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Abstract 

Nowadays, cryptography based on the elliptic 
curve discrete logarithm problem is widely de­
ployed. This is due to its advantages compared 
to traditional asymmetric schemes relying on the 
hardness of factoring large numbers or of break­
ing the discrete logarithm problem in finite fields. 
The NIST curves provide a standard that is sup­
ported by most applications. Other curves like 
Brainpool and Curve25519 are often implemented 
in addition. 

Currently, different groups like IRTF/CFRG 
[23] and W3C/Web Crypto WG are actively dis­
cussing the standardization of new curve parame­
ters. One major motivation for this debate is an 
erosion of trust in the NIST curves and a demand 
for curves that are generated following a repro­
ducible and verifiable process. Ideally such a 
process should be widely accepted by the crypto 
community. Another driving factor of the dis­
cussion is the growing understanding of secure 
implementation techniques and attacks. 

In this paper, we discuss several aspects to be 
considered when deciding for a new set of elliptic 
curves. In particular, we consider implementa­
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tions of Elliptic Curve Cryptography (ECC) in 
security hardware and high-assurance software. 
These implementation forms lead to several re­
quirements that we discuss in detail. 

The paper expands upon a previous position 
paper [18] which provided input for the discus­
sion surrounding suitable curves for TLS and 
was written by members of the ECC-Brainpool 
group. 

1 Introduction 

The security of Elliptic Curve Cryptography 
(ECC) cannot be assured without using appro­
priate curve parameters. The choice of curve 
parameters is crucial. It must address all known 
cryptographic attacks on ECC and must be done 
in a way that is trusted by the community. In 
addition, the choice of curve parameters has an 
enormous influence on the performance of the 
resulting cryptosystem. Often, the two objec­
tives, security and performance, conflict. Even 
worse, performance optimization is an ambiguous 
goal: it depends among others on the target ar­
chitecture, the optimization objectives, and the 
countermeasures necessary to protect against po­
tential adversaries. In addition, the security of a 
curve is connected to the cryptographic mecha­
nism that utilizes the curve and the environment 
in which it is used. 

The requirements for ECC algorithms depend 
strongly on the environment and the types of 
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adversaries its implementation has to withstand. 
In principle we see three different scenarios: 

1.	 Protected Environment: In this scenario the 
implementation is considered a black box. 
An adversary has no access to specific details 
such as computation time. 

2.	 Network Scenario: It is possible to trigger the 
implementation via a network connection. In 
such a setting several attacks such as timing-
attacks and oracle attacks are possible. 

3.	 Hostile Environment: An adversary has full 
access to the implementation and all poten­
tial side-channels. Additionally he or she is 
able to perform active attacks. This scenario 
regularly occurs with embedded systems and 
smart cards; and requires high-assurance im­
plementation of ECC. 

For the last two scenarios, the implementation 
of the curve operations and cryptographic algo­
rithms must not allow any unintentional leak­
age of sensitive information such as (ephemeral) 
keys or parts thereof. Therefore countermeasures 
against side-channel attacks are necessary in these 
cases. Naturally, (almost) none of these measures 
are free. Therefore, the selection of the underly­
ing curve is crucial; as it either eases protecting an 
implementation or leads to huge computational 
overhead. 

A majority of recent research papers focuses 
on high-performance software implementations. 
This has led to a discussion concentrating on 
curves and special prime fields which allow spe­
cific optimizations and, hence, fast software im­
plementations. Nevertheless, we are convinced 
that hardware or high-assurance software1 re­
quirements should rank equally. 

Therefore, this paper focuses on these require­
ments. Our point of view is motivated by the 
increasing demands for high-assurance ECC on 

We consider certification according to a commonly 
accepted certification scheme, e. g., the Common Cri­
teria (https://www.commoncriteriaportal.org/), as 
a requirement for high-assurance implementations. 

constrained devices such as in the smart meter­
ing scenario. Furthermore, looking at recent se­
curity incidents like Heartbleed2, we consider it 
advisable to transfer critical cryptographic opera­
tions to specialized hardware modules to protect 
private keys from exposure by implementation 
flaws. We argue that points that are valid for the 
fast-changing software world, where implementa­
tions are only used in specific, targeted scenarios 
which focus on performance, cannot be carried 
over easily to secure hardware implementations 
or high-assurance software. Hence, we see the 
need for two sets of curves; one that fulfills high-
performance demands and one that is suitable 
for high-assurance ECC on constrained devices. 
In the following, we only discuss requirements for 
the latter ones. 

We also note that potential new standard 
curves will probably have a very widespread use 
in applications that, today, cannot be foreseen. 
Therefore, with respect to security, a conservative 
approach should be taken. 

This paper is organized as follows: Section 2 
discusses some recent skepticism about existing 
curves in international standards (i. e., NIST and 
Brainpool curves). Section 3 focuses on the re­
quirements for new curves. Their impact on in­
teroperability and performance are discussed in 
Section 4 and Section 5, respectively. In Section 6 
we examine FIPS 140-2, and in Section 7 we draw 
conclusions. 

2 Skepticism about Existing 
Standard Curves 

Even though no security weaknesses have been 
demonstrated, quite recently some skepticism 
about the NIST parameters has arisen. This skep­
ticism is mainly grounded in discussions about 
a potential backdoor in the NIST SP800-90A 
DUAL_EC_DRBG3. 

In addition to this, Bernstein et al. [4] raise 
trust issues relating to the selection of the NIST 

2 http://heartbleed.com/ 
3 http://www.nist.gov/itl/csd/sp800-90-042114. 
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and Brainpool curves, arguing that the degrees 
of freedom in their generation could have pro­
vided a means to intentionally select curves with 
vulnerabilities that are not publicly known. 

We believe that these arguments are only partly 
true. While the lack of justification for the selec­
tion of the seeds from which the NIST curves have 
been derived indeed leaves room for concerns that 
the curves may have been chosen with some hid­
den properties, the Brainpool curves have been 
derived in a very straightforward manner from 
the most prominent natural constants π and e 
which hardly leaves room for any manipulations. 
See [21] for more details. 

3 Elliptic Curve Specifications 
and Criteria 

In what follows we only address elliptic curves de­
fined over a finite field GF (p) of prime character­
istic4 p > 3. Every such curve can be represented 
in short Weierstrass form 

2E : y = x 3 + ax + b. 

The order of E(GF (p)) is denoted by #E. For 
secure elliptic curves #E has the form #E = hn, 
where n is a large prime and the cofactor h is 
a small number. Let G be a base point that 
generates the cyclic subgroup of order n. The 
tuple (p, a, b, G, n, h) is called curve parameters. 

Using the short Weierstrass form in the fol­
lowing does not mean that we recommend per­
forming the ECC computations in this format 
nor necessarily that the wire format is in affine 
short Weierstrass. Often projective coordinates 
(X, Y, Z ) or just (X, Z ) are used for internal com­
putations and compressed affine points are used 
on the wire. 

Especially, we do not consider curves over extension 
fields or pairing-friendly curves. These would require 
the consideration of different additional aspects as well 
as further attacks. See, for example, [17, 12]. 

3.1 Selection of the finite field 

The use of a prime number with a sparse binary 
representation, in particular a Pseudo-Mersenne 
prime or a prime like 2255 −19, as field size enables 
optimizations of the field arithmetic. Since soft­
ware allows short design cycles and fast adoption 
for new developments, such optimizations can, at 
least in the non-embedded world, be integrated 
rather quickly. This is different for high-assurance 
software and for dedicated hardware in hostile 
environments (Scenario 3). While hardware im­
plementations can also be optimized for the prime 
being used and can gain some additional speed for 
a single distinguished curve, this potential gain 
in performance comes at the cost of flexibility. 
Changing the prime requires a complete redesign 
of the hardware; modifications in the field are not 
possible. Further, this approach requires different 
multiplier implementations for ECC and RSA in 
devices that support both algorithms. 

General purpose smart cards are an example 
of this type of equipment. These cards are not 
designed for one fixed curve. Instead they have 
a universal arithmetic-unit for computations in 
GF (p) (and, possibly, in GF (2n) as well). These 
arithmetic-units are flexible enough to perform 
modular operations for a wide range of bit sizes. 

The implementation of an optimized arith­
metic/modular multiplier for (additional) special 
primes in hardware is a major investment for any 
manufacturer and, thus, comes with high finan­
cial risk. In addition, for a manufacturer it may 
not be desirable to design its product for one 
fixed curve or prime field, in particular, if RSA 
has to be supported as well. The requirements 
for different markets may vary, and it is more 
cost efficient to offer one general purpose solution 
that offers a flexible parameter choice. 

Where the hardware implementation is flexible 
(i. e., supports arbitrary primes), a special shape 
of the prime does not improve performance. More­
over, it has negative influence on implementation 
security, as it hinders efficient randomization for 
preventing side-channel attacks in hostile envi­
ronments (Scenario 3). A prime field size with 
sparse binary representation requires larger blind­



ing factors for its randomization as well as for 
the randomization of the secret scalar, because, 
by the Hasse-Weil theorem, it also yields a sparse 
representation of the curve order. 

One of the proposed countermeasures against 
side-channel attacks on elliptic curve point mul­
tiplication is Coron’s first countermeasure [10]. 
Let P ∈ (G) and λ ∈ {0, . . . , n − 1}. Instead of 
computing λP directly, one chooses a random 
number r (usually r has 32 bits, [10] suggests 
using 20 bits) and computes (λ + rn)P . It has 
been observed [9]5 that the validity of this coun­
termeasure relies on the structure of the binary 
representation of p. According to the Hasse-Weil 
Theorem, for cofactor-one curves, the upper half 
of the binary representation of the prime num­
ber p equals that of the group order n.6 If this 
part of p contains long runs of zeroes or ones 
(e. g., in Pseudo-Mersenne primes or the primes 
over which the NIST curves are defined), some 
bits of r and λ can directly be accessed through 
measurements, see e. g. [13]. 

As a consequence, the effort for blinding in­
creases considerably for special primes: For 
primes close to 2k, a blinding factor of almost 
k/2 bits is required to thwart side-channel attacks 
[25]. In contrast, for curves over arbitrary primes, 
the best known attacks rapidly become inefficient 
when blinding factors longer than 64 bit are used 
[24]. 

In conclusion, we argue that for secure hard­
ware and high-assurance software, a set of curves 
over unstructured primes should be defined and 
required to be implemented for interoperability 
reasons. In order to avoid any potential alle­
gations of having manipulated the primes cho­
sen, these should be generated verifiably pseudo­
random. One approach for pseudo-random prime 
generation was introduced and has been success­
fully applied [19, 6]. 

5 The main ideas from [9] are also reproduced in [11], 
which is easily available, and later independently in 
[22]. 

6 Other cofactors yield a similar structure-preserving 
property. 

3.2 Twist Security 

In some applications one wants to use only the x-
coordinates of curve points. An adversary there­
fore might try to change x-coordinates such that 
computations are done on an insecure curve, as 
explained in [15]. In the most important exam­
ples, this attack may lead to computations on the 
twist7. Therefore it is desirable that the twist 
of E is also cryptographically strong, if the fault 
attack cannot be ruled out by other measures. 
Such curves are called Twist Secure. The use of 
twist secure curves may improve the security of 
careless implementations. 

However, it should be noted that the condition 
‘b a quadratic non-residue’, see e. g. [19, 16], can 
only be fulfilled by one of these curves, either by 
the original curve or by its twist, thus, poten­
tially enabling zero-value attacks, see [1], or fault 
attacks on common points, see [2]. 

Nonetheless, even with twist security, imple­
mentations that perform computations on full 
coordinates (x, y) or (X, Y, Z ) must check group 
membership of received curve points to thwart 
invalid point attacks. 

Summarizing, we conclude that the benefit of 
twist security is somehow limited. 

3.3 Cofactor 
A cofactor greater than one can enable small sub­
group attacks, where an active adversary chooses 
a point of small order as his public Diffie-Hellman 
key to gain partial information on the other’s pri­
vate key. If the protocol does not prevent leakage 
of the shared DH-point, an additional check or 
an additional multiplication operation is needed 
to prevent this attack. This is not only an ad­
ditional overhead and may require changes in 
existing implementations for prime order curves 
but also a source of implementation weaknesses 
if the check is omitted or just forgotten8. 

7 If #E(GF (p)) = p + 1 + t we consider the (GF(p)­
isomorphism) class of curves E1 : y2 = x3 +au2x+bu3 

with #E1(GF (p)) = p + 1 − t as twist of E. 
8 Some implementations in the field neglected this check 

for years. In the case of the Internet Key Exchange 
(IKE) protocol, this issue was eventually addressed in 



In recent discussions, curves in Montgomery or 
Edwards form have been proposed, see Section 4, 
both of which require the cofactor to be at least 
four. These curve representations are mainly 
advertised for their simple, efficient and time-
constant arithmetic. 

In hostile environments (Scenario 3), however, 
the implementations do not only need to be time-
constant but must also be protected against other 
side-channel attacks like DPA and DEMA which 
significantly reduces the advantages of the simpli­
fied arithmetic on Montgomery/Edwards curves. 
For instance, a typical argument in favour of 
Montgomery curves is the existence of fast and 
time-constant single-coordinate ladders. But, for 
high-assurance implementations where measures 
like randomization are needed to thwart advanced 
side-channel attacks, a generalized Brier-Joye lad­
der for projective coordinates (X, Z ) on Weier­
strass curves is also exception-free, competitive 
and even used in practice [14]. 

The authors are not aware of an implementa­
tion of Montgomery curves or Edwards curves 
(especially not of Curve25519 ) that provides com­
prehensive protection against all the attacks that 
need to be considered in implementations for hos­
tile environments. Hence, it is not clear to us, 
whether these curves provide any advantage in 
Scenario 3. 

Summarizing, we prefer a cofactor h = 1 unless 
it is shown that Montgomery curves or Edwards 
curves can provide significant advantages in the 
hostile environment scenario that outweigh the 
disadvantages of h > 1. 

3.4 Rigidity 

Recent revelations on manipulations of crypto­
graphic standards have raised the demand for 
a transparent and traceable process on how to 
select curve parameters. One approach to achieve 
this is to use a pseudo-random generation process 
which is seeded by natural constants. For exam­
ple, the Brainpool curves [19] have been generated 
this way. The second possibility is to define a 

RFC 6989 [26]. 

set of desired properties and to choose out of the 
remaining options the one with some minimal 
property, e. g., those with the best performance.9 

This is how, for example, the Curve25519 [3] and 
the NUMS curves [5] have been constructed. 

Both processes provide very limited flexibility. 
Nevertheless, the choice of input parameters as 
well as the choice of desired properties heavily 
influences the result. 

Twist security may serve as an example. We 
have already argued that twist security is not 
strictly necessary. Furthermore, there are math­
ematical attacks like the Brown-Gallant-Cheon 
attack [7, 8] that cannot, in every circumstance, 
be prevented through careful implementations.10 

So why not introduce Brown-Gallant-Cheon­
resistance as requirement? This would lead to 
another set of secure elliptic curves. Hence, per­
fect rigidity, defining a process that is accepted 
as completely transparent and traceable by ev­
eryone, seems to be impossible. 

In 2005, for instance, the ECC-Brainpool con­
sciously decided against twist security and Brown­
Gallant-resistance as design criteria. 

In our opinion both approaches to rigidity, min­
imality and verifiable pseudo-randomness, are ac­
ceptable provided that first the requirements are 
specified and then, afterwards, the parameters 
are selected. 

3.5 Implementation Security 

Besides mathematical security, the selection of 
curve parameters influences the effort needed to 
achieve a certain level of implementation security. 
In this context, the required protection depends 
on the application scenario, which we outlined 
in Section 1. In cases where the implementation 
runs in a secure environment and only remote 

9 See the discussion in Section 1. Performance is very 
architecture specific; however, according to Moore’s 
law, the processing capacity of microcontrollers will 
continue to improve. 

10 For instance, there are undeniable signature schemes, 
where the oracle P → x · P (with x being the private 
key) needed by the Brown-Gallant-Cheon attack is 
inevitably available to an attacker. 

http:implementations.10


attacks are possible (Scenario 2), a time-constant 
implementation may be sufficient. 

If the implementation has to withstand adver­
saries with physical access such as in Scenario 3 
(i. e., to be resistant against other side-channels 
like power consumption and electromagnetic em­
anations or even against active fault injection) a 
combination of more advanced protection tech­
niques like randomization is essential [16]. 

While realizations of constant time implemen­
tations are possible for Weierstrass curves as well, 
a common argument for the use of Montgomery 
/ Edwards curves is that achieving constant time 
computations is easier. Nevertheless, it should 
be noted that this is not sufficient for protection 
against the adversaries considered in Scenario 3 
(cf. discussion in Section 3.3). 

4 Interoperability — Curve 
Representation and 
Exchange Format 

Current standards like those of ISO, ANSI, IETF, 
BSI, and NIST describe elliptic curves in short 
Weierstrass form. In addition, data structures 
for exchanging points of a curve in protocols are 
also specified as either affine coordinates or com­
pressed affine coordinates for short Weierstrass 
curves. 

In the current discussion, different proposals 
like Montgomery curves and (twisted) Edwards 
curves are considered since they allow simple and 
efficient arithmetic. Points on curves in either of 
these forms can be efficiently transformed to affine 
coordinates in Weierstrass form and vice versa. 
This allows using Montgomery and (twisted) Ed­
wards curves in implementations while still using 
the exchange formats defined in current stan­
dards. In our view, at least for secure hardware 
and high-assurance software, this approach re­
duces the implementation costs in comparison 
to adapting the exchange format. Thus, it is 
strongly preferable in the case that other formats 
like Montgomery or (twisted) Edwards curves are 
standardized. 

5 Performance — Flexibility, 
Agility, and Costs 

In the recent discussion on new curves, one point 
of view that has been expressed is that a single 
set of curves is sufficient for all use cases. We do 
not share this opinion for three main reasons. 

We consider at least two sets of curves as neces­
sary: one for high speed applications in software 
and one for secure hardware/ high-assurance soft­
ware addressing Scenario 3. Nevertheless, those 
two worlds have to be able to interact. Since 
we have already argued that special primes are 
not well suited for high-assurance solutions, we 
assume the usage of a curve over a random prime 
field for this communication. 

Finally, even though we currently expect only 
generic attacks on curves, we cannot be sure 
about future developments. In the case of crypt-
analytic breakthroughs, there is a chance that 
at least one of the curves would not be affected. 
Furthermore, a single distinguished curve would 
be an exposed target for an adversary. 

The cost for implementation and usage of 
elliptic curves does not only depend on their 
implementation-forms and performance. In par­
ticular, for high-assurance devices, the evaluation 
and certification cost has to be considered as 
well. Further, it has to be noted that for server 
implementations where high-performance curves 
are preferred, the cost of supporting additional 
curves depends on the question as to how often 
the additional curves are used. Supporting two 
different sets of curves does not affect the per­
formance of equipment (e. g., TLS servers) that 
mainly uses special-prime curves. 

6 Connection with FIPS 140-2 

The predominant status of the current NIST 
curves stems, partially, from the fact that NIST 
was one of the the first standardization bodies 
for ECC. In addition to this, NIST curves are 
also required to receive a FIPS 140-2 certificate 
which is necessary for cryptography used by the 
US government. 



We believe that it is rather disadvantageous 
that a crypto device has to disable all other non-
NIST ECC curves when working in FIPS-mode. 
Common Criteria certification is much more flex­
ible in this regard. We would like to see other 
curves, e. g., Brainpool curves and Curve25519, 
in FIPS 140-2 or its successor. 

7 Conclusion 

We do not see an immediate need to withdraw 
the current NIST curves. Nevertheless, we see a 
benefit in standardizing additional, trusted curves 
that have been generated in a rigid way. 

In our view, flexibility and security are most im­
portant, and performance ranks third. We believe 
that the previously mentioned considerations and 
conclusions provide a necessary viewpoint to the 
current discussion on the development and the 
selection of future standard elliptic curves. In 
particular, a set of curves should be defined that 
is suitable for high-assurance implementations 
and addresses Scenario 3. One option is to adopt 
the existing Brainpool curves [19, 20]. 

Alternatively, a new set of high-assurance 
curves could be generated. In this case, we believe 
this generation should use a verifiably pseudo­
random process. The generation of the Brainpool 
curves [6] could serve as blueprint. This process 
is similar to the methods described in [27] but 
uses natural constants as seeds. Several of the 
criteria that should be met by the new curve pa­
rameters are discussed in this paper. However, 
these aspects are not exhaustive. A complete list 
can be found, for example, in [6]. 

For Scenario 2, we could think of adding the 
curves chosen by the IRTF/CFRG to the NIST 
suite. 

New curves should, in our opinion, not come 
with new wire formats. Instead, affine short 
Weierstrass and compressed format should con­
tinue to be used. Further, new curves should not 
imply new or specific cryptographic algorithms. 

We hope that the NIST workshop will help to 
re-establish trust into ECC. 
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