisted Edwards curves have the same curve and twist group orders.

The principle of choosing curves with the smallest constants once the base field prime and
the selection criteria are fixed, has been used before (with some variations) in several works
of different authors (e.g., see [5, 1, 7]).

5 See http://cryptosith.org/papers/isogenies_tEd2Mont.pdf for the technical details.

http://cryptosith.org/papers/isogenies_tEd2Mont.pdf

7 A brief discussion on selecting new elliptic curves

6.1 Prime order curves
2Let tb denote the trace of Frobenius of the curve EW/Fp : y = x3 − 3x + b, i.e. tb = p +b

1 − #EW(Fp). The following algorithm finds the integer b with smallest absolute value such b
that EW/Fp is of prime order and has a prime order twist. The algorithm simply tests the b
values of b in the sequence 1, −1, 3, −3, 4, −4, . . . in that order until a curve-twist pair of
prime order curves is found. Note that the values −2, 2 for b are left out because these values
produce singular curves. In the case that p ≡ 3 mod 4, the search can be performed twice
as fast by ignoring the negative values of b, since EW and EW are non-trivial quadratic b −b
twists of each other; in this case, once a curve-twist pair is found, we can work on the
twist whose trace is positive, i.e., the twist with the smaller group order. The notation for
b ∈ [1, −1, 3, −3, 4, −4, . . .] do means running through the given sequence of integers in that
order.

On input of a prime p, do the following:

for b ∈ [1, −1, 3, −3, 4, −4, . . .] do

Compute tb.

if p + 1 − tb is prime and p + 1 + tb is prime then return b.

end for

6.2 Cofactor curves

Cofactor curves for p ≡ 1 mod 4. Let td denote the trace of Frobenius of the curve
EEd 2

−1,d/Fp : − x + y2 = 1 + dx2y2, i.e. td = p + 1 − #EEd (Fp). The following algorithm finds −1,d

the integer d with smallest absolute value such that E−
Ed
1,d/Fp and its quadratic twist have

optimal cofactors. This algorithm simply tests the values of d in the sequence 1, 2, −2, 3, . . .
until a curve-twist pair is found with optimal cofactors (note that d = −1).

On input of a prime p ≡ 1 mod 4, do the following:

for d ∈ [1, 2, −2, 3, −3, . . .] do

Compute td.

'
Set (p + 1 − td) = hr and (p + 1 + td) = h'r', where h = 2e , h' = 2e and r and r' are odd
if ((h = 4 and h' = 8) or (h = 8 and h' = 4)) and r is prime and r' is prime then
return b.

end for

Cofactor curves for p ≡ 3 mod 4. Let td denote the trace of Frobenius of the curve
EEd 2

1,d/Fp : x + y2 = 1 + dx2y2, i.e. td = p + 1 − #EEd(Fp1,d). The following algorithm finds the

integer d with smallest absolute value such that E1
Ed
,d/Fp and its quadratic twist have optimal

cofactors. This algorithm simply tests the values of d in the sequence −1, 2, −2, 3, . . . until a
curve-twist pair is found with optimal cofactors (note that d = 1).

On input of a prime p ≡ 3 mod 4, do the following:

for d ∈ [−1, 2, −2, 3, −3, ...] do

Compute td.

'
Set (p + 1 − td) = hr and (p + 1 + td) = h'r', where h = 2e , h' = 2e and r and r' are odd
if h = h' = 4 and r is prime and r' is prime then return b.

end for

8 Craig Costello, Patrick Longa, and Michael Naehrig

6.3 Additional security requirements

For the sake of simplicity, the generation algorithms in Section 6.1 and Section 6.2 used the
curve-twist group orders as the only termination condition. However, the curve-and-twist
outputs of these algorithms should be checked to satisfy additional security properties; these
include a large embedding degree (some existing standards state a lower bound on this) to
avoid the MOV attack [13, 10], a trace of Frobenius not equal to 1 to avoid the “smart-
ASS” attack [19, 18, 20], and a large CM discriminant (again, some existing standards state
a lower bound). These conditions can be checked once a curve is found. We do not include
them as explicit conditions in the generation algorithms because they are satisfied with high
probability for a curve output by one of the algorithms. In the rare case that one of them is
not satisfied, the algorithm is simply resumed from the next curve constant.

7 Selection of primes

The rigid curve generation algorithms from Section 6 take as input a prime p such that the
generated elliptic curve is defined over Fp. The community has considered both pseudo-random
primes and primes of a special shape that accelerate the modular reduction. In this section
we provide a short overview of the primes used while highlighting some of their advantages
and disadvantages.

7.1 Primes with special form

NIST recommends the use of five prime fields [22], all over generalized Mersenne primes which
allow fast reduction based on the work by Solinas [21]. More recently, other special primes
have gained popularity due to their improved performance. Below, we describe some of the
most relevant cases.

In the following, we use the terms canonical to refer to representations that use exactly the
minimum number of computer words required to represent field elements, and non-canonical
to refer to redundant representations that use additional words in order to reduce carry
handling operations. We remark that preferring one type of representation over the other is
highly dependent on the characteristics of a particular platform and application.

1.	 (Pseudo-)Mersenne primes. These primes, which are of the form 2α − γ for γ > 0
relatively small, have gained popularity due to their excellent performance and simplicity6 .
When one uses arithmetic with a canonical number of limbs, it is possible to achieve
practically the same performance for any γ < 2w , where w is the targeted computer
wordsize7; this allows flexibility to choose primes matching a target security level exactly.
On the other hand, it has also been suggested that γ be a very small value (e.g., as small
as 5 bits or less) in order to further reduce the cost of modular multiplications when
using a non-canonical number of limbs. One downside of this restriction is that it may
increase the search range when looking for suitable primes, which can have an impact
on security or performance8. In general, pseudo-Mersenne primes are relatively simple to

6 When γ = 1 these are the Mersenne primes which allow even faster modular reduction but, unfortunately,
are uncommon in the range of interest for ECC (except for 2521 − 1 which is used by the NIST curve P-521).

7 If γ is very small and has a low Hamming-weight it is still possible to improve performance further on some
platforms.

8 For example, increasing the size of the prime to meet γ ≤ 25 might affect performance in applications or
platforms that favor arithmetic using the canonical number of limbs.

9 A brief discussion on selecting new elliptic curves

implement; they support compact, scalable implementations across security levels, and
their performance scales well with the bitlength (as the security level increases).

2.	 Solinas primes. These primes take the form 2a ± 2b ± 1, where a > b. If one fixes a = 2b,
then the symmetric alignment makes the use of 2-way Karatsuba especially attractive for
suitably chosen primes with large bitlengths, i.e. for high security levels. Nevertheless, the
efficiency of this optimization strongly relies on the use of representations that have an
even number of words, which may not be possible for canonical representations on many
platforms or may force the use of an additional word in non-canonical representations.
Moreover, given the scarcity of these primes, the chances are that a and/or b are not
computer word-aligned; this can make implementations problematic on platforms that
favor the use of a canonical number of limbs. All of these issues make “good” Solinas
primes efficient for some platforms but suboptimal for others, and make a consistent
selection of Solinas primes across security levels difficult.

3.	 Montgomery-friendly primes. These primes, which are of the form p = 2α(2β − γ) − 1
for positive integers α, β and γ, can be used to speed up the Montgomery multiplication
algorithm [15] and can be efficiently implemented on a wide range of platforms including
8-, 32- and 64-bit architectures. Although Montgomery-friendly primes appear to be very
efficient for the 128-bit security level, they do not scale well with the bitlength and lose
relative efficiency (e.g., compared with pseudo-Mersenne primes) at higher security levels.
It is also an open challenge to implement efficient modular arithmetic over these primes
using vector instructions.

7.2 Pseudo-random primes

Primes of a special shape are usually selected to achieve better performance in general software
environments. However, in hardware or high-assurance software environments, a much broader
family of side-channel attacks [11] is taken into account; compared to the “regular” software
setting, these implementations need to be secure against different attack scenarios. Using
primes of a special form can reduce the availability of countermeasures against certain side-
channel attacks. For instance, in [9] it is shown how implementations protected with additive
scalar blinding can be attacked when they use the special primes as proposed by NIST. This
partially explains why the primes underlying the Brainpool curves [8] are all pseudo-random
and have no special shape.

The downside of using pseudo-random primes is that software implementations tend to
be more cumbersome and are expected to be roughly two times slower than implementations
based on special-form primes.

Summary. When selecting the primes to underly elliptic curves, one can choose either primes
which have a special shape or pseudo-random primes. The former result in faster software
implementations, but may eliminate certain countermeasures which are important in hardware
or high-assurance software environments. In such environments, pseudo-random primes are
preferred.

Along the same lines as the summary in Section 3, when selecting curves for different
security levels, it is advantageous to select the prime forms consistently. This brings many
potential benefits such as scalability, consistency and algorithm/code reuse, and may ease the
implementation and maintenance effort. Moreover, having the same prime shape opens up to
the possibility of having very compact implementations of the field arithmetic.

10 Craig Costello, Patrick Longa, and Michael Naehrig

8 The NUMS curves

Based on the original research we conducted (with Joppe Bos) in [7], and the arguments
presented in the previous sections, we have implemented a high-performance cryptographic
library9 supporting the six curves in Table 2.

security

level

prime

p

Weierstrass b

(y 2 = x 3 − 3x + b)

Edwards d

(x 2 + y 2 = 1 + dx2 y 2)

128 2256 − 189 152961 -15342

192 2384 − 317 -34568 -11556

256 2512 − 569 121243 -78296

Table 2. NUMS curves over pseudo-Mersenne primes at three (standard) security levels.

We note that the Edwards curves in Table 2 are 4-isogenous to the original twisted Edwards
curves we presented in the first (ePrint) version [6] of [7]. The subsequent versions of [6]
(and also the final version [7]) and [14] employ twisted Edwards curves, some of which have
larger curve constants, because of additional implementation considerations we imposed. For
example, we wanted all three of the twisted Edwards curve constants in [7] to be positive
(for the sake of modularity across security levels) and to correspond to the twist whose
trace is positive (i.e., has the smaller group order). Based on extensive feedback and on
discussions in the CFRG forum, we decided to remove these additional conditions for the sake
of transparency and to revert to the original curves, but this time in (a = 1) Edwards form.
The reason here relates to the completeness (resp. incompleteness) of the fastest Edwards
(resp. a = −1 twisted Edwards) addition law for primes that are congruent to 3 modulo 4 –
see Sections 2 and 6.

This means that the NUMS curves in Table 2 are the outputs of the deterministic curve
generation processes described in Section 6, when run on input of the three pseudo-Mersenne
primes above. We note that these primes are the largest 256-, 384-, and 512-bit primes re­
spectively.

References

1.	 D. F. Aranha, P. S. L. M. Barreto, G. C. C. F. Pereira, and J. E. Ricardini. A note on high-security general-
purpose elliptic curves. Cryptology ePrint Archive, Report 2013/647, 2013. http://eprint.iacr.org/.

2.	 D. J. Bernstein. Curve25519: New diffie-hellman speed records. In M. Yung, Y. Dodis, A. Kiayias, and
T. Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 207–228. Springer, 2006.

3.	 D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards curves. In S. Vaudenay,
editor, AFRICACRYPT 2008, volume 5023 of LNCS, pages 389–405. Springer, 2008.

4.	 D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, T. Lange, R. Niederhagen, and C. van Vre­
dendaal. How to manipulate curve standards: a white paper for the black hat. Cryptology ePrint Archive,
Report 2014/571, 2014. http://eprint.iacr.org/.

5.	 D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: Elliptic-curve points indistinguishable
from uniform random strings. In ACM Conference on Computer and Communications Security, 2013.

9 See http://research.microsoft.com/en-us/projects/nums/default.aspx.

http://research.microsoft.com/en-us/projects/nums/default.aspx
http:http://eprint.iacr.org
http:http://eprint.iacr.org

11 A brief discussion on selecting new elliptic curves

6.	 J. W. Bos, C. Costello, P. Longa, and M. Naehrig. Selecting elliptic curves for cryptography: An efficiency
and security analysis. Cryptology ePrint Archive, Report 2014/130, 2014. http://eprint.iacr.org/
2014/130.

7.	 J. W. Bos, C. Costello, P. Longa, and M. Naehrig. Selecting elliptic curves for cryptography: An
efficiency and security analysis. J. Cryptographic Engineering, 2015. http://dx.doi.org/10.1007/
s13389-015-0097-y.

8.	 ECC Brainpool. ECC Brainpool Standard Curves and Curve Generation. http://www.ecc-brainpool.
org/download/Domain-parameters.pdf, 2005.

9.	 B. Feix, M. Roussellet, and A. Venelli. Side-channel analysis on blinded regular scalar multiplications. In
W. Meier and D. Mukhopadhyay, editors, INDOCRYPT 2014, volume 8885 of LNCS, pages 3–20. Springer,
2014.

10.	 G. Frey, M. Müller, and H. Rück. The tate pairing and the discrete logarithm applied to elliptic curve
cryptosystems. IEEE Transactions on Information Theory, 45(5):1717–1719, 1999.

11.	 P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In
N. Koblitz, editor, Crypto 1996, volume 1109 of LNCS, pages 104–113. Springer, Heidelberg, 1996.

12.	 M. Lochter, J. Merkle, J.-M. Schmidt, and T. Schütze. Requirements for standard elliptic curves. Cryp­
tology ePrint Archive, Report 2014/832, 2014. http://eprint.iacr.org/.

13.	 A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite
field. IEEE Transactions on Information Theory, 39(5):1639–1646, 1993.

14.	 Microsoft Research. MSR Elliptic Curve Cryptography Library (MSR ECCLib), 2014. Available at:
http://research.microsoft.com/en-us/projects/nums.

15.	 P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation,
44(170):519–521, April 1985.

16.	 P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of
computation, 48(177):243–264, 1987.

17.	 NIST Cryptographic Standards and Guidelines Development Process. Report and recom­
mendations of the Visiting Committee on Advanced Technology of the National Institute
of Standards and Technology. URL: http://www.nist.gov/public_affairs/releases/upload/
VCAT-Report-on-NIST-Cryptographic-Standards-and-Guidelines-Process.pdf, July 2014.

18.	 T. Satoh and K. Araki. Fermat quotients and the polynomial time discrete log algorithm for anomalous
elliptic curves. Commentarii Math. Univ. Sancti Pauli, 47(1):81–92, 1998.

19.	 I. A. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in
characteristic p. Math. Comput., 67(221):353–356, 1998.

20.	 N. P. Smart. The discrete logarithm problem on elliptic curves of trace one. J. Cryptology, 12(3):193–196,
1999.

21.	 J. A. Solinas. Generalized Mersenne numbers. Technical Report CORR 99–39, Centre for Applied Cryp­
tographic Research, University of Waterloo, 1999.

22.	 U.S. Department of Commerce/National Institute of Standards and Technology. Digital Signature Stan­
dard (DSS). FIPS-186-4, 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.nist.gov/public_affairs/releases/upload
http://research.microsoft.com/en-us/projects/nums
http:http://eprint.iacr.org
http://www.ecc-brainpool
http://dx.doi.org/10.1007
http:http://eprint.iacr.org

